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Digital atlases of animal development provide a quantitative description
of morphogenesis, opening the path toward processes modeling. Proto-
typic atlases offer a data integration framework where to gather infor-
mation from cohorts of individuals with phenotypic variability. Relevant
information for further theoretical reconstruction includes measure-
ments in time and space for cell behaviors and gene expression. The lat-
ter as well as data integration in a prototypic model, rely on image proc-
essing strategies. Developing the tools to integrate and analyze biologi-
cal multidimensional data are highly relevant for assessing chemical
toxicity or performing drugs preclinical testing. This article surveys
some of the most prominent efforts to assemble these prototypes, cate-
gorizes them according to salient criteria and discusses the key ques-
tions in the field and the future challenges toward the reconstruction of
multiscale dynamics in model organisms. Birth Defects Research
(Part C) 96:109–120, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION
Studying how the known genomes
relate to the spatiotemporal behav-
ior of cell dynamics, tissue pattern-
ing, and embryo morphogenesis is
one of the key questions for devel-
opmental biology in the postgenomic
era. Despite completion of the ge-
nome sequence of many organisms
(McPherson et al., 2001), we are still
far from understanding, modeling,
and predicting how organisms de-
velop from one single cell into an
organized, multicellular individual.
However, comprehensive under-

standing of biological mechanisms
is a fundamental issue for efficient

preclinical testing of potential new
drugs (Goldsmith, 2004; Sipes
et al., 2011). Potential applications
include treatment of heart diseases
(Milan et al., 2003; Barros et al.,
2008), leukemia (North et al., 2007),
bone disorders (Paul et al., 2008),
cancer (Amatruda et al., 2002; Lu
et al., 2011), schizophrenia, Parkin-
son’s, Alzheimer’s, and other demen-
tia (Martone et al., 2008).
Many fundamental challenges

pave the way toward the long term
goal of reconstructing living systems
multiscale dynamics. The quantita-
tive assessment of the temporal and
spatial gene expression distribution

in multicellular organisms is required
for building and modeling gene reg-
ulatory networks underlying mor-
phogenesis (Davidson and Erwin,
2006; Li and Davidson, 2009).
Recent advances in labeling tech-

niques (Vonesch et al., 2006; Choi
et al., 2010) and microscopic imag-
ing (Megason and Fraser, 2007)
have steered this field from a static,
‘‘omics’’-like approach (Walter et al.,
2002) toward image-based strat-
egies providing spatial and temporal
quantitative information (Fer-
nandez-Gonzalez et al., 2006; Gor-
finkiel et al., 2011). Hence, the cur-
rent trend toward automatic, high-
content, high-throughput screening
brings new bottlenecks in the do-
main of image analysis (Baker,
2010; Truong and Supatto, 2011):
The unprecedented rise in complex-
ity and size of data have favored the
blossoming of a new discipline, bio-
image informatics (Peng, 2008), or
the science of organizing distributed
and heterogeneous biological image
data into typed data and categorized
quantitative information.
In particular, this review deals

with the recent strategies developed
to achieve the reconstruction of dig-
ital anatomy and gene expression
atlases for different model organ-
isms (Table 1). The reconstruction
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of a digital atlas requires a series of
image processing steps (‘‘Proposed
image processing pipeline’’ section)
to map a cohort of individuals onto a
common reference space. These
operations allow the investigator to
combine unrelated data and to pro-
vide a single representation to visu-
alize, mine, correlate, and interpret
information at different scales.
The result is the assembly of a

digital prototypic model of a ‘‘stand-
ard’’ individual which constitutes
the essential scaffold where to
make the accurate, repeatable,
consistent, and quantitative meas-
ures required for comparative stud-
ies (Oates et al., 2009). Atlases can
be compared to geographic infor-
mation systems (GIS): ‘‘spatial
databases to which diverse data,
primarily but not restricted to imag-
ing data, can be registered and
queried’’ (Martone et al., 2008). For
example, atlases are used to iden-
tify and categorize anatomic and
genetic differences between cohorts
of individuals, such as different mu-
tant strains (Warga and Kane,
2003) and constitute an essential
tool that allows relating genotypes
and phenotypes. This review is
organized as follows: ‘‘Classification
of digital atlases, Animal models,
Imaging modalities, Spatial scopes
and resolutions, Developmental
stages, Data types, and Matching
procedures’’ sections discuss recent
trends in the field and propose a clas-
sification of anatomy and gene
expression atlases for model organ-
isms and human based on various
criteria. ‘‘Proposed image processing
pipeline and Visualization and valida-
tion’’ sections describe a generic
image processing framework to
reconstruct, validate, visualize, and
interact with a digital model of
embryo development. ‘‘Biological
insights’’ section surveys some of the
biological insights that can be derived
from such atlases. Finally, ‘‘Perspec-
tives’’ section deals with the discus-
sion and perspectives on the subject.

CLASSIFICATION OF

DIGITAL ATLASES

We propose a classification of digital
anatomy and gene expression
atlases for animal organisms based

on the following ontology (Table 1):
(1) Animal models, (2) imaging
modalities, (3) spatial scopes and
resolutions, (4) developmental
stages, (5) data types, and (6)
matching procedures. In the follow-
ing sections, we will discuss these
separate criteria in more detail.
The construction of anatomy

atlases and the development of
appropriate computation strategies
is a major issue in the medical field
(Park et al., 2003; Aljabar et al.,
2009; Fonseca et al., 2011). The
construction of human brain atlases
received special attention and many
algorithmic reconstruction and visu-
alization methods and tools come
from this field (Mazziotta et al.,
2001; Toga et al., 2006). The study
of model organisms allowed explor-
ing fine spatial and temporal scales
and aimed at gathering an increas-
ing amount of information including
gene expression data. We focus
here on many model organisms
(‘‘Animal models’’ section) imaged
with three different image modal-
ities (‘‘Imaging modalities’’ section).
We distinguish between atlases lim-
ited to the brain and atlases encom-
passing the whole organism (‘‘Spa-
tial scopes and resolutions’’ section),
either at the adult stage or through-
out embryonic stages (‘‘Develop-
mental stages’’ section) and focus-
ing either on anatomical structures
or gathering gene expression data
(‘‘Data types’’ section). We also con-
sider different strategies to match
individuals into the atlas model
(‘‘Matching procedures’’ section).

ANIMAL MODELS

Model organisms are chosen for
their small size, good properties in
terms of phylogenetic position (Fig.
1), transparency, and/or relevance
for studies related to human health.
The nematode Coenorhabditis ele-

gans, having the most ancient evolu-
tionary emergence among the con-
sidered animal models, has a largely
invariant cell lineage and stereotyped
development which greatly facilitates
comparisons between different indi-
viduals (Murray et al., 2008; Liu
et al., 2009; Long et al., 2009).
The worm Platynereis kept sev-

eral ancestral traits (Tomer et al.,

2010) and proved being insightful
for comparative studies.
The fruit fly Drosophila mela-

nogaster has been extensively
studied in the field of genetics and
developmental biology (Fowlkes
et al., 2008; Frise et al., 2010;
Peng et al., 2011). Sixty percent
of so called genetic diseases in
humans have their counterpart in
the Drosophila genome.
The zebrafish (Danio rerio) has

more recently emerged as a model
for developmental biology research
because of its amenability to
genetic investigations and the
transparency of its tissues. In addi-
tion, its closer phylogenetic position
to humanmakes it a valuable model
for toxicology and pharmacology
studies (Hill et al., 2005; Yang
et al., 2009). Anatomy and gene
expression atlases for the zebrafish
brain or whole organism at different
developmental stages are under-
way (Castro et al., 2009; Ullmann
et al., 2010; Potikanond and Ver-
beek, 2011; Rittscher et al., 2011).
Quail (Ruffins et al., 2007) and

chicken (Fisher et al., 2008; Fisher
et al., 2011) are also used as ver-
tebrate models and have interest-
ing features for experimental em-
bryology. The embryo can develop
outside the egg, is quite well ame-
nable to in vivo imaging (‘‘Imaging
modalities’’ section) and the con-
struction of atlases with cellular
resolution (see ‘‘Spatial scopes
and resolutions’’ section).
Mouse is the major mammalian

model organism for biomedical
investigations and much effort has
been devoted to the reconstruction
of their development (MacKenzie-
Graham et al., 2004; Carson et al.,
2005; Kovać;ević; et al., 2005; Ma
et al., 2005; Lein et al., 2007; John-
son et al., 2010; Richardson et al.,
2010; Hawrylycz et al., 2011). The
relatively large size of the mouse
embryo makes it difficult to capture
the whole specimen in a single-shot,
in-toto imaging strategy (‘‘Imaging
modalities’’ section) with sufficient
spatial resolution (‘‘Spatial scopes
and resolutions’’ section).
The same difficulty applies to

fixed human embryos (Woods
et al., 1999; Rex et al., 2003;
Smith et al., 2004; Kerwin et al.,
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2010), where the creation of a
standard cartography of human
brains is of fundamental impor-
tance in medical studies.

IMAGING MODALITIES

Three main image modalities have
been employed in the assembly of
digital atlases: Fluorescence mi-
croscopy, magnetic resonance
imaging (MRI) and optical projec-
tion tomography (OPT).
Each of these modalities has dif-

ferent optical resolutions and lead
to different types of atlases (Table
1). The choice depends on the
specimen thickness and its optical
transparency. For each animal
model (‘‘Animal models’’ section)
these properties vary with the age
of the specimen (‘‘Developmental
stages’’ section).
Recent advances in photonic mi-

croscopy imaging (Fig. 2A) include
multiharmonic (Evanko et al.,
2010) and fluorescence imaging by
confocal, multiphoton laser scan-
ning microscopy (Abbott, 2009;
Pardo-Martin et al., 2010) or light-
sheet fluorescence microscopy

(LSFM) (Huisken and Stainier,
2009; Keller et al., 2010), com-
bined with newly developed fluo-
rescent proteins and biological sen-
sors (Chudakov et al., 2005; Giep-
mans et al., 2006) and in situ
hybridization (ISH) techniques
(Welten et al., 2006; Brend and
Holley, 2009). These advances
opened new perspectives for the
construction of high resolution ana-
tomical and gene expression
atlases. Spatial resolution of hun-
dreds of nanometers and temporal
resolution of minutes have been
achieved for the observation of
entire organisms at different levels
of organization. However, photonic
microscopy imaging is still limited
to small model organisms with
good optical properties.
OPT (Sharpe et al., 2002) was

introduced as an alternative optical
method to fluorescence microscopy
and overcomes the limitation of the
specimen thickness. OPT generates
data by acquiring many views of the
same specimen at different rotation
angles then assembled to create a
3D volume (Fig. 2C). OPT resolution
in the range of millimeters does not

however allow working at the single
cell level.
Alternatively, MRI (Jacobs et al.,

2003) does not use fluorescent
staining and has thus a broad range
of applications (Fig. 2B). Indeed,
MRI contrast does not depend on the
penetration of photons but on the
voxel-to-voxel variations in water
content leading to diverging spins
when submitted to magnetic fields.
MRI achieves a spatial resolution of
about tens of microns only, and
although more and more intense
magnetic fields are used, single cell
resolution is barely achieved.

SPATIAL SCOPES AND

RESOLUTIONS

Constructing a prototypic model for
an organism can achieve different
scopes, from particular organs to
the whole organism, which can be
resolved at either the organ, tissue,
multicellular, or eventually cellular
resolutions (Table 1). The recon-
struction of atlases with resolution
at the cellular level (Fig. 2D) focused
on the species more phylogeneti-
cally distant from human (‘‘Animal

Figure 1. Timing of evolutionary emergence and phylogenetic relationships of different model organisms. Time estimations were
extracted from Hedges et al. (2006).
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Figure 2. Examples of components involved in an atlas model construction. A: Confocal microscopy acquisition of a 24 hours post
fertilization (hpf) zebrafish brain labeled by fluorescent ISH (tyrosine hydroxylase RNA probe) and DAPI staining of cell nuclei. Scale
bar 100 microns. B: MRI of a quail extracted from Caltech’s ‘‘Quail Developmental Atlas.’’ Available from: http://131.215.15.121/.
C: OPT of a late mouse embryo extracted from the ‘‘EMAP eMouse Atlas Project,’’ http://www.emouseatlas.org. Scale bar: 1000
microns. D: Orthoslice showing the nuclei of a zebrafish early embryo where the raw gene expression from another specimen has
been integrated. Cells positive for the expression of the gene are highlighted in blue. Scale bar: 100 microns. E: Zebrafish tem-
plates for three different developmental stages where individuals can be mapped using a reference gene pattern. F: Reconstruction
of a mosaic-like atlas: Guided by a reference pattern, partial views of different individuals are mapped into a complete template. G:
Left panel, coronal section of an averaged 3D template showing organ-level anatomical annotations of an adult mouse brain at a
given developmental stage. Right panel, an ISH slice warped into the atlas template through deformable models. Extracted from
the ‘‘Allen Mouse Brain Atlas [Internet]. Seattle (WA): Allen Institute for Brain Science. 2009.’’ Available from: http://mouse.
brain-map.org. Scale bar: 1300 microns.
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models’’ section), and addressed
rather early developmental stages
(‘‘Developmental stages’’ section).
Identifying every single cell position
in the whole imaged specimen
(Long et al., 2009) requires
advanced image processing meth-
ods (‘‘Proposed image processing
pipeline’’ section). Algorithmic strat-
egies for the approximate detection
of the cell nuclei center in 3D vol-
umes encompassing several thou-
sands of cells have been described
(Drblikova et al., 2007; Frolkovic
et al., 2007; Krivá et al., 2010). In
addition, the identification of cell
contours helps assigning RNAs or
protein expression to the cell. Voro-
noi geometries have been proposed
as a simple approach to determine
cellular boundaries (Luengo-Oroz
et al., 2008). The cell shape can bet-
ter be obtained by the algorithmic
segmentation of cell membranes in
3D when the latter is available
(Zanella et al., 2010; Mikula et al.,
2011).
Working at the mesoscopic scale

of the multicellular structure is less
demanding and has already pro-
vided useful information (Fisher
et al., 2008; Frise et al., 2010).
Annotating and segmenting the

different anatomical structures of
interest at the tissue level is
required to reconstruct prototypic
models of organs. Examples of such
methods can be found in Ma et al.
(2005), Kovaćević et al. (2005),
Dorr et al. (2008), Johnson et al.
(2010), and Ullmann et al. (2010).
Finally, large organisms with a

huge number of cells and high com-
plexity in terms of organization led
to organ-level atlases that do not
resolve the single cell level (Fig.
2G). This strategy has been used
for vertebrates at late developmen-
tal stages (‘‘Developmental stages’’
section) when the specimen’s size
and lack of optical transparency do
not allow imaging with resolution at
the single cell level (Baldock et al.,
2003; Ruffins et al., 2007; Rittscher
et al., 2011).

DEVELOPMENTAL STAGES

The construction of anatomical and
gene expression atlases focused on

early developmental stages as well
as adulthood (Table 1). At early de-
velopmental stages, the whole or-
ganism is more easily amenable to
in toto imaging with resolution at
the single cell level, Figure 2D, E
(Fowlkes et al., 2008; Castro et al.,
2009; Long et al., 2009).
At later developmental stages or

in the adult, it can be more rele-
vant to focus on specific organs
(Fig. 2B, C) such as the brain
(Woods et al., 1999; Lein et al.,
2007; Peng et al., 2011) or
appendages (Fisher et al., 2011).
Most studies targeted a single de-

velopmental stage (Fig. 2G). How-
ever, the temporal scale is essential
to the understanding of biological
mechanisms and gathering atlases
with the relevant kinetics is a major
issue in the field (Fig. 2E). Fisher
et al. (2011) reconstructed atlases
combining fate mapping data and
gene expression patterns for three
consecutive developmental stages
of the chick wing bud. Murray et al.
(2008) took advantage of the
largely invariant lineage of C. ele-
gans to build the first 3D1time atlas
of transgenic reporters’ expression
patterns in C. elegans from the 4-
cell stage to the 350-cell stage.

DATA TYPES

Many different specimens are
assembled in the construction of
atlases models that can just carry
anatomical information or multile-
vel, genomewide data.
Anatomical atlases providing a

scaffold with the morphological and
histological landmarks characteristic
of a cohort (Rex et al., 2003; Ruffins
et al., 2007; Ullmann et al., 2010)
constitute a reference shape or tem-
plate to integrate further information
coming from other individuals and
reflect the intrinsic multilevel of mor-
phogenesis processes. Genomewide
atlases (Fisher et al., 2008; Richard-
son et al., 2010) integrate gene
expression patterns and multilevel
information from various sources
into anatomical atlases (Fig. 2D).
This approach emulates a virtual
multiplexing and overcomes the
restrictions in the number of gene
products and/or functional patterns

that can be simultaneously assessed.
As a consequence, they are becom-
ing a major tool for making spatio-
temporal correlations between the
different levels of biological organiza-
tion, comparing individuals, building
prototypic models, and deciphering
the relationship between genotypes
and phenotypes.
Building an anatomical atlas

requires defining a common scaf-
fold, frequently called template,
where to gather all the information
collected from different specimens.
There are diverging criteria in the
literature about how an atlas tem-
plate should be built. Several stud-
ies (Ruffins et al., 2007; Castro
et al., 2009; Ullmann et al., 2010)
employed one single individual to
match all the rest of the population
(Fig. 2D). This individual is chosen
for its ‘‘standard’’ appearance and
the corresponding data should be
of the highest quality. Alterna-
tively, an iterative method has
been used to identify the median
individual within a population and
select it as the template (Long
et al., 2009). Other projects (Frise
et al., 2010) used a synthetic tem-
plate to map all the data from a
cohort of specimens. This template
consists in an engineered ‘‘virtual
specimen’’ which retains the essen-
tial features of a species. The use of
an average template (Fig. 2G) is
widely spread (Rex et al., 2003;
Fowlkes et al., 2008; Peng et al.,
2011). Ma et al. (2005) con-
structed a ‘‘minimal deformation
average template’’ as an idealized
specimen minimizing the deforma-
tion required to fit any specimen of
the cohort. Although average tem-
plates usually imply a better signal-
to-noise ratio than individual speci-
mens and exhibit a better definition
in very similar regions between
specimens, they fail to faithfully
model fine features and regions
with a high variability, lowering
their definition (Kovaćević et al.,
2005; Dorr et al., 2008). Finally,
some approaches used a probabil-
istic template (Johnson et al.,
2010) where specimens’ variability
is represented by statistical confi-
dence limits.
The construction of prototypical

genomewide atlases implies imag-
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ing gene expression patterns in 3D
with resolution at the cellular level
(Hendriks et al., 2006). Image
processing methods are required to
achieve the automated segmenta-
tion of gene expression domains
and the quantification of gene prod-
ucts to allow for example the
description of expression domain
borders. A simple quantification
strategy is based on the assumption
of a linear relationship between flu-
orescence intensity and gene
expression level (Wu and Pollard,
2005; Frise et al., 2010). The
obtained measurements are often
normalized with respect to the
nuclei channel fluorescence (Liu
et al., 2009), which is considered to
be constant, to compensate for
thickness-dependent signal detec-
tion. Normalization with respect to
the background intensity (Murray
et al., 2008) is also a common strat-
egy. Another possibility consists in
clustering a population of cells into
discrete levels (e.g. strong, moder-
ate, weak, and none) depending on
the gene expression signal intensity
(Carson et al., 2005). Although the
three different methods yielded cor-
related measurements across dif-
ferent individuals, the relevance of
the obtained quantitative measure-
ments to compare different speci-
mens is questionable and this issue
remains a challenge. Current efforts
to achieve the quantitative compar-
ison of gene expression levels in dif-
ferent individuals include the mini-
mization of variability within a pop-
ulation (Fowlkes et al., 2008) and
the conversion of fluorescence sig-
nal into fluorescent proteins num-
ber in transgenic specimens (Damle
et al., 2006).

MATCHING PROCEDURES

A matching procedure is required to
import each specimen (the source)
into the template according to the
maximization of a likelihood criteria.
Repeating this operation is the core
of digital atlases construction. For
the same purpose, medical imaging
makes extensive use of registration
techniques (Maintz and Viergever,
1998; Zitova and Flusser, 2003).
Three main registration techniques
to build digital atlases can be distin-

guished according to the information
used to assemble the data and the
minimization criteria chosen accord-
ingly: Intensity-based, object-
based, and semantic-based registra-
tions (‘‘Intensity-based registration,
Object-based registration, and
Semantic-based registration’’ sub-
sections). We can also distinguish
three different transformation types
between the source and the tem-
plate space: Rigid, affine or nonrigid
(‘‘Transformation categories’’ sub-
section).
Before the registration step, an

initialization scheme is generally
applied to get a rough alignment
between source and template. The
initialization scheme helps the
registration to reach an accurate
solution. Two common initializa-
tion techniques consist of coarsely
aligning anatomical landmarks
(Lein et al., 2007) or the major
orientation axis of an organism
such as the anterior–posterior or
dorsal–ventral axis (Blanchoud
et al., 2010). Qu and Peng (2010)
developed an original skeleton
standardization technique to rule
out part of the geometrical vari-
ability between Drosophila
embryos. In the same line, Peng
et al. (2008) designed a method
to straighten C. elegans worms
into the same canonical space.
The populations of individuals to

be registered are normally composed
of complete specimens imaged simi-
larly. Accurately matching cohorts of
partial specimens (Fig. 2F) is one of
the current challenges in the field
(Peng et al., 2011) and very few
strategies addressed this case
(Castro et al., 2009).

Transformation Categories

Rigid transformations are applied
when the mapping between the
source and template spaces con-
sists of spatial translations and
rotations (Castro et al., 2009). Rigid
registration has the advantage of
keeping the original raw data unal-
tered, allowing faithful measure-
ments and validation of the true
volumes in the final atlas represen-
tation. Affine transformations (Rex
et al., 2003; Smith et al., 2004)
also include a scaling factor in addi-

tion to translations and rotations.
Both rigid and affine transforma-
tions are linear and globally applied
to all voxels.
On the contrary, nonrigid trans-

formations are nonlinear and
locally warp the source image to
fit into the template (Woods et al.,
1998; Ng et al., 2007; Ng et al.,
2009; Rittscher et al., 2010). This
typically results in an alteration of
the original raw data.

Intensity-Based Registration

Intensity-based registration pro-
cedures align the source and tem-
plate by trying to maximize a simi-
larity metric (typically mutual in-
formation or cross correlation)
between the gray level values in
the voxels of both images.
The most common approaches

(Lein et al., 2007; Tomer et al.,
2010) include an initialization per-
formed by a global, intensity-based
affine or rigid registration, followed
by local deformable warps (Fig. 2G).
Multiresolution approaches are also
employed to optimize the mapping
procedure in a coarse-to-fine strat-
egy (Smith et al., 2004; Kovaćević
et al., 2005; Tomer et al., 2010).
Finally, multimodal approaches
combine information coming from
different imaging modalities, merg-
ing, for instance, histology and MRI
(MacKenzie-Graham et al., 2004;
Johnson et al., 2010). Such
approaches provide multiple entry
points to match different individuals
and heterogeneous populations into
the same coordinate system.

Object-Based Registration

Object-based transformations
attempt to bring into alignment
equivalent sets of characteristic
points or landmarks present in both
the source and template images
(Liu et al., 2009). These transfor-
mations are local and nonlinear and
typically produce an alteration of
the data shapes and volumes. Peng
et al. (2011) developed an auto-
matic pattern recognition system to
identify and match visual anatomic
references with certain geometric
properties such as high local curva-
ture, and Fowlkes et al. (2008) cre-
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ated a method to unequivocally
identify the cell to cell correspon-
dence in C. elegans embryos.

Semantic-Based Registration

Unlike intensity-based and object-
based registrations, semantic-based
registration does not operate on the
geometrical space and is based on
the use of standardized ontologies
(Ashburner et al., 2000) and web
queries (Zaslavsky et al., 2004;
Potikanond and Verbeek, 2011).
After following an annotation

procedure for anatomy and gene
expression data with a controlled,
standard vocabulary, the mapping
procedure is reduced to just link-
ing names to positions or domains
(Baldock et al., 2003; Boline et al.,
2008). Given the difficulty of geo-
metric registration across greatly
variable resources, this strategy is
useful to guarantee interoperability
and can bring together data com-
ing from different laboratories,
resources, developmental stages,
or even different species.

PROPOSED IMAGE

PROCESSING PIPELINE

The construction of atlases or digi-
tal representations of anatomic
and genetic features from an
increasing amount of more and
more complex data, requires so-
phisticated image analysis algo-
rithms (Khairy and Keller, 2011)
replacing nonefficient and time
consuming processing performed
manually or through generic imag-
ing software.
We describe a generalized image

processing pipeline to gather
quantitative, genomewide data
from a cohort of individuals in a
prototype with resolution at the
cellular level (Fig. 3). This pipeline
can achieve a complete (x, y, z,
G) model, including quantitative
data for gene or protein expres-
sion level (G) in each cell position
(x, y, z) in a developing model or-
ganism (Castro et al., 2011).
This process can involve prepro-

cessing steps, such as image
enhancement or multiviews fusion
algorithms (Rubio-Guivernau
et al., 2012). Then, cell nuclei

detection and cell segmentation
techniques (‘‘Spatial scopes and
resolutions’’ section) are applied
to one embryo, i, to extract cell
position, (xi, yi, zi), and volume.
Next, signal quantification proce-
dures (‘‘Data type’’ section) are
applied on gene expression, gi, to
identify positive cells, (xi, yi, zi,
gi). Repeating this procedure for
all the individuals of a cohort, 1 to
N, yields measurements for rele-
vant patterns, (x1, y1, z1,
g1). . .(xN, yN, zN, gN), which are
finally combined through a regis-
tration procedure (‘‘Matching pro-
cedures’’ section). The anatomical
information extracted during the
cell detection step and automati-
cally segmented or identified land-
marks guide the registration pro-
cess. The final result is a single,
quantitative model of the speci-
men development, (x, y, z, g1
. . .gN). Validation of the model and
further analysis use a dedicated,
custom-made interactive visual-
ization interface (‘‘Visualization
and validation’’ section).

VISUALIZATION AND

VALIDATION

The reconstruction of digital
atlases relies on automatic algo-
rithms that can handle the enor-
mous amount of large 3D images
providing multilevel data for
cohorts of individuals at different
developmental stages. The lack of
gold standards in the field requires
the manual curation and correc-
tion of the results (Long et al.,
2009).
Several indirect validation tech-

niques have been exploited:
Fowlkes et al. (2008) and Peng
et al. (2011) showed that the
gene expression variability in their
atlas model was comparable to
that shown by individuals, imply-
ing that the experimental errors
introduced in the model could be
considered negligible. Fisher et al.
(2011) applied hierarchical clus-
tering (Pearson Correlation) to
replicates coming from different
specimens and found that they
segregated as expected. In addi-
tion to these indirect validation
measures, visual assessment is

the common validation standard
for virtually all the previously
described strategies (Table 1).
Consequently, many sophisticated
visualization platforms have been
developed to display the multidi-
mensional input data and output
results, interactively run the previ-
ously described methods on
request while providing the neces-
sary tools to correct, annotate,
quantify, and mine their out-
comes. These platforms represent
the necessary trade-off between
the automated, high-throughput,
fast computer algorithms and the
manual, low-throughput but accu-
rate human interactions.
A comprehensive review of such

visualization tools can be found in
Walter et al. (2010). Some relevant
instances include: FlyEx (Pisarev
et al., 2009), GoFigure (Gouaillard
et al., 2007), PointCloudExplore
(Weber et al., 2009; Rúbel et al.,
2010), Mov-IT (Olivier et al., 2010),
BrainExplorer (Lau et al., 2008),
BrainGazer (Bruckner et al., 2009),
CellProfiler (Jones et al., 2008), and
V3D (Peng et al., 2010).

BIOLOGICAL INSIGHTS

The application of image process-
ing tools (see ‘‘Proposed image
processing pipeline and Visualiza-
tion and validation’’ sections) to
prototypes construction (see
‘‘Animal models, Imaging modal-
ities, Spatial scopes and resolu-
tions, Developmental stages, Data
types, and Matching procedures’’
sections) paved the way for bio-
logical insights in developmental
processes (Luengo-Oroz et al.,
2011). Below, we comment some
of the most prominent results
derived from anatomical and gene
expression atlases.
Kovaćević et al. (2005) used an

atlas model to perform genetic
and anatomic phenotyping,
achieving the automated detection
of mutant strains. Atlases also had
major implications in evolutionary
studies and Tomer et al. (2010)
identified related parts of the brain
in phylogenetically distant ani-
mals. Chiang et al. (2011) created
a comprehensive brain wiring map
of the adult Drosophila brain which
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provides a crucial tool to analyze
information processing within and
between neurons.
Using all the genetic information

gathered in their model, Frise
et al. (2010) clustered genes
coexpression domains to elucidate
previously unknown genetic func-
tions and molecular and genetic
interactions. Lein et al. (2007)
detected highly specific cellular
markers and deciphered cellular
heterogeneity previously unidenti-

fied in the adult mouse brain with
a gene expression atlas of more
than 20,000 genes. Carson et al.
(2005) discovered gene expres-
sion possibly related to Parkinson
disease.
Liu et al. (2009) showed in C.

elegans that different gene regula-
tory pathways can correlate with
identical cell fates. However, cell
fate modules with specific molecu-
lar signatures repeatedly occurred
along the cell lineage, revealing

bifurcations toward cell differentia-
tion. Fisher et al. (2011) identified
the digits identity in chick embryos
by the computational analysis of
genes expression and cell fate.
The association of cell tracking
techniques (McMahon et al., 2008;
Pastor et al., 2009; Suppatto et
al., 2009) together with gene
expression atlases lead to fate
maps, which are promising tools
for stem cell studies and regenera-
tive medicine.

Figure 3. Image processing pipeline to build a digital atlas model: After preprocessing, nuclei detection and cell segmentation algo-
rithms are applied to extract cell position and volume. This information is combined with quantification schemes. These operations,
iterated throughout a cohort of individuals, yield cellular-level, quantitative measurements of many genetic and/or functional pat-
terns. A common reference and/or landmarks highlighted in all individuals are automatically segmented and identified to steer a
registration procedure. The latter multiplex all measured patterns into a single, digital template. The resulting atlas can be validated
and mined through dedicated, interactive visualization tools.
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PERSPECTIVES

The next generation of in situ
hybridization techniques is ex-
pected to overcome the current
limitations in the number of gene
patterns that can be simultane-
ously labeled in a single specimen.
Choi et al. (2010) recently devel-
oped a new multiplexing technique
that allows to fluorescently tag up
to five different mRNA targets at a
time. Compared to present double
or triple in situ hybridization tech-
niques, this scheme will drastically
facilitate the acquisition of data
and matching operations.
A long anticipated goal (Megason

and Fraser, 2007) in computational
biology consists in the reconstruc-
tion of continuous spatiotemporal
prototypes where gene expression
can be determined for every cell in
the embryo not only at certain, dis-
crete developmental stages, but at
any possible developmental time:
(x, y, z, t, G). Achieving this goal
depends on the proper integration
of gene expression atlases with the
reconstructed cell lineage tree
(Supatto et al., 2009; Olivier et al.,
2010; Luengo-Oroz et al., 2012b).
Recent work in this direction
(Castro-González et al., 2010) indi-
cates that 3D1 time atlases toward
an integrated model of living sys-
tems and multiscale dynamics,
require the use of image process-
ing techniques operating directly in
the 4D space (Luengo-Oroz et al.,
2012a).
Finally, a key future challenge

revolves around achieving stand-
ards and making databases com-
ing from different laboratories
interoperable. As data acquisition
goes on at an accelerated pace, it
becomes crucial to achieve sys-
tems helping to contribute, organ-
ize, and find relevant data. As an
example, machine learning has
been recently applied to the auto-
matic recognition and ontological
annotation of gene expression pat-
terns in the mouse embryo with
anatomical terms (Han et al.,
2011). Following this trend, there
has been a series of recent stand-
ardization efforts to the crossplat-
form integration of multimodal
data through the use of controlled
terminologies, or ontologies (Diez-

Roux et al., 2011) that can be
accessed by query-based web sys-
tems (Hawrylycz et al., 2011;
Milyaev et al., 2012). This will ulti-
mately allow the systematic com-
parison of individuals within and
even between species.
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Castro-González C, et al. 2012a.
3D1t morphological processing:
applications to embryogenesis image
analysis. IEEE Trans Image Process.
In press (doi: 10.1109/TIP.2012.
2197007).

Luengo-Oroz M, Rubio-Guivernau J,
Faure E, et al. 2012b. Methodology
for reconstructing early zebrafish de-
velopment from in-vivo multiphoton
microscopy. IEEE Trans Image Pro-
cess 21:2335–2340.

Ma Y, Hof P, Grant S, et al. 2005. A
three-dimensional digital atlas data-
base of the adult C57BL/6J mouse
brain by magnetic resonance micros-
copy. Neuroscience 135:1203–1215.

MacKenzie-Graham A, Lee E, Dinov I,
et al. 2004. A multimodal, multidi-
mensional atlas of the C57BL/6J
mouse brain. J Anat 204:93–102.

Maintz J, Viergever M. 1998. A survey
of medical image registration. Med
Image Anal 2:1–36.

Martone M, Zaslavsky I, Gupta A, et al.
2008. The smart atlas: spatial and
semantic strategies for multiscale
integration of brain data. In: Anat-
omy Ontologies for Bioinformatics,
Computational Biology, Volume 6,
Part III, 267–286, DOI: 10.1007/
978-1-84628-885-2_13.

Mazziotta J, Toga A, Evans A, et al. 2001.
A probabilistic atlas and reference sys-
tem for the human brain: international
consortium for brain mapping (ICBM).
Philos Trans R Soc London Ser B: Biol
Sci 356:1293–1322.

McMahon A, Supatto W, Fraser S, Sta-
thopoulos A. 2008. Dynamic analyses
of drosophila gastrulation provide
insights into collective cell migration.
Science 322:1546–1550.

McPherson J, Marra M, Hillier L, et al.
2001. A physical map of the human
genome. Nature 409:934–941.

Megason S, Fraser S. Imaging in systems
biology. 2007. Cell 130:784–795.
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Birth Defects Research (Part C) 96:109–120 (2012)


