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Communications

Efficient Computation of Amplitude and Phase Maps in
Nuclear Medicine Equilibrium-Gated Cardiac Studies

Juan Jośe Vaquero,* Andŕes Santos, Salvador Pérez,
and Francisco del Pozo

Abstract—The Goertzel algorithm is proposed as a method to obtain
the first harmonic coefficient of time activity curves from equilibrium
gated cardiac studies. The coefficients are used to produce functional
images. The algorithm achieves an important reduction in the number of
operations and memory accesses needed to compute the coefficients.

Index Terms—Cardiovascular system, discrete Fourier transforms,
discrete time filters, functional analysis, nuclear cardiography, nuclear
imaging.

I. INTRODUCTION

Equilibrium-gated blood pool imaging of the heart is used to
visualize and quantify cardiac function [1]. Quantification of global
ventricular function is usually based on the determination of a time-
activity curve (TAC) over the left ventricle, from which parameters
such as ejection fraction, stroke volume, and filling rate can be
obtained [2]. The complexity of the cardiac cycle can be presented
in a more comprehensive way with functional images: images where
each pixel represents the parameter of interest obtained after Fourier
analysis of every individual TAC [3]. The main parameters are
the amplitude and phase of the first harmonic, from which three
functional images are generated: the amplitude and phase maps, and
the phase histogram.

1) The amplitude image shows the change of activity in each pixel,
without regard to the timimg of these variations within the
cardiac cycle. It is useful to show abnormalities of the wall
movement [4].

2) The phase image represents approximately the relative vari-
ations in the timing of the movement of the heart regions.
Delays of the blood circulation in different parts of the heart
can be easily seen. This image may be used to detect delays in
contraction and shows areas working asynchronously [5].

3) The phase histogram has two peaks in a healthy heart: the
higher one arises from the activity of the ventricles; the smaller
one from the atria. Between the two peaks exists a difference
of approximately 180�. The width of each peak shows the
synchronization of the contractions.

The computation of the first harmonic coefficient of every pixel’s
TAC requires a number of operations, proportional to the number
of time samples. The number of images per cardiac cycle is a
compromise between temporal resolution and acquisition time: as
the signal-to-noise ratio (SNR) depends on the Poisson statistics of
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the nuclear data acquisition for a given time, increasing the number
of images per cardiac cycle means reducing the number of counts
per image and the SNR accordingly. A typical study has between
16 and 32 (64�64 pixels) images per cycle; this represents a good
compromise between spatial resolution and acquisition time. Then,
4096 TAC’s have to be analyzed.

In this Communication we present an efficient method to estimate
the first TAC Fourier coefficient. Several methods are available to
compute the fast Fourier transform (FFT) when a limited number of
coefficients are needed [6], but they are efficient only for a large
number of time points. Here, however, we need to compute many
FFT’s with a few time points at the input; then, the reduction in the
number of operations provided by fast algorithms is not significant,
and simpler algorithms can be more efficient, as will be shown.

II. M ETHOD

Using a commercial gamma camera, images are acquired syn-
chronously with the R wave and stored in the LIST mode (in this
mode, acquisition coordinate pairsx and y for each scintillation
are stored together with a time reference in a list format [7],
[8]). After cine-sequence reconstruction, a TAC is obtained for
every pixel. To minimize the quantization noise, and due to the
finite number of points obtained (one from each image) in typical
studies, temporal interpolation or smoothing is needed for good
representation of the TAC’s. From the different interpolation methods
available, cubic spline interpolation is chosen due to its global
smoothness, that produces a function continuous up to its second
derivative. The smoothing step is needed only to display the TAC’s
prior to computation of the functional images, since the coefficients
themselves generate the smoothest version of the TAC’s.

The amplitude and phase of the first harmonic is the first Fourier
coefficient of each raw TAC, and can be obtained by different
methods: directly from the discrete Fourier transform (DFT) formula

X(k) =

N�1

n=0

x(n)W kn
N (1)

whereWN = e�j2�=N , or with any algorithm that computes the
FFT. We propose to use the Goertzel algorithm because it has several
advantages, as will be shown.

Once the coefficients have been calculated, the amplitude and
phase maps can be produced. The generation of the amplitude map
is straightforward, but for the phase maps two observations can be
made.

1) Points with negligible amplitude should not be represented in
the phase map as these points are usually static (extracardiac)
structures. A mask that includes the points with amplitude less
than 10% of the maximum value in the image can be used to
skip such points.

2) The phase image should preserve the periodic nature of the
phase values, thus, a cyclic color scale has to be used. There
should be also the possibility to shift this scale when the
boundary between two colors is near a peak in the phase
histogram: a more meaningful representation can be obtained
if similar values are represented in the same color.
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Fig. 1. Implementation of the Goertzel algorithm as a linear filter.

A. The Goertzel Algorithm

The Goertzel algorithm is an efficient way to compute a reduced
number of DFT values [9]. It can be implemented as a linear filtering
operation with only two complex coefficients. To derive it, (1) can
be expressed as

X(k) =

N�1

n=0

x(n)W
�k(N�n)

N
(2)

where the second term has been multiplied byW�kN

N
(which is

always equal to one). Equation (2) can also be seen as theN th value
of convolution of theN samples ofx(n) with a filter that has the
impulse response

hk(n) =W
�kn

N u(n): (3)

ThenX(k) is simply the output of this filter at timeN , when its
input is x(n)

X(k) = x(n)
 hk(n)jn=N : (4)

Thus, to compute the DFT parameters, a filter could be implemented
with the system function expressed as

Hk(z) =
1

1�W�k

N
z�1

=
1�W k

Nz
�1

1� 2 cos(2�k=N)z�1 + z�2
:

(5)

The direct form implementation of the filter is shown in Fig. 1. As
can be seen, only one real coefficient and one complex coefficient are
needed. As just theN th value of the output is needed, the forward
branch of the filter has to be computed only at timeN .

III. RESULTS

Tables I–III show the number of real operations (noncomplex
multiplications or additions) needed to compute the DFT coefficients
from a noncomplex input signal. The split-radix algorithm [10] is the
best among nine different ways to compute the DFT [11]. Except
for the FFT algorithm, the tables reflect the number of operations
performed on the computation of a single (complex) coefficient
(as needed in this application to produce the amplitude and phase
maps). The split-radix algorithm produces theN FFT coefficients,
and thus in this case the figures given are the number of operations
needed to compute theN coefficients. Table I shows the number of
nontrivial real multiplications (multiplications by 1,�1, j, and�j
are excluded). Table II shows the number of real additions.

Table III shows one of the main advantages of the Goertzel
algorithm: it needs just one real and one complex coefficient while
the computation of the DFT needsN complex coefficients (this table
excludes again thetrivial coefficients).

TABLE I
NUMBER OF NONTRIVIAL REAL MULTIPLICATIONS FOR

DIFFERENT ALGORITHMS (N/A: NOT APPLICABLE)

N
Split-radix

FFT
DFT

(per coef.)
Goertzel

(per coef.)

16 10 24 14
24 N/A 40 22
32 34 56 30

TABLE II
NUMBER OF REAL ADDITIONS FOR DIFFERENT ALGORITHMS

N
Split-radix

FFT
DFT

(per coef.)
Goertzel

(per coef.)

16 60 30 32
24 N/A 46 48
32 164 62 64

TABLE III
NUMBER OF REAL COEFFICIENTSNEEDED FOREACH ALGORITHM

N DFT
Goertzel

(per coef.)

16 24 3
24 40 3
32 56 3

IV. DISCUSSION AND CONCLUSIONS

From the previous tables, it can be seen that the Goertzel algorithm
is an efficient way to compute the amplitude and phase maps. Time
savings are 34% with a 486 central processing unit (CPU), and
go up to 40% with a Pentium. When these savings are applied
to the computation of the individual time-activity curves (4096 for
64� 64 pixels images; 16 384 for 128�128 images), the reduction
in the number of operations becomes significant. For example,
for a sequence with 24 images (64�64 pixels), the direct DFT
method needs 163 840 real-number multiplications while with the
Goertzel algorithm this figure is reduced to 90 112. This reduction
of CPU cycles together with the reduction of memory access allows
implementation of functional image analysis on smaller computers
with reasonable execution times. The Goertzel algorithm has the
additional advantage of being efficient for anyN (time points), while
FFT-based methods lose efficiency whenN is not an integral power
of two.

In a practical clinical case, we have measured that our algorithm
takes 3 s for a 32-image sequence, 128�128 pixels per image, on a
Sun 4/370 system, while the same process in our standard equipment
used in clinical routine needs between 15 and 30 s, depending on
the CPU used. In both cases, the coefficients obtained are exactly
the same.

The proposed method will be more useful with functional maps
obtained from magnetic resonance images. In that case, the number
of individual TAC’s will be in the order of 256� 256, and hence the
reduction in the number of operations will be very significant.
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Estimation of Slowly Changing Components
of Physiological Signals

M. Raifel* and S. Ron

Abstract—A method for the estimation of slowly changing components
of physiological signals is presented in this communication. The method is
based on a sequential approximation of slowly changing components by a
low-order polynomial function. The polynomial coefficients are obtained
by minimizing the distance between the expected zero crossing density
(ZCD) value of the fast components of the physiological signal and the
estimated ZCD value of these components. The method has been tested
and preliminary results were satisfactory.

Index Terms—Baseline, drift, ECG.

I. INTRODUCTION

The estimation of the slowly changing components of physio-
logical signals is of both theoretical and practical importance. In
biomedical signal processing, these components can be associated
with trend signals in monitoring systems [1], baseline wander in
electrocardiogram (ECG) signals [2]–[5], [12], [13], electrode drift
[8], [11], [13], and other signals [6], herein referred to as underlying
signals. These signals can generally be described as any component
that can be represented as a slow and consistent monotonic change;
however, the change does not necessarily have to be slow [1], [13].
A physiological signal can be defined as the combination of the
underlying signal, the fast components of a physiological signal,
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and additive noise that can include artifacts, transients, and other
anomalies. Relative to the underlying signal, the fast components
and the noise can be distributed asymmetrically (asymmetric density
function); for example, relative to baseline, the ECG signal and the
noise are generally distributed asymmetrically. Standard methods of
underlying signal estimation usually concentrate on linear filtering
methods [1], [3], however these distort the low-frequency components
of a physiological signal [2], [3], [12]. One reason for using nonlinear
methods is that these methods have been shown to be effective and
robust [2], [4], [5], [12]. Sequential modeling by polynomial functions
[2], [12] are preferred for estimating the underlying signals, but, for
asymmetrically distributed fast components and noise, an estimation
based on well-known criteria such as least square error (LSE) or
least absolute deviation (LAD) can bias the estimation of polynomial
coefficients. The bias is derived from incompatibility between criteria
(estimation based on LSE or LAD is optimal for signals with
symmetric density function) and the fast components and noise
conditions (asymmetric density function) [7], [9]. Biased estimation
can be effectively solved by using only selective data points with
methods such as those described by Meyer and Kaiser [2], which
were developed to remove baseline wander in ECG signals using only
the points (knots) on P–R segments (isoelectrical levels) and baseline
approximation by cubic spline interpolation between the knots. The
block scheme, shown in Fig. 1, describes this method. One drawback
of this method is that it assumes the P–R segments are well defined,
recognizable, and with known positions; otherwise, this method fails
[3], [12]. On the other hand, visual evaluation (often known as the
draftsman method) is easily performed by drawing an underlying
signal curve through the data points [9], [12]. This could be seen
as a trivial operation, but its transformation to an algorithm can be
complex. The proposed method is similar, in some respects, to the
draftsman method and the underlying signal is estimated according
to human intuition and perception. An intuitive interpretation of the
main idea behind this method is to find the smooth curve that is
crossed the maximum number of times by the original signal. The
proposed method is described and a brief summary of the algorithm
is presented in Section II, and its performance is tested in Section
III. The advantages, disadvantages, and computational complexity of
the method is discussed in Section IV.

II. THE METHOD

The proposed method for estimating the underlying signal is based
on the central assumption that the underlying signal, in general,
changes slowly relative to the other components of the physiological
signal. Let us define the physiological signals(n) as the sum of the
underlying signalu(n), the fast components of physiological signal
x(n), and the additive noisew(n), expressed as

s(n) = u(n) + x(n) + w(n) n = 0; � � � ;M (1)

whereM is segment length.
The approximation functionf(a; i) is defined as follows:f(a; i) =

a0+a1i+� � �+aj i
j whereaj are polynomial coefficients,j indicates

the power of the polynomial, andi = �M=2;�M=2+1; � � � ;M=2:
The error,e(i), betweens(i) andf(a; i) is expressed as

e(i) = s
M

2
+ i � f(a; i) i = �

M

2
; � � � ;

M

2
(2)

wheree(i) is an approximation ofx(i) + w(i); f(a; i), of u(n):
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