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Abstract: Multiresolution analysis of fMRI studies using wavelets is a new approach, previously reported
to yield higher sensitivity in the detection of activation areas. No data are available, however, in the
literature on the analytic approach and wavelet bases that produce optimum results. The present study
was undertaken to assess the performance of different wavelet decomposition schemes by making use of
a “gold standard,” a realistic computer-simulated phantom. As activation areas are then known ‘a priori,’
accurate assessments of sensitivity, specificity, ROC curve area and spatial resolution can be obtained.
This approach has allowed us to study the effect of different factors: the size of the activation area, activity
level, signal-to-noise ratio (SNR), use of pre-smoothing, wavelet base function and order and resolution
level depth. Activations were detected by performing t-tests in the wavelet domain and constructing the
final image from those coefficients that passed the significance test at a given P-value threshold. In
contrast to previously reported data, our simulation study shows that lower wavelet orders and resolution
depths should be used to obtain optimum results (in terms of ROC curve area). The Gabor decomposition
offers the maximum fidelity in preserving activation area shapes. No major differences were found
between other wavelet bases functions. Data pre-smoothing increases ROC area for all but very small
activation region sizes. Hum. Brain Mapping 14:16–27, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Since the introduction of BOLD (blood oxygen level-
dependent) sequences [Ogawa et al., 1992], the num-
ber of applications of functional magnetic resonance
imaging (fMRI) on neurological research and clinical

studies is continuously increasing [Barnes et al., 2000;
Bullmore et al., 1999a; Curtis et al., 1998, 1999; Honey
et al., 1999; Phillips et al., 1999; Ring et al., 1999].

The fact that fMRI is non-invasive and can be used
repeatedly in individuals has led to its widespread ap-
plication, both in the understanding of normal cerebral
functioning and in disease states. The number of areas in
which the technique is being applied is clear from exam-
ination of the proceedings of the latest (6th) annual meet-
ing of the Organization for Human Brain Mapping in
San Antonio (See Neuroimage, vol. 11 no. 5, 2000). The
number of centers using fMRI worldwide has grown
from a handful in the early to mid-1990s to hundreds
today.
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fMRI studies, however, are difficult to analyze due
to the relatively small difference (1–4%) between ac-
tivation and non-activation areas and to the high noise
level intrinsic to the fast sequences involved [Bram-
mer, 1998; Ruttimann et al., 1998; Vlaardingenbroek
and den Boer, 1999]. As this noise level depends on
voxel size, the signal-to-noise ratio (SNR) can be in-
creased by using larger voxels at the expense of a
lower spatial resolution. A typical figure for 1.5 T
scanners and 256 3 256 images is a 20% noise level for
a voxel size of 1 mm 3 1 mm 3 4 mm [Vlaardingen-
broek and den Boer, 1999]. For these reasons, it is
usually necessary to perform a long series of repeated
experiments (rest and activation interlaced) and to use
statistical tests to detect the existence of significant
differences (activation areas).

Results are commonly presented as activation maps
depicting those voxels that show significant changes
between the different brain states, usually rest and
activation. Different statistical approaches have been
proposed, including Student’s t-test, Kolmogorov-
Smirnov test, correlation analysis and Markov random
fields [Aguirre et al., 1998; Kuppusamy et al., 1997;
Worsley et al., 1995, 1996a, 1997, 1998, 1999; Worsley
and Friston, 1995] and non-parametric approaches
[Bullmore et al., 1996]. These statistical tests are nor-
mally applied independently to each and every voxel
in the study. Many activation mapping methods do
not take advantage of neighborhood information (ac-
tivated regions usually span over several voxels) to
increase their statistical power. When this information
is used, it is typically in a post-processing step, to
enhance the shape of the activation areas detected or
to correct the significance levels according to the size
of the area [Bullmore et al., 1999b; Holmes, 1994; Mc-
Coll et al., 1994; Poline et al., 1997].

Neighborhood information, however, can also be
exploited through the use of multiresolution decom-
position based on discrete wavelet transformation
(DWT). This approach has the potential advantage of
analyzing the images at different spatial scales, con-
centrating the information from voxels with a high
spatial correlation into a few wavelet coefficients [An-
tonini et al., 1992; Mallat, 1989]. Statistical tests can
then be applied in the wavelet domain, taking benefit
from this spatial correlation, in an adaptive way with-
out “a priori” assumptions about the size or shape of
the activation.

Other alternatives to the discrete wavelet transform
have also been proposed, such as the use of scale-
space transforms [Poline and Mazoyer, 1994; Worsley
et al., 1996b], but these are computationally more ex-
pensive than the DWT.

A key point when applying the wavelet decompo-
sition is the selection of the appropriate bases func-
tions and their order. Different bases functions offer
different compromises between scale/frequency and
spatial resolution, the maximum joint resolution being
limited by Heisenberg’s uncertainty principle [Dau-
bechies, 1998]. The order of the wavelet also engen-
ders a compromise between spatial and frequency
resolution both resolutions: higher order wavelets of-
fer better frequency resolution (higher sensitivity in
our case), but lower spatial resolution (localization
accuracy) [Banham et al., 1994; Cohen and Kovacevic,
1996; Daubechies, 1998].

Application of wavelet analysis to functional brain
studies has been proposed by several authors, mainly
for filtering noise either in fMRI [LaConte et al., 2000;
Millet et al., 2000; Ngan et al., 2000; Zaroubi and
Goelman, 2000] or in PET/SPECT studies [Turkhei-
mer et al., 1999, 2000].

Two recent studies [Brammer, 1998; Ruttimann et
al., 1998] presenting a multiresolution analysis of fMRI
using wavelets reported a higher sensitivity in the
detection of activated brain regions compared with
more established methods of analysis. Brammer used
Daubechies wavelets and reported a maximum sensi-
tivity when using 12 coefficients at the fourth resolu-
tion level (that contained the experimental condition
alternation frequency). Ruttimann made use of
Lemarie-Battle wavelets, decomposing up to the
fourth resolution level (neither wavelet order nor res-
olution being explicitly indicated in the paper). Nei-
ther of these studies provided comparisons of the
results using different wavelet bases families, nor they
show clear reasons to choose a particular wavelet
order and number of decomposition levels. Ruttimann
justifies the selection of the Lemarie wavelet family on
the basis of its good theoretical properties (orthogo-
nality, symmetry, reduced spectral overlap) but no
additional theoretical justification is provided, either
for the particular wavelet order nor for the resolution
depth actually chosen.

As indicated, both authors reported good results
compared with other established methods of analysis,
mainly reflected as increased sensitivity. Nevertheless,
it is noteworthy that any improvement in sensitivity of
a medical test cannot be reliably assessed without also
rating its specificity, using receiver operating charac-
teristic (ROC) curves or similar methodologies [Con-
stable et al., 1995].

A problem that both the above mentioned studies
share is the lack of a ‘gold standard,’ necessary to
assess objectively the quality of the results. In patient
studies neither the exact size and position of activated
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areas nor the activation levels are known. This implies
that sensitivity and specificity of the proposed meth-
ods cannot be reliably measured without using addi-
tional information.

The present study has assessed the performance of
the different wavelet decomposition schemes by mak-

ing use of a gold standard that is a realistic computer-
simulated phantom with activation areas introduced
by the operator. In this way, activation areas are
known ‘a priori’, and accurate assessments of sensi-
tivity, specificity and spatial resolution can be easily
obtained.

This approach has allowed us to study the effect of
different factors on activation mapping, namely, size
of the activation area, activity level, signal-to-noise
ratio (SNR), use of pre-smoothing, wavelet bases func-
tion and order and resolution level depth. Other lim-
itations found when using the multiresolution method
are also discussed.

MATERIALS AND METHODS

Algorithm

The implementation of the algorithm used in this
work follows in general terms the approach proposed
by [Ruttimann et al., 1998].

Figure 1.
Images used to build the software phantom: (left) activation re-
gions; (right) intracranial mask.

TABLE I.

No pre-smoothing Pre-smoothing (FWHM 5 3 pixels)

Order Resolution P-value % Area Order Resolution P-value % Area

Noise 5%
t-Test 0 0.20 55% 0 0.15 85%
Gabor 2 0.0005 87% 1 0.25 88%
Daubechies 2 3 0.05 69% 2 1 0.05 86%
Lemarie 4 1 0.005 79% 2 1 0.05 86%
Symlet 2 1 0.005 79% 2 1 0.05 86%

Noise 10%
t-Test 0 0.20 38% 0.15 72%
Gabor 2 0.05 81% 2 0.005 80%
Daubechies 2 3 0.20 60% 2 2 0.0005 75%
Lemarie 4 2 0.005 62% 2 2 0.005 74%
Symlet 2 3 0.20 60% 2 2 0.0005 75%

Noise 15%
t-Test 0 0.20 29% 0 0.15 63%
Gabor 2 0.10 76% 2 0.10 76%
Daubechies 4 3 0.05 49% 2 2 0.005 67%
Lemarie 4 2 0.25 51% 2 2 0.005 65%
Symlet 2 3 0.25 47% 2 2 0.005 67%

Noise 20%
t-Test 0.20 25% 0 0.15 56%
Gabor 2 0.15 72% 2 0.15 72%
Daubechies 2 3 0.25 40% 2 2 0.005 62%
Lemarie 4 3 0.10 45% 4 2 0.000005 61%
Symlet 4 3 0.05 44% 2 2 0.005 62%

Column “% Area” contains the maximum area under ROC curve obtained for the different wavelet families used in the study at noise levels
of 5%, 10%, 15% and 20%. Columns order, resolution and P-value reflect the settings at which the maximum area was obtained. “t-test” rows
correspond to the baseline t-test. The second half of the table show the same results after applying pre-smoothing (FWHM 5 3 pixels). ROC
area is calculated up to 95% of specificity.
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The “level” of multiresolution decomposition corre-
sponds to the number of times the wavelet transform
is applied to the original image. The “order” of the
wavelet filter is the number of coefficients of the dis-
crete mother wavelet [Mallat, 1989; Ruttimann et al.,
1998].

Functional images are analyzed by performing a
bidimensional discrete wavelet transform (DWT), de-
composing up to the sixth level. At each level, the
null-hypothesis is tested on the values of the wavelet
coefficients (t-test without Bonferroni correction) at
different P-values (ranging from 5 3 1029 to 0.99) and
the inverse transform is computed using only the sig-
nificant coefficients that passed the test at the chosen

P-value threshold. An alternative implementation, us-
ing separated t-tests for every individual pixel instead
of a single pooled variance, was also evaluated and
discarded, because in our case (additive Gaussian
noise and no artifacts) it produced the same results.
For real patient images, however, this latter approach
may be preferable. Bonferroni corrections were not
applied because in our setting the test is repeated for
a whole range of P-values and the use of Bonferroni
correction would simply shift the results toward
higher P-values.

Several wavelet bases functions have been included:
Daubechies, Lemarie and Symlets (orders 2, 4, 8, 16,
32, 40, 48 and 64), Spline (orders 2,8;4,4) and Maxflat

Figure 2.
Result of the baseline t-test (first column) and wavelet-based
multiresolution analysis (P , 0.01) using Daubechies with two
coefficients (second column), Lemarie with four coefficients (third

column) and Gabor (fourth column), all without pre-smoothing.
Each row corresponds to a different noise level: 5% (first row),
10%, 15%, and 20% (last row).
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(orders 3,3;5,5). Implementation of the transforms was
performed using the “uvi_wave” toolbox for Matlab
(The Mathworks, Inc.) [González and Márquez, 1996;
Márquez and González, 1996]. The Gabor transforma-
tion [Gabor, 1946; Navarro et al., 1996] was imple-
mented according to the proposed implementation
with 11 coefficients described by Nestares et al. [1998].
Presmoothing of the data, when used, was performed
using a gaussian filter with an FWHM of 3 pixels.

Software Phantoms

A set of 2D phantom studies was built upon a basal
image with a uniform intensity level in a “brain-like”
shape. On this image, twenty activation regions with

different sizes and activation levels were created (Fig.
1). These regions comprised clusters of 1, 2, 4, 8, and 12
voxels. The intensity levels in the activation regions
were 0.5%, 1%, 2% , 3% and 4% higher than the sur-
rounding area. To produce more realistic images,
avoiding sharp edges, all the images (activation and
rest) were smoothed by applying a gaussian filter
(FWHM 5 3 pixels). Different levels of gaussian white
noise (5%, 10%, 15%, or 20%) were then added.

Each phantom study consisted of four simulated
fMRI scans (128 3 128 3 64), each consisting of eight
activation-rest cycles of 6 images per epoch.

All the variables used in constructing the phantoms
(activation level, noise, number of images) were chosen
trying to resemble commonly accepted values for actual

Figure 3.
Same data as in Figure 2, applying pre-smoothing (gaussian filter, FWHM 5 3 pixels) before
performing the tests.
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brain activation studies [Brammer, 1998; Ruttimann et
al., 1998; Vlaardingenbroek and den Boer, 1999].

Evaluation

According to [Ruttimann et al., 1998], we used as
baseline for the comparisons the result of conventional
t-tests, presented as Z-scores. For each activation im-
age, sensitivity (defined as the percentage of phantom
activation voxels that were properly detected as acti-
vated) and specificity (defined as the percentage of
voxels correctly detected as non activated) were de-
termined. Comparisons between different methods
were assessed by using receiver operating character-
istic (ROC) curves.

ROC curves were generated by performing the sta-
tistical tests at different significance levels, ranging
from P 5 5.1029 to P 5 0.99. The relative quality of the
results using different methods was assessed by the
area of the ROC curve from 0 to 95% specificity.

To test the effect of image pre-smoothing all the
experiments were repeated after applying a gaussian
filter of FWHM 5 3 pixels, chosen according to usual

recommendations [Friston et al., 1995; Worsley and
Friston, 1995].

RESULTS

Overall performance is rated as the area under the
ROC curve up to a 95% of specificity. Table I summa-
rizes the best results obtained for each wavelet family,
with or without pre-smoothing.

In Figure 2 the baseline results are compared with
three examples of the wavelet-based method using
different bases, Daubechies (2 coefficients), Lemarie (4
coefficients) and Gabor. The first two were selected
because they apparently produced good results in
previous studies [Brammer, 1998; Ruttimann et al.,
1998]. The Gabor transform was included because it
yielded the best results in our investigation. It is no-
ticeable that all multiresolution results are better than
those produced using the baseline t-test, especially at
higher noise figures. The shape of activated areas de-
tected by Gabor analysis was the closest to their true
extent in the phantom.

Figure 4.
ROC curves showing the best results at 5% (left) and 20% (right)
noise levels. Upper row corresponds to images without pre-
smoothing, analyzed up to second resolution for 5% and third

resolution for 20% noise levels. Lower row corresponds to images
with pre-smoothing, first resolution used at 5% and second reso-
lution at 20% noise levels.
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Figure 3 shows a similar comparison to that shown
in Figure 2, but now obtained after applying pre-
smoothing to the original images. In this case little
improvement was observed on the un-presmoothed
multiresolution results for noise levels of 5% and 10%,
though for 15% and 20% better results were obtained.
The better performance of the Gabor transform com-
pared with the other approaches in preserving origi-
nal shapes is evident. Figure 4 shows the ROC curves
of the best results at the two extreme noise levels used
(5% and 20%), with and without pre-smoothing.

Figure 5 illustrates the effect of the wavelet order on
sensitivity and specificity. As an example, results us-
ing the Daubechies wavelet family are shown (32, 16,
8, 4 and 2 coefficients), using resolution 1 and 10%
noise level with pre-smoothing. Similar results are
obtained for other families and combinations of pa-
rameters. The ROC curves demonstrate that better
results are obtained with lower wavelet orders, the
ROC curve for 2 coefficients having the largest area in
the 0–95% specificity range.

The resolution level also affects sensitivity and spec-
ificity. In Figure 6, ROC area is plotted against reso-
lution level for the two extreme noise figures tested in
this study (5% and 20%) in four different cases: base-
line t-test, Daubechies (2 coefficients), Lemarie (4 co-
efficients) and Gabor. Figure 7 shows the results ob-
tained after pre-smoothing with a gaussian filter of
FWHM 5 3 pixels.

The combined effect of resolution level and wave-
let order can be seen in Figure 8, which shows the
images obtained at resolutions 1 to 6 for high-order
(32 coefficients) Daubechies and Lemarie wavelets.
It is noticeable how the increase in sensitivity is
associated with a substantial loss of specificity. The
images corresponding to resolution 4 represent the
setting proposed by Brammer [1998] and Ruttimann
et al. [1998].

To assess the performance of the method on activa-
tion areas of different sizes, the analysis was repeated
separately for the these activation regions. Table II
summarizes the results obtained with multiresolution

Figure 5.
Sensitivity, specificity, and ROC curves for different orders (32,
16, 8, 4, and 2 coefficients) of the Daubechies wavelet family. Data
correspond to resolution 1, 10% noise level, pre-smoothing ap-
plied.
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methods for area sizes 1 to 12 voxels and noise figures
5% and 20%.

DISCUSSION

On our phantom data, the baseline approach using
conventional t-test was able to detect the 4% activation
area essentially completely, but only part of the 3%
activation area at a 5% noise level. Multiresolution
methods clearly outperformed the standard approach,
improving sensitivity and being able to locate even the
1% activation area, with different degrees of spatial
resolution. The best results were obtained with the
multiresolution Gabor decomposition, which pro-
vided the best sensitivity/specificity combination and
a good spatial localization and region shape preserva-
tion.

Sensitivity decreases at higher noise levels both
with conventional techniques and multiresolution

methods. The advantage of the multiresolution ap-
proach is more noticeable, however, with low activa-
tion levels on noisy images, a result of some relevance
for real activation mapping experiments. This is prob-
ably due to the fact that information from areas of
noisy voxels with a high spatial correlation is concen-
trated into fewer wavelet coefficients that pass the
statistical tests more easily.

The increase in sensitivity that we have obtained is
in accordance with previous findings [Brammer, 1998;
Ruttimann et al., 1998]. These previous studies, how-
ever, did not provide a quantitative assessment of
their achievements, because they did not employ any
“gold standard” for comparison. Furthermore, they
selected ‘a priori’ a single wavelet family and order,
thus not offering comparative data. Our results show
that size and shape of the activation areas are closer to
the expected ones when using Gabor transformation
than when using the previously proposed Daubechies

Figure 6.
ROC area vs. resolution level for
two different noise figures (upper:
5%, lower: 20%). Curves corre-
spond to baseline z-score, Dau-
bechies, Lemaire, and Gabor. No
pre-smoothing applied.
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Figure 7.
ROC area vs. resolution level for
two different noise figures (upper:
5%, lower: 20%), after applying
pre-smoothing (gaussian filter
FWHM 5 3 pixels). Curves cor-
respond to baseline z-score, Dau-
bechies, Lemarie, and Gabor.

Figure 8.
Images obtained using Daubechies (upper row) and Lemarie (lower row) wavelet decomposition
with 32 coefficients, from resolutions 1 to 6 (5% noise level, P 5 0.05).
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or Lemarie wavelets. Regarding the preservation of
shape, it must be noted that the Gabor basis is the one
that better fits the circular activation areas of our
phantom; thus, these results should be cautiously ex-
trapolated to non-circular areas.

When evaluating the performance of an analysis
method, specificity is a parameter as important as
sensitivity because sensitivity can always be in-
creased at the expense of lowering specificity. The
correct shape of the detected activation areas is also
clearly dependent on obtaining adequate specificity.
Unless a gold standard is available, specificity can-
not be determined. The spatial distribution of false
positive voxels is different using conventional or
multiresolution methods. In the first case, false pos-
itive pixels are randomly distributed all over the
image. In contrast, wavelet-based analysis tends to
concentrate false pixels in the borders of real acti-
vation areas, increasing their apparent size (‘border
effect’). In this way, similar values of specificity may
have a different interpretation: in the case of tradi-

tional analysis the lack of specificity appears ran-
domly, giving a ‘noisy’ aspect to the results,
whereas in the wavelet-based approach most of the
error contributes to increase the apparent size of
activation areas. In all the cases, increasing in the
resolution level or the wavelet order led to worse
spatial resolution and more ‘border effect.’

Another interesting issue relates to the use of
pre-smoothing. It is usually recommended to pre-
smooth images with a gaussian filter of FWHM
ranging between 8 mm and 12 mm [Friston et al.,
1995; Worsley and Friston, 1995]. The need for this
pre-filtering step is debatable when applying mul-
tiscale approaches: Ruttimann states that the wave-
let decomposition itself should provide an adequate
degree of low-pass filtering; Brammer, on the other
hand, applied smoothing before proceeding with
the wavelet analysis.

From our data on the whole image (including dif-
ferent sizes of activation regions) it seems that pre-
smoothing always improves the overall performance,

TABLE II.

5% of Noise 20% of Noise

Method Order Resolution Pre-smooth Method Order Resolution Pre-smooth

12 pixels
2% Gabor 1 Yes Gabor 2 Yes
1% Gabor 1 Yes Gabor 2 Yes
0.5% Gabor 2 No Gabor 2 No

8 pixels
3% Gabor 1 Yes Gabor 1 Yes
2% Gabor 1 Yes Gabor 2 Yes
1% Gabor 1 Yes Gabor 2 Yes
0.5% Gabor 2 Yes Lemarie 2 4 Yes

4 pixels
3% Gabor 1 Yes Symlets 4 1 Yes
2% Daubechies 2 1 No Daubechies 4 1 Yes
1% Gabor 1 No Lemarie 2 2 Yes
0.5% Spline 2,8 1 No Spline 2,8 1 No

2 pixels
3% Gabor 1 No Lemarie 2 1 No
2% Lemarie 2 1 No Daubechies 2 1 Yes
1% Daybechies 2 1 No Daubechies 2 1 No
0.5% Symlet 4 1 No Symlets 4 1 No

1 pixel
4% Gabor 1 No Spline 2,8 1 No
3% Gabor 1 No Gabor 1,2 No
2% No detection No detection
1% No detection No detection
0.5% No detection No detection

Best method for detecting activity depending on the size of the activation region and activity level. Data for the two extreme noise figures
tested (5% and 20%) are provided. Order, resolution and whether pre-smoothing was applied are also indicated.
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either with conventional or multiresolution methods.
When the analysis is performed separately for each
activation area, however, better performance was ob-
tained for the 1 and 2 voxel “activations” when no
pre-smoothing was applied. This seems reasonable,
because smoothing flattens sharp activity peaks, mak-
ing their detection more difficult. As can be seen in
Table II, Gabor decomposition outperforms any other
wavelet decomposition scheme in most cases, and
lower order and resolution levels are always prefera-
ble.

The results of this study cannot be directly com-
pared with those obtained with traditional analysis
when applying ‘a posteriori’ corrections according to
the area size [Friston et al., 1995; Worsley and Friston,
1995]. This comparison was not the aim of this work,
and we have not studied to what extent postprocess-
ing techniques applied after the multiresolution anal-
ysis might improve the results, in terms of ROC curve
area.

A limitation of the sensitivity/specificity and ROC
data obtained from the whole image is that perfor-
mance is measured mixing data that come from re-
gions with different area sizes. For this reason, addi-
tional analysis for each region size were also
performed.

CONCLUSION

Multiresolution analysis of fMRI studies outper-
forms more standard techniques, increasing the prob-
ability of detecting activation areas (sensitivity) while
keeping specificity within reasonable limits. In con-
trast to previously reported data, our simulation study
shows that lower wavelet orders and resolution
depths should be used to obtain optimum results (in
terms of ROC curve area). The Gabor transformation
offers the maximum fidelity in preserving activation
area shapes and no major differences were found be-
tween other wavelet bases functions. Data pre-
smoothing increases ROC area except for very small
activation region sizes.
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