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Summary

 

Quantification of  live cells in phase contrast microscopy
images allows 

 

in vivo

 

 assessment of  the viability of  cultured
cells. An automatic screening procedure seems advisable
because of  the large number of  cells that must be counted to
achieve reasonable accuracy. This paper presents a method
that quantifies necrosis in cell cultures by texture analysis of
microscope images.

The image is divided into regions of  equal size that are clas-
sified by means of  a segmentation algorithm based on texture
analysis into three categories: live cells, necrotic cells and
background. The classification uses three discriminant func-
tions, built from parameters derived from the histogram and
the co-occurrence matrix and calculated by performing an
initial stepwise discriminant analysis on 21 sample images
from a training set.

The areas occupied by live and necrotic cells and number
of  live cells have been obtained for primary cellular cultures
in intervals of  48 h during 2 weeks. The results have been
compared with those obtained by an experienced observer,
showing a very good correlation (Pearson’s coefficient 0.95,
kappa 0.87, 

 

N

 

 = 1600).
A method has been developed that provides an accuracy

similar to that provided by an expert, while allowing a much
higher number of  fields to be counted.

 

Introduction

 

The rate of  cell apoptosis is a significant parameter in many
experiments involving cell cultures. Cell death kinetics can be
measured by counting the number of  cells and/or area occu-

pied on each culture dish, analysing images taken at different
moments of  their evolution. To obtain reliable statistics a large
number of  cells need to be counted, thus making the use of
automatic procedures advisable.

Initially, the growing colonies yield high contrast images
where the edges of  the objects (individual cells) are rather
conspicuous. As cell proliferation takes place, the size of  the
cells is reduced, noticeably increasing the density of  cells as
they begin to completely fill the plate. On the other hand,
apoptosis leads to condensation and fragmentation of  cell
bodies, producing regions populated with unstructured smaller
objects.

Several staining methods for measuring apoptosis are cur-
rently well established. DNA-binding dyes are frequently used,
such as propidium iodide (PI) or Hoechst dye, terminal deoxy-
nucleotidyl transferase (TdT)-mediated end-labelling of  the
DNA strand breaks (Gavrieli 

 

et al

 

., 1992), detection of  phos-
phatidyl serine on apoptotic cell membranes with Annexin V
(Vermes & Haanen, 1994), DNA fragmentation laddering
on agarose gels, or direct visualization of  apoptotic cells under
the microscope. In addition, flow cytometry offers a variety of
possibilities to measure apoptosis, either staining in the cell
surface or intracellularly (Strebel 

 

et al

 

., 2001).
In theory, an appropriate segmentation algorithm (i.e. bor-

der detection, followed by cell classification) could accurately
obtain the number of  cells by identifying and classifying each
cell type on phase-contrast microscope images. The main diffi-
culty for individual cell segmentation arises from cell aggrega-
tion, which hinders the detection of  the cell contours. This is a
difficult task for most image-processing algorithms and the
authors know of  no successful attempt.

Some papers have been published on the quantification of
the dynamics of  cell colonies. In Proffitt 

 

et al

 

. (1996), a system
to measure relative cell numbers in culture plates was
presented. Total fluorescence was used as a measure of  the
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number of  cells per plate, after background fluorescence
reduction. Boezeman 

 

et al

 

. (1997) presented a method for
automatic enumeration of  proliferating bone marrow pro-
genitors, by means of  high pass filtering and morphological
processing based on the circularity of  cells. Some studies have
also focused on the segmentation of  clustered nuclei in fluo-
rescent-stained samples (Garbay 

 

et al

 

., 1986; Ahrens 

 

et al

 

.,
1990; Lockett & Herman, 1994; Malpica 

 

et al

 

., 1997). These
methods are not expected to offer good results in the type of
cultures studied in our work, as separation of  individual cells is
not straightforward when dead cells loose their shape and size
properties.

In Kong & Ringer (1995) a system for apoptosis detection by
image analysis was proposed, using a counterstain for nuclei
detection and a stain to detect apoptotic nuclei. Matthews

 

et al

 

. (1998) developed a system to detect apoptosis using
staining methods that detect apoptotic morphology.

Methods based on texture analysis are receiving increasing
interest, and they have been used successfully to identify neo-
plastic nuclei by characterizing chromatin structure in breast
tumours (Weyn 

 

et al

 

., 1998; Wouwer 

 

et al

 

., 2000) and in pro-
state cancer (Yogesan 

 

et al

 

., 1996), and to segment chromatin
regions (Beil 

 

et al

 

., 1995).
This paper presents an automatic method developed for

cell counting by characterizing the texture of  regions in phase-
contrast images without staining. The system allows the
measure of  confluence, or degree of  coverage of  the plate with
cells. The use of  phase contrast microscopy allows for 

 

in vivo

 

studies, therefore not introducing experimental artefacts
derived from staining or fixation.

Texture parameters have been extracted from a set of  train-
ing samples, calculating the optimum set of  discriminant
functions by stepwise procedures. The procedure and a
comparison with manual counting are presented.

 

Materials and methods

 

The automatic counting procedure comprises two steps. First,
regions are classified as pertaining to any of  the cell classes
(dead or alive) or to the background. Then the total number
of  live cells is calculated using an estimation of  the average
cell size.

Segmentation of  the image is performed by classifying each
region into one of  three a priori classes, on the basis of  a vector
of  texture parameters computed for each region. These texture
parameters were obtained from a training set of  images by
means of  stepwise discriminant analysis that also provided the
corresponding discriminant (Fisher) functions. Regions were
assigned to a class, on the basis of  texture parameters com-
puted on wider window. Statistical analysis of  textures is
described below.

In order to calculate the number of  live cells, their average
size is introduced either directly or by using an interactive tool
that estimates this average size by manually outlining several

cells. The area corresponding to live cells divided by average
cell size provides an estimation of  the number of  cells.

 

Texture features

 

Texture parameters used in this application can be classified
into first-order statistics, computed from the histogram, and
second-order statistics, computed using the Gray Level Co-
occurrence matrix (GLCM) (Haralick 

 

et al

 

., 1973). Mathemat-
ical expressions of  the parameters and implementation details
are provided in the Appendix.

The number of  features extracted from the histogram (four
features) and from the GLCM (11 features) at each of  the four
orientations and five distances used is too large. A reduction in
the dimensionality of  the features vector is required (Brady &
Xie, 1996).

A subset including the most discriminant variables was
selected by means of  a stepwise discriminant analysis, using
an input/output F-test to add and remove variables. The F-
test is based on Wilk’s lambda, which measures the ratio of
the variance in each group and the total variance (Dillon &
Goldstein, 1984). At each step, the variable that minimizes
lambda, considered together with previously selected varia-
bles, is chosen. Independence among variables is assessed
using tolerance. Tolerance of  a variable 

 

X

 

j

 

 to variables 

 

X

 

1

 

, … ,

 

X

 

j

 

−

 

1

 

, …

 

 X

 

p

 

 is defined as  where 

 

R

 

j

 

 is the multiple
correlation coefficient among 

 

X

 

j

 

 and variables 

 

X

 

1

 

, … ,

 

 X

 

j

 

−

 

1

 

, …

 

 X

 

p

 

(Dillon & Goldstein, 1984). At each step, variables are added
or eliminated depending on their partial F value. The proce-
dure ends when no more variables can be entered or removed.
The F to enter and F to remove values used were 3.84 and
2.71, respectively.

 

Classification by discriminant analysis

 

Once the most discriminant set of  parameters is obtained,
linear discriminant functions are calculated to automatically
classify each sample into one of  the three predefined groups.

In discriminant analysis (Keckla, 1988) a linear combina-
tion of  the independent variables (textural features in our
case) is formed, and this serves as the basis for classifying
cases. We use linear discriminant or Fisher functions, of  the
following form:
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 are the quantitative independent variables
and 
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s

 

0

 

, 
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s

 

1

 

, … , 

 

B

 

sp

 

 are the weighting factors (Fisher coeffi-
cients) estimated from the data. These factors are chosen so
that the ratio of  the between-class sum of  squares to the
within-class sum of  squares is as large as possible.

Training of  the system was carried out only once and the
resulting parameters were used throughout the rest of  the
experiments.

    Tol Rj j  = −1 2
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Robustness assessment

 

The leave-one-out method was used to obtain an initial esti-
mate of  the correct classification rate. This method involves
leaving out each case in turn, calculating the function based
on the remaining cases, and then classifying the left-out case.
The robustness of  the discriminant functions was also
assessed by jack-knifing: 10% of  samples were taken out and
the discriminant functions were estimated from the rest of  the
samples. All procedures for feature selection and discriminant
function calculations were carried out using SPSS (SPSS Inc.,
Chicago, IL, USA).

 

Image analysis tool

 

The segmentation method was implemented in a complete
end-user application, using IDL language (Research Systems
Inc., Boulder, CO, USA). The user interface of  the tool is shown
in Fig. 1. It allows single images or a complete set of  images to
be loaded. After automatic classification, the user can interac-
tively correct the assignment of  any region if  needed. Final
results can be saved to an ASCII file for further analysis.
Results showing the total surface for each class and the
number of  live cells are provided as output.

 

Experimental setting

 

The proposed method was tested in cell cultures using a pre-
viously established setting for the induction of  cell death by
means of  two immunosuppressors with known cytotoxic
activity, as previously reported (Hortelano 

 

et al

 

., 2000). The
experiment consists of  adding two immunosuppressors (CSA
and Tacrolimus, FK506) to different primary cultures of  renal

cells, for measuring cell death kinetics. A third culture with no
immunosuppressor is used as control. All experiments are
performed on primary cell cultures from swine. Proximal tubule
suspensions were obtained from collagenase digestion of  the
renal cortex and isopicnic centrifugation on 45% Percoll
gradient (Tejedor 

 

et al

 

., 1988) and plated in plastic culture dishes
(60 mm). Kinetics of  culture with CSA were compared to
cultures with no immunosupresor and to cultures with FK506,
as a positive control. Cultures were incubated at 37 

 

°

 

C in a
95% air/5% CO

 

2

 

 atmosphere. CSA was obtained from Sandim-
mun® (Novartis, Basel, Switzerland) and FK506 from Prograf®
(Fujisawa, Tokyo, Japan). Cells were allowed to grow in the
presence of  CSA, FK506 or vehicle (control conditions) from
zero time (eight dishes per treatment).

Phase contrast images were acquired with an Olympus
IX70 microscope (Olympus Gmbh, Hamburg, Germany)
with 40

 

×

 

 magnification, and captured with a Sony DXC 151P
colour CCD camera (Sony Ltd, Tokyo, Japan). Monochrome
(8 bits pixel

 

−

 

1

 

) 736 

 

×

 

 560 pixel images were transferred to a
Pentium III computer for analysis using a Matrox Meteor II
frame grabber (Matrox Electronic Systems, Dorval, Canada).

Cultures were maintained for approximately 15 days; dur-
ing this period images were obtained every 2 days, starting
from day four. Three different dishes per treatment were
chosen randomly. From each of  them, seven images were
obtained. Figure 2 shows images of  the culture on the fourth
and eleventh day of  the study. The objective of  the method is
to segment the regions containing live cells, dead cells and
the areas with no cells. Regions 32 

 

×

 

 32 pixels in size were
assigned to a class, on the basis of  texture parameters com-
puted on a 60 

 

×

 

 60 window.
Two different sets of  images were used, one for training and

another for evaluation of  the classification performance.

Fig. 1. User interface of  the application. Regions of
different classes are shown in the image, as well as
the sizes of  regions used for parameter calculation
and classification, respectively.
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To select the most discriminant texture parameters and to
establish the discriminant functions, a training set of  21
images (seven per type of  culture) was obtained for each of  the
5 days of  study, as explained above. From them, 222 regions of
interest were extracted. Each region was manually classified
as formed by live cells, dead cells or background (dish). For
each region, all the histogram and co-occurrence matrix
parameters were computed. Co-occurrence matrices for 

 

d

 

 = 1,
2, 3, 4, 5 and 

 

θ

 

 = 0

 

°

 

, 45

 

°

 

, 90

 

°

 

, 135

 

°

 

 were used (see Appendix).
The classification rate obtained on the training set of  regions
was measured using a leave-one-out method. The robustness
of  the discriminant functions was assessed by jack-knifing,
performing 10 different runs, randomly excluding 10% of  the
regions in each.

In order to assess the reliability of  the results of  the auto-
matic method, segmentation (region classification) and cell
counting were evaluated separately.

The agreement in region classification was assessed by
considering the number of  rectangular windows that were

correctly classified in a set of  four randomly chosen images
corresponding to four different days. After the automatic
classification, each image becomes divided into 400 regions (i.e.
1600 regions in total) and results are compared to the manual
classification obtained by a experienced observer (Table 2),
blind to the automatic result.

The rate of  agreement is computed as:

This rate of  agreement between different image classification
methods can be considered as a reliability index in which a
number of  targets (image regions) are rated (classified) by
different judges (methods). However, part of  this agreement
could be due to chance only. Even in the case when both
ratings were independent of  each other, a certain degree of
random agreement would be present. For this reason, another
measurement of  reliability, known as the kappa coefficient (

 

κ

 

),
has been used. Kappa is a chance-corrected measurement of
agreement, defined by Bartko (1995):

where 

 

p

 

o

 

 is the observed percentage of  agreement between two
methods and 

 

p

 

e

 

 is the agreement that would occur by chance.
Random agreement can be measured by supposing that both
measurements are independent. The number of  regions
classified into each class by each of  the methods is plotted on
Table 2.

The expected number of  classifications into class i and j by
each of  the methods, respectively, assuming independence, is:

Random coincidences are then 

 

e

 

11

 

 + 

 

e

 

12

 

 + 

 

e

 

13

 

. Expected agree-
ment can then be computed as: 

 

p

 

e

 

 = (

 

e

 

11

 

 + 

 

e

 

22

 

 + 

 

e

 

33

 

)/

 

n

 

, where 

 

n

 

is the total number of  observations.
To evaluate the results of  cell counting, 15 images were

selected randomly, from which the area occupied by cells of
each type and the number of  live cells was computed both
manually and automatically. Correlation is not always the
best approach to compare two methods of  measurement, as it
does not measure the agreement between two variables, but
the strength of  a relation between them. If  the results of  both
methods are plotted against each other, there will only be
perfect agreement if  the points lie along the line of  equality;
however, there will be perfect correlation when the points lie
along any straight line. Altman (1991) proposed plotting the
differences between both methods against their mean. The
lack of  agreement can then be assessed by the bias, estimated
by the mean difference (d) and the standard deviation of  the
differences (s). In our case, we have used the results of  the
manual method instead of  the average, as it represents
the gold standard.

Fig. 2. Images of  the cell culture on day 4 (a) and day 11 (b).
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Results

 

Stepwise discriminant analysis resulted in the selection of  12
parameters. Parameter names and their weighting coeffi-
cients for the three linear discriminant functions are shown in
Table 1. The leave-one-out method yielded a 100% classifica-
tion success rate on the training set.

Region classification was evaluated by measuring the rate
of  agreement and the kappa index, as described in Materials
and Methods. Table 2 shows the result of  classification of  the
test regions. A rate of  agreement of  0.94 was obtained, with a
kappa of  0.87. Evaluation of  the measured cell area and
number of  cells was performed as described above.

Taking the figures obtained manually as the standard, the
relative difference (bias) is defined as:

From the experiments, the overall relative mean difference in
live cells area was 0.2%, with a standard deviation of  6.8%
(not significantly different from 0).

Regarding cell counting, a relative mean difference of
18.06% and a standard deviation of  19.11% were obtained
(not significantly different from 0).

Training was only carried out once, taking 3 h, and results
were used for all experiments. The time needed to classify a
single image was 29 s on a Pentium III 700 MHz PC. The
average time taken by an experienced observer is 3 min.

 

Discussion

 

The method proposed provides quantitative figures (area of
live and dead cells and number of  live cells) similar to those
obtained by an experienced observer. The results of  region
classification were better than those of  cell counting. This may
be due to the fact that the calculated number of  cells requires
an estimate of  the average cell size. Cell sizes may differ signifi-
cantly, especially in images taken after a few days of  growth, as
shown in Fig. 2. Although the interobserver variability is very
small, the final result of  cell counting strongly depends on the
particular selection of  cells performed by the user for average
size calculation.

Focusing and image acquisition were performed manually in
the present study. We have not studied the possible influence of
defocusing on texture parameters. In any case, several precise
methods for autofocusing are available (Santos 

 

et al

 

., 1997),
which could easily be included as part of  the procedure. In a
completely automated setting, illumination should also be
calibrated and controlled, even though most of  the features
used for classification are illumination invariant.

In the present study, the parameter estimation window was
of  a fixed size, which was determined empirically. The method
uses only histogram and grey-level co-occurrence matrix
parameters. Analysis windows must be large enough to have a
sufficient number of  values for parameter computing. The size
of  the classification window, those pixels that are assigned to a
certain class, determines the resolution of  the classification.
Using a smaller window increases the resolution but also the
computational cost. The system developed could be used to
segment cultures of  other different cell types, although the
parameter selection and discriminant function calculation
would have to be repeated for the new image types.

A reliable and easy to implement method has been devel-
oped, providing 

 

in vivo

 

 quantitative results on phase contrast
microscopy images of  cell cultures. The method has been
evaluated using an independent data set. The system avoids
any artefacts derived from staining and fixation, without even
a requirement to open the dishes. Preliminary results show an
accuracy similar to that provided by an expert, while allowing
a much larger number of  fields to be counted.
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definition of  texture parameters.

  

Live cells Dead cells Dish

Percentile 99% −0.964 −1.045 −0.691
InvDfMom(1,0) 30 551 30 603 31 107
Entropy(1,0) 19 650 19 784 19 777
AngScMom(1,-1) −18 022 −17 895 −20 953
InvDfMom(1,-1) 1120 863 1301
AngScMom(2,0) 18 984 18 904 22 024
InvDfMom(2,0) −1067 −940 −1737
InvDfMom(4,-4) − 4059 −4382 −4492
SumEntrp(5,0) −12 746 −12 708 −12 486
Contrast(5,5) 15 14 16
Entropy(5,5) −2738 −2817 −3014
InvDfMom(5,-5) 5604 5993 6175
Constant −15 811 −15 858 −16 042

Table 2. Comparison between manual and automatic classification of  
segmented regions. Each cell shows the number of  regions in each class 
according to each method.

 Manual 
classification

Automatic classification 

Live cells Dead cells Background Total

Live cells 1069 29 26 1124
Dead cells 33 269 5 307
Background 3 1 165 169

Total 1105 299 196 1600
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Appendix

Texture parameters

A first group of  parameters is computed from the normalized
grey-level histogram. The normalized histogram is the pro-
bability density function for the grey levels of  a specific region.
If  we denote by p(zi) the probability of  each grey value zi, the
following parameters can be defined:

The histogram considers the grey level of  each pixel separately
and no spatial information is conveyed in these parameters. To
incorporate spatial distribution of  the grey levels we make use
of  the grey-level co-occurrence matrix (GLCM). Any GLCM
element Pd(i,j) reflects the distribution of  the probability of
occurrence of  a pair of  grey levels (i,j) separated by a given
distance d. The GLCM is computed by mapping the grey-level
co-occurrence probabilities based on spatial relations of  pixels
in different angular directions θ.
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As with the histogram, a normalized version of  the co-
occurrence matrix can be computed, dividing each element by
the total number of  neighbours for each d and θ. These values
depend on the texture.

From the co-occurrence matrix, the following parameters
were derived:

where

In these expressions, N is the number of  grey levels, zi are the
different grey levels, p(zi,zj) is the value of  the GLCM at point
(i,j), µx is the mean value of  GLCM values accumulated in the x
direction and µx–y is the mean value of  the distribution px–y.

To improve computation speed, advantage can be taken from
the fact that the co-occurrence matrix is symmetric. On the
other side, the size of  the GLCM depends on the grey level
resolution of  the image. Texture parameters have shown to be
reasonably invariant to grey-level quantization. In this work,
images were quantized to 4 bits pixel−1 before the matrix was
calculated, to increase computational speed, and GLCM was
computed for d = 1, 2, 3, 4, 5 and θ = 0°, 45°, 90°, 135°.
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