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a b s t r a c t 

In order to accelerate the acquisition process in multiple-coil Magnetic Resonance scanners, parallel tech- 

niques were developed. These techniques reduce the acquisition time via a sub-sampling of the k -space 

and a reconstruction process. From a signal and noise perspective, the use of a acceleration techniques 

modify the structure of the noise within the image. In the most common algorithms, like SENSE, the final 

magnitude image after the reconstruction is known to follow a Rician distribution for each pixel, just like 

single coil systems. However, the noise is spatially non-stationary, i.e. the variance of noise becomes x - 

dependent. This effect can also be found in magnitude images due to other processing inside the scanner. 

In this work we propose a method to adapt well-known noise filtering techniques initially designed to 

deal with stationary noise to the case of spatially variant Rician noise. The method copes with inaccurate 

estimates of variant noise patterns in the image, showing its robustness in realistic cases. The method 

employs a consensus strategy in conjunction with a set of aggregation functions and a penalty function. 

Multiple possible outputs are generated for each pixel assuming different unknown input parameters. The 

consensus approach merges them into a unique filtered image. As a filtering technique, we have selected 

the Linear Minimum Mean Square Error (LMMSE) estimator for Rician data, which has been used to test 

our methodology due to its simplicity and robustness. Results with synthetic and in vivo data confirm the 

good behavior of our approach. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) acquisitions suffers from

different sources of degradations and artifacts that corrupt the

original signal. One of the most dominant sources of degradation

is noise. Thermal noise in MR scans is mainly originated by the

subject or object to be imaged, followed by electronics noise dur-

ing the acquisition of the signal in the receiver chain. Since noise is

related to stochastic motion of free electrons, it is intrinsically im-

bricated with the acquisition process and therefore it is unavoid-

able. Some modern acquisition sequences are particularly affected

by noise, like those ones in which the signal is attenuated, such as

diffusion sequences with high b -values. It is also the case in those
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echniques that demand large amounts of data: in order to reduce

he acquisition time, the number of excitations (NEX) is also re-

uced. As a consequence, the noise power is increased proportion-

lly to the square root of the speedup. 

The degradation pattern introduced by noise affects the visual

mage quality and can negatively lead to an adequate interpreta-

ion and analysis of the data. Not only visual inspection is affected

y the presence of noise, but also many common post-processing

asks (image registration, tissue segmentation, diffusion tensor es-

imation) and the obtaining of precise measures and quantitative

maging bio-markers. 

The direct approach to minimize the influence of noise over the

nal image is the use of noise removal techniques, also known

s de-noising or, from a statistical perspective, as signal estima-

ion. Traditionally, noise filtering in medical imaging are based on

ell-defined prior statistical models of data. The Gaussian model is

he usual assumption in many algorithms. The definition of more

volved noise models for MRI have allowed the natural extension

http://dx.doi.org/10.1016/j.knosys.2016.05.053
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f well-known image processing techniques to cope with features

pecific of MRI. Many examples can be found in the literature,

uch as the Conventional Approach (CA) [26] , Maximum Likelihood

ML) [31] , linear estimators [1] , or adapted Non-Local Mean (NLM)

chemes [24,34] . 

In the simplest case, when single-coil acquisitions are consid-

red, the complex spatial MR data is typically assumed to be

 complex Gaussian process, where real and imaginary parts of

he original signal are corrupted with uncorrelated Gaussian noise

ith zero mean and equal variance σ 2 . Thus, the magnitude sig-

al calculated as the envelope of the complex signal is known to

e Rician distributed [18,19] . This Rician model has been the stan-

ard in MRI modeling for many years, and it has been the base for

 myriad of filtering techniques as well as noise estimation algo-

ithms [1,22,24,34] . 

With the advent of multiple-coil systems to reduce acquisi-

ion time, Parallel Magnetic Resonance Imaging (pMRI) algorithms

re used, predominating among them Sensitivity Encoding (SENSE)

29] and GeneRalized Auto-calibrating Partially Parallel Acquisi-

ions (GRAPPA) [17] . From a statistical point of view, the recon-

truction process carried out by pMRI techniques is known to af-

ect the spatial stationarity of the noise in the reconstructed data;

.e. the features of the noise become position dependent. Instead

f assuming a single σ 2 value for each pixel within the image, the

ariance of noise varies with x , i.e. σ 2 ( x ) [2,5] . 

If SENSE is considered, the reconstruction process yields to the

agnitude value of a complex Gaussian, and therefore, the final

agnitude signal can still be considered Rician distributed, but

ith a different σ 2 ( x ) for each x [2,5,13] . This way, many al-

orithms proposed for single coils systems can still be used if

ENSE is considered, as long as the non-stationarity of the noise

s taken into account. However, the estimation of the spatial pat-

ern of σ 2 ( x ) is an issue that presents serious difficulties and

ome prior information is needed, such as the sensitivity maps

n each coil. Unfortunately, this information is not always avail-

ble. Recently, some estimation methods have adopted a non-

arametric approach to estimate these non-stationary noise maps.

hese methods do not rely on a specific processing pipeline; the

nly requirement is that a statistical model has to be adopted for

he acquisition noise: Gaussian, [2,16,23,27] , Rician [2,7,12,21,25] , or

c- χ [28,32] . 

In this paper we propose a novel approach to noise filtering in

RI assuming non-stationary Rician noise in which the parameter

depends on the position, σ ( x ). That is the case, for instance of

ENSE acquisitions, but not only. It can also be found, for instance,

n GRAPPA if the data from each coil is merged using a spatial

atched filter instead of the sum of squares. The filtering method

s based on the consensus of different realizations of a given signal

stimator for different σ 2 values. The idea is to generate a wide

ariety of candidates that are merged in a global solution with-

ut the need of a σ 2 ( x ) estimation. Since the representative inputs

re not known in advance, we use a set of aggregation functions

o merge the realizations. Then, for each pixel, a penalty step will

elect the aggregated value that presents less dissimilarities with

espect to the inputs, as proposed in [9,10] . The final image is ob-

ained with the information contained in the different candidates,

howing a consistent spatially-variant behavior. 

The work here presented is not a novel filtering method per se ,

ut a methodology to adapt well-known statistical-based filters to

 particular problem in which input parameters are unknown. It

an be seen as an extension of the consensus framework for image

rocessing proposed in two previous works: [15] , where a general

on-stationary Gaussian model where assumed; and in [14] , where

he uncertainty to deal with is the model of the noise that corrupts

he image. The former approach deals with non-stationary noise

n a similar way we do in this paper, while the latter considers
tationary noise. The main advantage of the approach we propose

n the current work, is that the existence of a well-defined prior

oise model increases the amount of information available, which

ranslates in a decrease of the uncertainty of the problem. 

As a restoration algorithm, we consider the Linear Minimum

ean Square Error (LMMSE) estimator for Rician noise in [1] , due

o its simplicity and robustness, which is the natural extension of

he Wiener filter to Rician noise. However, the method can be ap-

lied to other signal estimators. 

The paper is organized as follows. Section 2 introduces the

on–stationary Rician model in MRI as well as the LMMSE estima-

or and the consensus method. The aggregation and penalty func-

ions are also explained. In Section 3 the proposed approach is pre-

ented. Then, in Section 4 different experiments are discussed for

ynthetic and real MR magnitude images using the new approach

ith LMMSE, to present our conclusions in Section 5 . 

. Background 

The method proposed in this paper is grounded in three dif-

erent topics: (1) the non-stationary Rician model present in some

RI acquisitions; (2) the LMMSE estimator for Rician data and (3)

he consensus methodology for decision taking when some infor-

ation is missing. Next, we review the three of them. 

.1. The non-stationary Rician noise model in MRI 

In MRI acquisitions, due to the reconstruction process and some

ost-processing done by the scanner, the noise in the final magni-

ude image can turn non-stationary, i.e. the variance of noise σ 2 

ecomes dependent on the position x : σ 2 ( x ). This is the case when

MRI techniques are used. 

Although the formulation of any specific pMRI method is be-

ond the scope of this work, as an illustration, let us assume that

he reconstruction process combines the data of the different coils

sing a weighted sum to obtain the single complex image [2,4] : 

 

R ( x ) = 

L ∑ 

l=1 

ω l (x ) S S l (x ) . (1)

here ω l ( x ), l = 1 , · · · , L is a set of reconstruction weights that

ay depend on several parameters, such as the sensitivity of the

oils; S S 
l 
(x ) are the sub-sampled signals acquired in each coil and

 

R (x ) the reconstructed signal. This model, for instance, is the one

e find in the case of pMRI data reconstructed with SENSE in its

riginal formulation. The linear operations over the Gaussian data

enerate correlated Gaussian data, affecting the stationarity of the

oise in the resulting image, which becomes corrupted with com-

lex Additive Colored Gaussian Noise whose variance depends on

he position [2,4] : 

 

R (x ) = A 

R (x ) + N 

R (x ;σ 2 
R 

(x )) , (2)

here N 

R (x ;σ 2 
R 

(x )) = N 

R 

r (x ;σ 2 
R 

(x )) + j · N 

R 

i 
(x ;σ 2 

R 

(x )) is no

onger white, neither stationary. The final magnitude image is

btained by using the absolute value: 

(x ) = | S R (x ) | (3)

nd therefore it follows a non-stationary Rician distribution, with

he parameter σ 2 
R 

(x ) being spatially variant. The specific value of
2 
R 

(x ) will depend on the reconstruction weights ω l and on the co-

ariance matrix �. The final value of the variance of noise at each

oint will depend on the covariance matrix between coils of the

riginal data (prior to reconstruction) and on the sensitivity map

f each coil, but not on the data themselves. This model has been

bserved for SENSE by different authors through experimental and

heoretical studies (see for instance the studies in [5,29,30,33] ). 
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The magnitude image can be modeled as follows: 

M(x ) = | S R (x ) | 
= 

√ (
I 0 (x ) + N r (x ; 0 , σ 2 (x )) 

)2 + N i (x ; 0 , σ 2 (x )) 2 , (4)

being M ( x ) the noisy magnitude image, I 0 ( x ) a noise-free recon-

structed signal and N(x ) = N r (x ) + j · N i (x ) some complex Gaus-

sian noise with zero mean and x -dependent variance σ 2 ( x ). 

2.2. The LMMSE estimator for Rician noise 

The selected noise filtering technique is the LMMSE signal esti-

mator for the stationary Rician distribution, as proposed in [1] . It

estimates the original signal I 0 ( x ) from the noise magnitude data,

M ( x ) that follows the model described in Eq. (4) , using the local

information and the original variance of noise σ 2 . The original es-

timator is defined over the square signal as follows 

̂ I 2 
0 
(x ) = 

[
K(x ) · M 

2 (x ) + ( 1 − K(x ) ) · 〈 M 

2 (x ) 〉 x 
]
− 2 σ 2 , (5)

with 

K(x ) = 1 −
4 σ 2 

(〈 M 

2 (x ) 〉 x − σ 2 
)

〈 M 

4 (x ) 〉 x − 〈 M 

2 (x ) 〉 2 x 

. (6)

The operator 〈 M 

n ( x ) 〉 x is the n th local sample moment of M ( x ) in

a neighborhood η( x ) around each pixel, defined as: 

〈 M 

n (x ) 〉 x = 

1 

| η(x ) | 
∑ 

p ∈ η(x ) 

M 

n (p ) . (7)

When non-stationary noise is considered, the parameter σ 2 be-

comes x -dependent, and it must be replaced in Eq. (5) and

Eq. (6) by σ 2 ( x ). 

The function K ( x ) in Eq. (5) can be seen as a confidence mea-

sure of how data fits the considered model. In those pixels where

K ( x ) → 1 (in the edges of the image, for instance, where the lo-

cal variance is high), the data is far from the model, and there-

fore the final image ̂ I 0 (x ) → M(x ) − 2 σ 2 . Since the model is not

trusted, the output is just the data (with some bias removed). On

the other hand, in those areas where K ( x ) → 0 (homogeneous ar-

eas, for instance), the model totally fits the data and the best pos-

sible output is given by an unbiased version of the averaged data,

i.e., ̂ I 0 (x ) → 〈 M 

2 (x ) 〉 x − 2 σ 2 . This K ( x ) function will be later used

to control the consensus procedure. 

2.3. Decision based on consensus 

A consensus strategy is used in a particular problem when the

best solution among the possible ones is not known in advance.

Thus, we choose the solution that produces less error among the

provided solutions. With consensus techniques we can obtain a

global solution that combines all the single inputs instead of us-

ing a single one as solution for the whole process [9,10] . The main

drawback of this decision-taking philosophy is that we have no

prior information about whether all the candidates are represen-

tative or just some of them. This is our motivation to use a set of

aggregation functions that previously merges the input candidates.

The whole consensus strategy consists in two phases: an ag-

gregation phase and a selection phase. For the aggregation phase ,

we chose the family of parameterized averaging aggregation func-

tions formed by the Ordered Weights Averaging (OWA) operators

since they offer more flexibility when combining weighted infor-

mation. An OWA operator of dimension n , defined by Yager in

[36] , is a mapping F w 

: [0, 1] n → [0, 1], where w = (w 1 , . . . , w n ) ∈
[0 , 1] n with 

n ∑ 

i =1 

w i = 1 and such that F w 

(x 1 , . . . , x n ) = 

n ∑ 

j=1 

w j b j with

{ b j } n j=1 
the sorted vector in decreasing order obtained from { x j } n j=1 

.

or instance, b 1 = max j (x j ) and b n = min j (x j ) . Consequently, y =
 w 

(x 1 , . . . , x n ) is in [0, 1]. 

The possible operators to consider are unmanageable and we

re not aware of the best candidate, so we can only assume a sub-

et of operators based on our experience, { F w j 
} q 

j=1 
. In other words,

he choice of the different sets of q aggregations to be used will

epend on the specific problem under consideration. 

From this set of q aggregation functions and together with the

nputs (x 1 , . . . , x n ) we obtain a new set that corresponds with the

ossible outputs of our method, { y j } q j=1 
. From the possible outputs,

nly one of the candidates can be used as a solution. Hence, in the

election phase , it is necessary to transform this set of outputs

n only one that represents the largest number of inputs. For this

urpose, a penalty function is used to select the aggregation value

 j that minimizes the penalty with respect to the inputs and is

iven as a solution. 

A penalty function measures the disagreement or dissimilarity

etween the n candidates, (x 1 , . . . , x n ) , and the outputs of the q

ggregation functions, { y j } q j=1 
. The penalty-based function [9,10] is

efined as P : [0 , 1] n +1 → R 

+ = [0 , ∞ ) such that: 

1. P (x 1 , . . . , x n ; y ) ≥ 0 for all x 1 , . . . , x n ∈ [0 , 1] , y ∈ [0 , 1] ; 

2. P (x 1 , . . . , x n ; y ) = 0 if x i = y for all i = { 1 , . . . , n } ; 
3. P (x 1 , . . . , x n ; y ) is quasi-convex in y for any (x 1 , . . . , x n ) . 

So, the consensus is achieved by calculating the minimum

enalty among all the values obtained from the OWA operators:

ˆ 
 = argmin 

y ∈{ y j } q j=1 

P (x 1 , . . . , x n ; y ) . (8)

So, we can consider any function P ( x , y ) that meets the three

xposed conditions. Among the possible functions that could be

uitable for this problem [9] we have used P (x , y ) = 

n ∑ 

j=1 

| x j − y | .
ther functions could also be used in this problem, as previously

tudied in [14] . Alternative functions can be found in [20] and [6] . 

Accordingly, a consensus strategy is based on testing several

unctions until we find the one providing the least dissimilar result

ith respect to the values of the inputs. Moreover, as we can ex-

ect the result provided depends on the set of q aggregation func-

ions and the penalty function P ( x , y ) that we use in each case. 

. A consensus-based LMMSE filter for MRI data 

For our work we will consider those MRI signals corrupted with

on-stationary Rician noise, as those generated after a SENSE ac-

eleration and reconstruction. Our aim is to estimate the original

ignal (without noise) from the original data without any knowl-

dge of the value of parameter σ ( x ). To that end, we will assume

he non-stationary noise model described in Eq. (4) . Although

any strategies can be adopted, we have selected the LMMSE es-

imator in Eq. (5) as the filtering technique, because of its sim-

licity and for having a formulation that can be directly adapted

o the consensus techniques. As an initial assumption, we consider

hat the value of the noise σ 2 ( x ) cannot be accurately estimated

rom the data. Thus, we cannot initially calculate a value for K ( x )

n Eq. (6) , since it depends on this parameter. 

The solution proposed to overcome this issue is the use of a

onsensus strategy to a pixel level: from a set of different input
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Fig. 1. Proposed scheme for filtering of non-stationary noise using a LMMSE estimator for Rician noise. A consensus approach for multiple inputs as a function of K ( x ) is 

considered. 
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scheme. 
alues of K i ( x ), i = 1 , . . . , n we try to reach a consensus for an

nique K ( x ) value: 

 

 

 

 

K 1 (x ) 
K 2 (x ) 

. . . 
K n (x ) 

⎤ 

⎥ ⎥ ⎦ 

Consensus 
−−−−−−−−−→ K(x ) . 

he different K i ( x ) are calculated using different configurations

f the input parameter set, namely a σ 2 value and the size of

he neighborhood where the local moments are calculated, W s i =
 ηi (x ) | , see Eq. (7) . The function K ( x ) here is used as a pixel con-

dence: it gives a measure of how the data fits the model. Since

n initial estimation of σ 2 ( x ) is not available, different candidates

 i ( x ) calculated with different σ 2 
i 

values will contribute to the final

ecision. 

The complete scheme of the proposed method is depicted in

ig. 1 . The whole consensus-based algorithm is as follows: 

1. A set of confidence matrices { K i } n i =1 
is calculated using

Eq. (6) with different values for the noise variance ( σ 2 
i 

) and

the neighborhood size ( W s i ). A reference set { σ 2 
i 
} n 

i =1 
can be

built from an initial reference variance. For instance, a refer-

ence variance can be estimated using any noise estimator al-

ready existing in the literature [1,3] . This estimation is done as-

suming a single σ 2 value for the whole image, which will not

be accurate for all pixels, but it gives a global reference value.

A set of multiple { σ 2 
i 
} n 

i =1 
can be obtained by sampling an inter-

percentile interval around the estimated value. Other strategies

can be also adopted when some information on the underlying

variance is known. 

2. A set of aggregation functions merges all the information from

{ K i } n i =1 
. Then a set of aggregated confidence matrices { Agg j } k j=1 

is generated by applying OWA operators with different weight-

ing vectors. A set of seven representatives OWA operators was

used, whose weighting vectors are depicted in Fig. 2 . Note that

the weights distributions follow trapezoidal shapes with differ-

ent tilt grades. They give higher weights to the lower values

of the sorted input. This way, the output of the OWA operator

provides a higher confidence value when the majority of candi-

dates agree. There are also null weights that correspond to the

input omission. 

3. In order to build K final ( x ), we select the Agg j that best suits and

less disagrees with respect to the initial { K i } n i =1 
. In order to help
in this issue the Agg j is calculated by minimizing the penalty-

based function 

K final (x ) = argmin Agg j 

n ∑ 

i =1 

| K i (x ) − Agg j (x ) | . (9)

4. Finally, the estimation of the original signal is calculated using

the LMMSE estimator from Eq. (5) , using the confidence estima-

tion K final ( x ) and a spatial variance estimation 

̂ σ 2 (x ) calculated

from Eq. (6) as: 

̂ σ 2 (x ) 

= 

〈 M 

2 (x ) 〉 x −
√ 

〈 M 

2 (x ) 〉 2 x −
(

1 − K final (x ) 
)

· (〈 M 

4 (x ) 〉 x − 〈 M 

2 (x ) 〉 2 x ) 

2 
. 

(10) 

. Experiments 

.1. Materials and methods 

We tested the proposed method with two different data sets as

t is shown in Fig. 3 : (1) synthetic noise-free MR slices from the

rainWeb data set [11] ; (2) one in vivo T1 MR magnitude image

cquired in a GE Signa 1.5T EXCITE, FSE pulse sequence, 8 coils,

R = 500ms, TE = 13.8ms, image size 256 × 256 and FOV:

0 cm × 20 cm. 

First, the synthetic images are corrupted with non-stationary

oise following the model in Eq. (4) . Three different spatial pat-

erns, G(x ) are considered to model the spatial variation of σ ( x ),

hown in Fig. 4 . The noise variance is calculated from these pat-

erns for different signal-to-noise ratio (SNR) simply by a linear

caling: 

(x ) = σ0 + G(x ) · σ1 , 

here σ 0 and σ 1 are constants. The different patterns used are: 

1. An unrealistic highly variant synthetic noise pattern, Fig. 4 (a).

Although it is very unlikely that a pattern like this occurs in

real acquisition, this 4-section scheme will give a very good in-

sight of the behavior of the filtering schemes. 

2. A synthetic Gaussian-shaped noise pattern, Fig. 4 (b). This pat-

tern follows the shape of some real patterns found in SENSE

acquisitions [4,5] . 

3. A noise shape generated with a SENSE simulator: Fig. 4 (c). This

is the reconstruction from a sensitivity map belonging to 8-coils
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Fig. 2. Weighting quantification for the 7 OWA operators used in the paper, considering ten elements. 

Fig. 3. MRI slices used in the experiments. Images (a) and (b) comes from the BrainWeb data-set; (c) is a real in vivo acquisition from a multi-coil GE Signa 1.5T EXCITE. 

Fig. 4. Non-stationary noise patterns used with the synthetic MR images. G(x ) range is [0, 1]. It was scaled to obtain images with several SNRs. 
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For the experiments, a neighborhood size W s = [7 × 7] , and a

range of ten different central values for σ 2 are considered. Our ap-

proach was compared with the following state-of-the-art Rician-

based filtering schemes: 

• The original LMMSE estimator (Original LMMSE) as proposed in

[1] , assuming a single σ 2 value for the whole image. A 7 × 7

square window is used for the sample moments estimation. 

• The Non-local-mean (NLM) algorithm without the Rician bias,

as proposed in [24] (Rice NLM). The essence of the NLM algo-

rithm consists on a weighted average that considers the dis-

tance and intensity between the target pixel and all observed

pixels. The original idea was proposed by [8] for Gaussian noise.

The required parameters for this approach are the radio search

window ( R search = 11 ); the radio similarity window ( R sim 

= 3 );

the degree of filtering ( f = 1 . 2 · ̂ σ ) and an estimation of the

variance ( ̂  σ 2 ). 
• The Chi-square unbiased risk estimator (CURE), as proposed in

[22] . It considers the squared-magnitude magnetic resonance

image data to derive an unbiased expression for the expected

mean-squared error to remove noise, which are well modeled

as independent non-central chi-square random variables on two

degrees of freedom. The task is done in the wavelet-domain

for its compromise between the execution speed and perfor-

mance. It uses the un-normalized Haar wavelet transform (Haar

CURE), where each wavelet sub-band is treated independently.

The other required parameter is the variance estimation, ̂ σ 2 . 

For the sake of comparison, the following methods will also be

sed: 

• The original LMMSE with the actual value of the noise map

σ 2 ( x ), denoted by Ideal LMMSE , This method represents the
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Fig. 5. Results from the first experiment: the synthetic MR magnitude image from Fig. 3 (a) is corrupted with Rician noise with different SNRs generated with the noise map 

in Fig. 4 (a). The average of 100 realizations is considered. 
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Table 1 

Average running times for 100 executions of the different al- 

gorithms and different experiments carried out. 

Experiment 1 ( Fig. 5 ) 2 ( Fig. 7 ) 3 ( Fig. 9 ) 

Original LMMSE 0.061 ms 0.072 ms 0.060 ms 

Consensus 1.302 ms 1.405 ms 1.306 ms 

Haar CURE 5.828 ms 6.710 ms 5.727 ms 

Rice NLM 87.106 ms 96.602 ms 80.173 ms 

a  

c  
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L  

i
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t  
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p  
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m  

R  

t  

g

1 The experiments were done in MATLAB and run on a Intel Core i5 2.4 GHz with 

8GB of RAM. 
upper bound of the proposal: it is the best possible solution

the LMMSE can achieve. 

• The LMMSE described in Eq. (5) needs an estimate of σ 2 ( x ) to

remove the bias of the estimated signal and a value of K final ( x )

for filtering. Thus, the accuracy of the final estimated signal

will depend on these two parameters. In order to isolate the

behavior of the filtering and the bias reduction steps, we will

show the results of the complete approach together with those

in which the K final ( x ) is used, but the bias is removed with the

original ̂ σ 2 (x ) . The former will be label as Consensus , and the

latter as Consensus ( ̂  σ 2 (x ) ) . 

The restoration performance was quantified by using the Mean

quare Error (MSE) and the Structural Similarity Index (SSIM) by

35] . The former measure is used to quantify the error reduction

ue to the filtering. It is not bounded and a higher MSE means

orse quality. On the other hand, the SSIM index gives a measure

f the structural similarity between the ground truth and the esti-

ated image. It is bounded in [0, 1]; the closer to one, the better

he image. Both measures are only applied on areas of interest in

he image, this means that the background is excluded. Each ex-

eriment is repeated 100 times to present a significant statistical

nalysis. 

.2. Experiments with synthetic data 

The first experiment evaluates the behavior in an extreme case

ith an unreal noise shape. To that end the coronal synthetic slice

n Fig. 3 (a) is corrupted with a non-stationary noise following the

nrealistic map in Fig. 4 (a). Results can be found in Fig. 5 . Note

hat most of the methods show a poor behavior for low SNR, being

he Ideal LMMSE the one with the smaller MSE and the highest

SIM. Our proposal shows also a good behavior that converges to

he ideal one for high SNR. However, note that the method shows

ome error due to the the removal of the bias: the Consensus that

ses the original σ 2 ( x ) is slightly better in terms of MSE, but very

imilar in terms of SSIM. This means that there is some numerical

rror, but the underlying structure is preserved. In Fig. 6 we show a

isual example for SNR = 2.21. Most of the methods works poorly

n the areas with the higher noise values, but the proposal keeps

he structures without any over-blur of the edges. 

In the second experiment, the sagittal synthetic slice from

ig. 3 (b) is corrupted with Rician noise. This time, we adopt a more

ealistic pattern for σ ( x ), the slim noise map in Fig. 4 (b). Due to the

hape of this map, in which there is a great decay of the values

f σ ( x ) far from the center, the resulting SNR values are higher.

esults for different SNRs are depicted in Fig. 7 , and a visual ex-

mple for SNR = 16 . 59 can be found in Fig. 8 . Due to the higher

evels of SNR, the behavior of all the filters improve, when com-

ared to those of the first experiment. This time, the Consensus
pproach quickly converges to the ideal value. When the SNS in-

reases, CURE becomes better than to our approach. However, note

hat the consensus approach is limited by the selected filter, the

MMSE in this case. Nevertheless, in all the cases, our approach

mproves the original LMMSE with a single σ value. 

For the third experiment, a SENSE reconstruction is simulated

rom the synthetic slice in Fig. 3 (a). An 8-coil system is simulated

sing artificial sensitivities for each coil, so that the image in the

 th coil can be seen as [5] 

 l (x ) = C l (x ) × I 0 (x ) , l = 1 , · · · , 8 , 

ith C l ( x ) the sensitivity map in the l th coil. Each coil is cor-

upted with Gaussian noise with a single σ value, and a correla-

ion between coils is assumed ( ρ = 0 . 25 ). The k -space is then sub-

ampled by a factor 2 × and reconstructed using Cartesian SENSE.

ifferent values of σ are considered. The resulting magnitude sig-

al has a noise map similar to the one in Fig. 4 (c). Results for dif-

erent SNRs are depicted in Fig. 9 while a visual example can be

ound in Fig. 10 . This time, most of the methods show a similar

ehavior, with small differences between them in terms of MSE.

hose differences are clearer for the SSIM index. We can clearly

ppreciate that CURE outperforms the rest of the approaches, fol-

owed by the NLM. Once more, note that the performance of the

onsensus approach is limited by the selected filter. Note also that

he case without noise estimation totally converges into the ideal

ne. On the other side, it is important to note that, as the SNR

ncreases, the performance differences decrease between the algo-

ithms. 

Finally, we want to point out that this consensus-based ap-

roach not only shows a great behavior dealing with non-

tationary noise, but it also exhibits good running times. In Table 1

e present the average time of the 100 executions considered

or each algorithm. 1 Not that the original LMMSE is a very fast

ethod, closely followed by our approach. On the other hand, the

ice NLM obtains high running times with respect to the rest of

he filters. This issue must be taken into account if the filters are

oing to be used in large data sets. 
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Fig. 6. Visual results of the filtered image obtained from the synthetic MR magnitude image from Fig. 3 (a) with the extreme noise map in Fig. 4 (a), with a SNR = 2.21. 

Fig. 7. Results from the second experiment: the synthetic sagittal MR magnitude slice from Fig. 3 (b) is corrupted with Rician noise with different SNRs generated with the 

em slim noise map in Fig. 4 (b). The average of 100 realizations is considered. 

Fig. 8. Visual results of the filtered image obtained from the synthetic MR magnitude image from Fig. 3 (b) with the slim noise map in Fig. 4 (b), with a SNR = 16 . 59 . 
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Fig. 9. Results from the third experiment: the synthetic sagittal MR magnitude slice from Fig. 3 (b) is used to simulate a SENSE reconstruction with different SNRs. The 

average of 100 realizations is considered. 

Fig. 10. Visual results of the filtered image obtained from a SENSE image, generated from the synthetic MR magnitude image from Fig. 3 (a), with a SNR = 15.66. An 8-coil 

system is considered. 
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.3. Experiments with real data 

Finally, in order to test the proposed method with real data,

e use the multi-coil in vivo acquisition in Fig. 3 (c). For simplicity,

he fully sampled k -space has been acquired, and the sensitivity

ap has been estimated for each of its 8 coils. The data in each

oil was sub-sampled to simulate a 2 × acceleration, and the final

agnitude image has been reconstructed using an offline SENSE

lgorithm. Since the initial σ 2 ( x ) is not available for this image, a

rior estimation is done assuming stationary noise [1] as ̂ 2 = mode {〈 M(x ) 2 〉 x } . 
The { σ 2 

m 

} 10 
m =1 

elements are selected from the range 1% to 103%

f the estimated 

̂ σ , that is, the interval [0 . 0 0 01 · ̂ σ 2 , , 1 . 0609 · ̂ σ 2 ] .

ince there is no golden standard available for comparison, we only
how visual results in Fig. 11 for the different filters considered.

he consensus LMMSE and the Haar CURE obtain the best results

mong the restored images, although consensus LMMSE slightly

btains better results in homogeneous areas. On the other hand,

he restored Rice NLM image still keeps some noisy pattern, while

he original LMMSE over-filter the data, producing some blur (this

ffect is emphasized close to the borders). 

. Conclusions 

A new methodology is presented as a solution to noise filtering

hen the input image shows a spatially variant noise pattern, and

ome of the input variables cannot be properly estimated. Spatial

on-stationary noise is a kind of noise whose features (the vari-

nce in this case) depends on the position within the image. The
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Fig. 11. Visual results for the in vivo data set in Fig. 3 (c): details from the filtered images. 
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clearer example of this kind of noise in MR data can be found in

pMRI acquisitions, but not only. The proposed method is applied

together with some existing filtering method. In this paper, the

LMMSE signal estimator for stationary Rician noise is considered.

This filter on its own will fail when applied over a spatially variant

σ 2 ( x ), since it is intended for a single σ 2 . However, the combina-

tion of the LMMSE with the proposed consensus approach is able

to take into account the non-stationarity of the data. The algorithm

also assumes our incapability to proper estimate the input data, in

this case the map of noise and the optimal size of the window in

which the local moments are calculated. 

Results of the experiments done using synthetic and real data

show how the proposed method highly improves the behavior of

the stationary LMMSE, and its performance is very similar to the

optimal case assuming a non-stationary LMMSE with σ 2 ( x ) per-

fectly known. In many cases, the new approach even outperforms

Rician filters that in the past have shown even a better perfor-

mance than the LMMSE itself. The method is particularly useful

in those cases when the variability of σ 2 ( x ) is high and extreme.

That will depend on the position and calibration of the acquisition

coils. 

As we have previously stated, this philosophy of work can be

easily extended to other filtering techniques in MRI. This exten-

sion will allow other algorithms to better cope with non-stationary

noise, but not only. They can also be adapted to automatically se-

lect the better set of input parameters, or to cope with deviation

from the statistical model, to perform a different filtering around

important structures and edges or even to combine the results of

different kind of filters into a single output. 

The main drawback of the method is that the number of oper-

ations increases, since the method carries out a filtering procedure

for each input set. The more the input possibilities, the greater the

number of times the filtering is repeated. The good news here is

that each of the iterations is totally independent of the others, and

therefore the method can easily be highly parallelized. 
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