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Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data
is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to
now no standardized evaluation methodology has been published to reliably evaluate and compare the
performance of the existing or newly developed coronary artery centerline extraction algorithms. This
paper describes a standardized evaluation methodology and reference database for the quantitative eval-
uation of coronary artery centerline extraction algorithms. The contribution of this work is fourfold: (1) a
method is described to create a consensus centerline with multiple observers, (2) well-defined measures
are presented for the evaluation of coronary artery centerline extraction algorithms, (3) a database con-
taining 32 cardiac CTA datasets with corresponding reference standard is described and made available,
and (4) 13 coronary artery centerline extraction algorithms, implemented by different research groups,
are quantitatively evaluated and compared. The presented evaluation framework is made available to
the medical imaging community for benchmarking existing or newly developed coronary centerline
extraction algorithms.
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1. Introduction

Coronary artery disease (CAD) is currently the primary cause
of death among American males and females (Rosamond et al.,
2008) and one of the main causes of death in the world (WHO,
2008). The gold standard for the assessment of CAD is conven-
tional coronary angiography (CCA) (Cademartiri et al., 2007).
However, because of its invasive nature, CCA has a low, but
non-negligible, risk of procedure related complications (Zanzonic-
o et al., 2006). Moreover, it only provides information on the cor-
onary lumen.

Computed Tomography Angiography (CTA) is a potential alter-
native for CCA (Mowatt et al., 2008). CTA is a non-invasive tech-
nique that allows, next to the assessment of the coronary lumen,
the evaluation of the presence, extent, and type (non-calcified or
calcified) of coronary plaque (Leber et al., 2006). Such non-inva-
sive, comprehensive plaque assessment may be relevant for
improving risk stratification when combined with current risk
measures: the severity of stenosis and the amount of calcium
(Cademartiri et al., 2007). A disadvantage of CTA is that the current
imaging protocols are associated with a higher radiation dose
exposure than CCA (Einstein et al., 2007).

Several techniques to visualize CTA data are used in clinical
practice for the diagnosis of CAD. Besides evaluating the axial
slices, other visualization techniques such as maximum intensity
projections (MIP), volume rendering techniques, multi-planar
reformatting (MPR), and curved planar reformatting (CPR) are used
to review CTA data (Cademartiri et al., 2007). CPR and MPR images
of coronary arteries are based on the CTA image and a central lu-
men line (for convenience referred to as centerline) through the
vessel of interest (Kanitsar et al., 2002). These reformatted images
can also be used during procedure planning for, among other
things, planning the type of intervention and size of stents (Hecht,
2008). Efficiently obtaining a reliable centerline is therefore rele-
vant in clinical practice. Furthermore, centerlines can serve as a
starting point for lumen segmentation, stenosis grading, and pla-
que quantification (Marquering et al., 2005; Wesarg et al., 2006;
Khan et al., 2006).

This paper introduces a framework for the evaluation of coro-
nary artery centerline extraction methods. The framework encom-
passes a publicly available database of coronary CTA data with
corresponding reference standard centerlines derived from manu-
ally annotated centerlines, a set of well-defined evaluation mea-
sures, and an online tool for the comparison of coronary CTA
centerline extraction techniques. We demonstrate the potential
of the proposed framework by comparing 13 coronary artery cen-
terline extraction methods, implemented by different authors as
part of a segmentation challenge workshop at the Medical Image
Computing and Computer-Assisted Intervention (MICCAI) confer-
ence (Metz et al., 2008).

In the next two sections we will respectively describe our moti-
vation of the study presented in this paper and discuss previous
work on the evaluation of coronary segmentation and centerline
extraction techniques. The evaluation framework will then be out-
lined by discussing the data, reference standard, evaluation mea-
sures, evaluation categories, and web-based framework. The
paper will be concluded by presenting the comparative results of
the 13 centerline extraction techniques, a discussion of these re-
sults, and a conclusion about the work presented.
2. Motivation

The value of a standardized evaluation methodology and a pub-
licly available image repository has been shown in a number of
medical image analysis and general computer vision applications,
for example in the Retrospective Image Registration Evaluation
Project (West et al., 1997), the Digital Retinal Images for Vessel
Extraction database (Staal et al., 2004), the Lung Image Database
project (Armato et al., 2004), the Middlebury Stereo Vision evalua-
tion (Scharstein and Szeliski, 2002), the Range Image Segmentation
Comparison (Hoover et al., 1996), the Berkeley Segmentation Data-
set and Benchmark (Martin et al., 2001), and a workshop and on-
line evaluation framework for liver and caudate segmentation
(van Ginneken et al., 2007).

Similarly, standardized evaluation and comparison of coronary
artery centerline extraction algorithms has scientific and practical
benefits. A benchmark of state-of-the-art techniques is a prerequi-
site for continued progress in this field: it shows which of the pop-
ular methods are successful and researchers can quickly apprehend
where methods can be improved.

It is also advantageous for the comparison of new methods with
the state-of-the-art. Without a publicly available evaluation frame-
work, such comparisons are difficult to perform: the software or
source code of existing techniques is often not available, articles
may not give enough information for re-implementation, and if en-
ough information is provided, re-implementation of multiple algo-
rithms is a laborious task.

The understanding of algorithm performance that results from
the standardized evaluation also has practical benefits. It may,
for example, steer the clinical implementation and utilization, as
a system architect can use objective measures to choose the best
algorithm for a specific task.

Furthermore, the evaluation could show under which condi-
tions a particular technique is likely to succeed or fail, it may there-
fore be used to improve the acquisition methodology to better
match the post-processing techniques.

It is therefore our goal to design and implement a standardized
methodology for the evaluation and comparison of coronary artery
centerline extraction algorithms and publish a cardiac CTA image
repository with associated reference standard. To this end, we will
discuss the following tasks below:

� Collection of a representative set of cardiac CTA datasets, with
a manually annotated reference standard, available for the
entire medical imaging community.

� Development of an appropriate set of evaluation measures
for the evaluation of coronary artery centerline extraction
methods.

� Development of an accessible framework for easy comparison
of different algorithms.

� Application of this framework to compare several coronary
CTA centerline extraction techniques.

� Public dissemination of the results of the evaluation.

3. Previous work

Approximately 30 papers have appeared that present and/or
evaluate (semi-)automatic techniques for the segmentation or cen-
terline extraction of human coronary arteries in cardiac CTA data-
sets. The proposed algorithms have been evaluated by a wide
variety of evaluation methodologies.

A large number of methods have been evaluated qualitatively
(Bartz and Lakare, 2005; Bouraoui et al., 2008; Carrillo et al.,
2007; Florin et al., 2004, 2006; Hennemuth et al., 2005; Lavi
et al., 2004; Lorenz et al., 2003; Luengo-Oroz et al., 2007; Nain
et al., 2004; Renard and Yang, 2008; Schaap et al., 2007; Szymczak
et al., 2006; Wang et al., 2007; Wesarg and Firle, 2004; Yang et al.,
2005, 2006). In these articles detection, extraction, or segmenta-
tion correctness have been visually determined. An overview of
these methods is given in Table 1.



Table 1
An overview of CTA coronary artery segmentation and centerline extraction algorithms that were qualitatively evaluated. The column ‘Time’ indicates if information is provided
about the computational time of the algorithm.

Article Patients/
observers

Vessels Evaluation details Time

Bartz and Lakare (2005) 1/1 Complete tree Extraction was judged to be satisfactory Yes
Bouraoui et al. (2008) 40/1 Complete tree Extraction was scored satisfactory or not No
Carrillo et al. (2007) 12/1 Complete tree Extraction was scored with the number of extracted small branches Yes
Florin et al. (2004) 1/1 Complete tree Extraction was judged to be satisfactory Yes
Florin et al. (2006) 34/1 6 vessels Scored with the number of correct extractions No
Hennemuth et al. (2005) 61/1 RCA, LAD Scored with the number of extracted vessels and categorized on the dataset

difficulty
Yes

Lavi et al. (2004) 34/1 3 Vessels Scored qualitatively with scores from 1 to 5 and categorized on the image
quality

Yes

Lorenz et al. (2003) 3/1 Complete tree Results were visually analyzed and criticized Yes
Luengo-Oroz et al. (2007) 9/1 LAD & LCX Scored with the number of correct vessel extractions. The results are

categorized on the image quality and amount of disease
Yes

Nain et al. (2004) 2/1 Left tree Results were visually analyzed and criticized No
Renard and Yang (2008) 2/1 Left tree Extraction was judged to be satisfactory No
Schaap et al. (2007) 2/1 RCA Extraction was judged to be satisfactory No
Szymczak et al. (2006) 5/1 Complete tree Results were visually analyzed and criticized Yes
Wang et al. (2007) 33/1 Complete tree Scored with the number of correct extractions Yes
Wesarg and Firle (2004) 12/1 Complete tree Scored with the number of correct extractions Yes
Yang et al. (2005) 2/1 Left tree Extraction was judged to be satisfactory Yes
Yang et al. (2006) 2/1 4 Vessels Scored satisfactory or not. Evaluated in 10 ECG gated reconstructions per

patient
Yes
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Other articles include a quantitative evaluation of the
performance of the proposed methods (Bülow et al., 2004; Busch
et al., 2007; Dewey et al., 2004; Larralde et al., 2003;
Lesage et al., 2008; Li and Yezzi, 2007; Khan et al., 2006;
Marquering et al., 2005; Metz et al., 2007; Olabarriaga et al.,
2003; Wesarg et al., 2006; Yang et al., 2007). See Table 2 for an
overview of these methods.

None of the abovementioned algorithms has been compared to
another and only three methods were quantitatively evaluated on
both the extraction ability (i.e. how much of the real centerline can
be extracted by the method?) and the accuracy (i.e. how accurately
can the method locate the centerline or wall of the vessel?). More-
over, only one method was evaluated using annotations from more
than one observer (Metz et al., 2007).

Four methods were assessed on their ability to quantify
clinically relevant measures, such as the degree of stenosis
and the number of calcium spots in a vessel (Yang et al., 2005;
Dewey et al., 2004; Khan et al., 2006; Wesarg et al., 2006). These
Table 2
An overview of the quantitatively evaluated CTA coronary artery segmentation and centerl
(semi-)automatically extracted centerline and the manually annotated centerline. The col
algorithm. ‘Method eval.’ indicates that the article evaluates an existing technique and th

Article Patients/
observers

Vessels Used evaluation measur

Bülow et al. (2004) 9/1 3–5 Vessels Overlap: Percentage refe
Busch et al. (2007) 23/2 Complete tree Stenoses grading: Comp
Dewey et al. (2004) 35/1 3 Vessels Length difference: Diffe

Stenoses grading: Comp
Khan et al. (2006) 50/1 3 Vessels Stenoses grading: Comp
Larralde et al. (2003) 6/1 Complete tree Stenoses grading and c
Lesage et al. (2008) 19/1 3 Vessels Same as Metz et al. (200
Li and Yezzi (2007) 5/1 Complete tree Segmentation: Voxel-w
Marquering et al. (2005) 1/1 LAD Accuracy: Distance from
Metz et al. (2007) 6/3 3 Vessels Overlap: Segments on th

positives, false positives
similarity indices
Accuracy: Average dista

Olabarriaga et al. (2003) 5/1 3 Vessels Accuracy: Mean distanc
Wesarg et al. (2006) 10/1 3 Vessels Calcium detection: Perf
Yang et al. (2007) 2/1 3 Vessels Overlap: Percentage of t

Segmentation: Average
clinically oriented evaluation approaches are very appropriate for
assessing the performance of a method for a possible clinical
application, but the performance of these methods for other
applications, such as describing the geometry of coronary arteries
(Lorenz and von Berg, 2006; Zhu et al., 2008), cannot easily be
judged.

Two of the articles (Dewey et al., 2004; Busch et al., 2007)
evaluate a commercially available system (respectively Vitrea 2,
Version 3.3, Vital Images and Syngo Circulation, Siemens). Several
other commercial centerline extraction and stenosis grading pack-
ages have been introduced in the past years, but we are not aware
of any scientific publication containing a clinical evaluation of
these packages.

4. Evaluation framework

In this section we will describe our framework for the evalua-
tion of coronary CTA centerline extraction techniques.
ine extraction algorithms. With ‘centerline’ and ‘reference’ we respectively denote the
umn ‘Time’ indicates if information is provided about the computational time of the
at no new technique has been proposed.

es and details Time Method eval.

rence points having a centerline point within 2 mm No
ared to human performance with CCA as ground truth No �
rence between reference length and centerline length Yes �
ared to human performance with CCA as ground truth
ared to human performance with CCA as ground truth No �

alcium detection: Compared to human performance Yes
7) Yes
ise similarity indices No

centerline to reference standard Yes
e reference standard and centerline are marked as true
or false negatives. This scoring was used to construct

No

nce to the reference standard for true positive sections
e from the centerline to the reference No
ormance compared to human performance No �
he reference standard detected No
distance to contours
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4.1. Cardiac CTA data

The CTA data was acquired in the Erasmus MC, University Med-
ical Center Rotterdam, The Netherlands. Thirty-two datasets were
randomly selected from a series of patients who underwent a car-
diac CTA examination between June 2005 and June 2006. Twenty
datasets were acquired with a 64-slice CT scanner and 12 datasets
with a dual-source CT scanner (Sensation 64 and Somatom Defini-
tion, Siemens Medical Solutions, Forchheim, Germany).

A tube voltage of 120 kV was used for both scanners. All data-
sets were acquired with ECG-pulsing (Weustink et al., 2008). The
maximum current (625 mA for the dual-source scanner and
900 mA for the 64-slice scanner) was used in the window from
25% to 70% of the R–R interval and outside this window the tube
current was reduced to 20% of the maximum current.

Both scanners operated with a detector width of 0.6 mm. The
image data was acquired with a table feed of 3.8 mm per rotation
(64-slice datasets) or 3.8 mm to 10 mm, individually adapted to
the patient’s heart rate (dual-source datasets).

Diastolic reconstructions were used, with reconstruction inter-
vals varying from 250 ms to 400 ms before the R-peak. Three data-
sets were reconstructed using a sharp (B46f) kernel, all others were
reconstructed using a medium-to-smooth (B30f) kernel. The mean
voxel size of the datasets is 0:32� 0:32� 0:4 mm3.

4.1.1. Training and test datasets
To ensure representative training and test sets, the image qual-

ity of and presence of calcium in each dataset was visually assessed
by a radiologist with three years experience in cardiac CT.

Image quality was scored as poor (defined as presence of image-
degrading artifacts and evaluation only possible with low confi-
dence), moderate (presence of artifacts but evaluation possible
with moderate confidence) or good (absence of any image-degrad-
ing artifacts related to motion and noise). Presence of calcium was
scored as absent, modest or severe. Based on these scorings the
data was distributed equally over a group of 8 and a group of 24
datasets. The patient and scan parameters were assessed by the
radiologist to be representative for clinical practice. Tables 3 and
4 describe the distribution of respectively the image quality and
calcium scores in the datasets.

The first group of 8 datasets can be used for training and the
other 24 datasets are used for performance assessment of the algo-
rithms. All the 32 cardiac CTA datasets and the corresponding ref-
erence standard centerlines for the training data are made publicly
available.

4.2. Reference standard

In this work we define the centerline of a coronary artery in a
CTA scan as the curve that passes through the center of gravity
Table 3
Image quality of the training and test datasets.

Poor Moderate Good Total

Training 2 3 3 8
Testing 4 8 12 24

Table 4
Presence of calcium in the training and test datasets.

Low Moderate Severe Total

Training 3 4 1 8
Testing 9 12 3 24
of the lumen in each cross-section. We define the start point of a
centerline as the center of the coronary ostium (i.e. the point
where the coronary artery originates from the aorta), and the
end point as the most distal point where the artery is still distin-
guishable from the background. The centerline is smoothly inter-
polated if the artery is partly indistinguishable from the
background, e.g. in case of a total occlusion or imaging artifacts.

This definition was used by three trained observers to annotate
centerlines in the selected cardiac CTA datasets. Four vessels were
selected for annotation by one of the observers in all 32 datasets,
yielding 32� 4 ¼ 128 selected vessels. The first three vessels were
always the right coronary artery (RCA), left anterior descending ar-
tery (LAD), and left circumflex artery (LCX). The fourth vessel was
selected from the large side-branches of these main coronary arter-
ies and the selection was as follows: first diagonal branch (14�),
second diagonal branch (6�), optional diagonal coronary artery
(6�), first obtuse marginal branch (2�), posterior descending ar-
tery (2�), and acute marginal artery (2�). This observer annotated
for all the four selected vessels points close to the selected vessels.
These points (denoted with ’point A’) unambiguously define the
vessels, i.e. the vessel of interest is the vessel closest to the point
and no side-branches can be observed after this point.

After the annotation of these 128 points, the three observers
used these points to independently annotate the centerlines of
the same four vessels in the 32 datasets. The observers also speci-
fied the radius of the lumen at least every 5 mm, where the radius
was chosen such that the enclosed area of the annotated circle
matched the area of the lumen. The radius was specified after
the complete central lumen line was annotated (see Fig. 4).

The paths of the three observers were combined to one center-
line per vessel using a Mean Shift algorithm for open curves: The
centerlines are averaged while taking into account the possibly
spatially varying accuracy of the observers by iteratively estimat-
ing the reference standard and the accuracy of the observers. Each
point of the resulting reference standard is a weighted average of
the neighboring observer centerline points, with weights corre-
sponding to the locally estimated accuracy of the observers (Wal-
sum et al., 2008).

After creating this first weighted average, a consensus center-
line was created with the following procedure: The observers com-
pared their centerlines with the average centerline to detect and
subsequently correct any possible annotation errors. This compar-
ison was performed utilizing curved planar reformatted images
displaying the annotated centerline color-coded with the distance
to the reference standard and vice-versa (see Fig. 2). The three
observers needed in total approximately 300 h for the complete
annotation and correction process.

After the correction step the centerlines were used to create the
reference standard, using the same Mean Shift algorithm. Note that
the uncorrected centerlines were used to calculate the inter-obser-
ver variability and agreement measures (see Section 4.5).

The points where for the first time the centerlines of two
observers lie within the radius of the reference standard when tra-
versing over this centerline from respectively the start to the end
or vice-versa were selected as the start- and end point of the refer-
ence standard. Because the observers used the abovementioned
centerline definition it is assumed that the resulting start points
of the reference standard centerlines lie within the coronary
ostium.

The corrected centerlines contained on average 44 points and
the average distance between two successive annotated points
was 3.1 mm. The 128 resulting reference standard centerlines were
on average 138 mm (std. dev. 41 mm, min. 34 mm, max. 249 mm)
long.

The radius of the reference standard was based on the radii
annotated by the observers and a point-to-point correspondence



Fig. 1. An example of the data with corresponding reference standard. Top-left: axial view of data. Top-right: coronal view. Bottom-left: sagittal view. Bottom-right: a 3D
rendering of the reference standard.

Fig. 2. An example of one of the color-coded curved planar reformatted images
used to detect possible annotation errors.

Fig. 3. An illustrative example of the Mean Shift algorithm showing the annotations
of the three observers as a thin black line, the resulting average as a thick black line,
and the correspondence that are used during the last Mean Shift iteration in light-
gray.

Fig. 4. An example of the annotations of the three observers in black and the
resulting reference standard in white. The crosses indicate the centers and the
circles indicate the radii.
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between the reference standard and the three annotated center-
lines. The reference standard centerline and the corrected observer
centerlines were first resampled equidistantly using a sampling
distance of 0.03 mm. Dijkstra’s graph searching algorithm was then
used to associate each point on the reference standard with one or
more points on each annotated centerline and vice-versa. Using
this correspondence, the radius at each point of the reference stan-
dard was determined by averaging the radius of all the connected
points on the three annotated centerlines (see also Figs. 3 and 4).
An example of annotated data with corresponding reference stan-
dard is shown in Fig. 1. Details about the connectivity algorithm
are given in Section 4.3.

4.3. Correspondence between centerlines

All the evaluation measures are based on a point-to-point
correspondence between the reference standard and the evaluated
centerline. This section explains the mechanism for determining
this correspondence.
Before the correspondence is determined the centerlines are
first sampled equidistantly using a sampling distance of
0.03 mm, enabling an accurate comparison. The evaluated center-
line is then clipped with a disc that is positioned at the start of
the reference standard centerline (i.e. in or very close to the coro-
nary ostium). The centerlines are clipped because we define the
start point of a coronary centerline at the coronary ostium and
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because for a variety of applications the centerline can start some-
where in the aorta. The radius of the disc is twice the annotated
vessel radius and the disc normal is the tangential direction at
the beginning of the reference standard centerline. Every point be-
fore the first intersection of a centerline and this disc is not taken
into account during evaluation.

The correspondence is then determined by finding the mini-
mum of the sum of the Euclidean lengths of all point–point con-
nections that are connecting the two centerlines over all valid
correspondences. A valid correspondence for centerline I, consist-
ing of an ordered set of points pi (0 6 i < n, p0 is the most proximal
point of the centerline), and centerline II, consisting of an ordered
set of points qj (0 6 j < m, q0 is the most proximal point of the
centerline), is defined as the ordered set of connections
C ¼ fc0; . . . ; cnþm�1g, where ck is a tuple ½pa; qb� that represents a
connection from pa to qb, which satisfies the following conditions:

� The first connection c0 connects the start points: c0 ¼ ½p0; q0�.
� The last connection cnþm�1 connects the end points: cnþm�1 ¼
½pn�1; qm�1�.

� If connection ck ¼ ½pa; qb� then connection ckþ1 equals either
½paþ1; qb� or ½pa; qbþ1�.

These conditions guarantee that each point of centerline I is
connected to at least one point of centerline II and vice-versa.

Dijkstra’s graph search algorithm is used on a matrix with con-
nection lengths to determine the minimal Euclidean length corre-
spondence. See Fig. 3 for an example of a resulting correspondence.

4.4. Evaluation measures

Coronary artery centerline extraction may be used for different
applications, and thus different evaluation measures may apply.
We account for this by employing a number of evaluation mea-
sures. With these measures we discern between extraction capa-
bility and extraction accuracy. Accuracy can only be evaluated
when extraction succeeded; in case of a tracking failure the magni-
tude of the distance to the reference centerline is no longer rele-
vant and should not be included in the accuracy measure.

4.4.1. Definition of true positive, false positive and false negative points
All the evaluation measures are based on a labeling of points on

the centerlines as true positive, false negative or false positive. This
labeling, in its turn, is based on a correspondence between the
points of the reference standard centerline and the points of the
centerline to be evaluated. The correspondence is determined with
the algorithm explained in Section 4.3.
Fig. 5. An illustration of the terms used in the evaluation measures (see Section 4.4). The
figure are assigned to points on the centerline found by the evaluated method. The terms
A point of the reference standard is marked as true positive
TPRov if the distance to at least one of the connected points on
the evaluated centerline is less than the annotated radius and false
negative FNov otherwise.

A point on the centerline to be evaluated is marked as true po-
sitive TPMov if there is at least one connected point on the refer-
ence standard at a distance less than the radius defined at that
reference point, and it is marked as false positive FPov otherwise.
With k:k we denote the cardinality of a set of points, e.g. kTPRovk
denotes the number of reference points marked true positive. See
also Fig. 5 for a schematic explanation of these terms and the terms
mentioned in the next section.

4.4.2. Overlap measures
Three different overlap measures are used in our evaluation

framework.

Overlap (OV) represents the ability to track the complete vessel
annotated by the human observers and this measure is similar
to the well-known Dice coefficient. It is defined as:

OV ¼ kTPMovk þ kTPRovk
kTPMovk þ kTPRovk þ kFNovk þ kFPovk

:

Overlap until first error (OF) determines how much of a coro-
nary artery has been extracted before making an error. This
measure can for example be of interest for image guided
intra-vascular interventions in which guide wires are advanced
based on pre-operatively extracted coronary geometry (Ram-
charitar et al., 2009). The measure is defined as the ratio of
the number of true positive points on the reference before the
first error (TPRof ) and the total number of reference points
(TPRof þ FNof ):

OF ¼ kTPRofk
kTPRofk þ kFNofk

:

The first error is defined as the first FNov point when traversing
from the start of the reference standard to its end while ignoring
false negative points in the first 5 mm of the reference standard.
Errors in the first 5 mm are not taken into account because of the
strictness of this measure and the fact that the beginning of a
coronary artery centerline is sometimes difficult to define and
for some applications not of critical importance. The threshold
of five millimeters is equal to the average diameter annotated
at the beginning of all the reference standard centerlines.
Overlap with the clinically relevant part of the vessel (OT)
gives an indication of how well the method is able to track
the section of the vessel that is assumed to be clinically
reference standard with annotated radius is depicted in gray. The terms on top of the
below the reference standard line are assigned to points on the reference standard.
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relevant. Vessel segments with a diameter of 1.5 mm or larger,
or vessel segments that are distally from segments with a diam-
eter of 1.5 mm or larger are assumed to be clinically relevant
(Leschka et al., 2005; Ropers et al., 2006).

The point closest to the end of the reference standard with a ra-
dius larger than or equal to 0.75 mm is determined. Only points on
the reference standard between this point and the start of the ref-
erence standard and points on the (semi-)automatic centerline
connected to these reference points are used when defining the
true positives (TPMot and TPRot), false negatives (FNot) and false
positives (FPot). The OT measure is calculated as follows:

OT ¼ kTPMotk þ kTPRotk
kTPMotk þ kTPRotk þ kFNotk þ kFPotk

:

4.4.3. Accuracy measure
In order to discern between tracking ability and tracking accu-

racy we only evaluate the accuracy within sections where tracking
succeeded.

Average inside (AI) is the average distance of all the connec-
tions between the reference standard and the automatic center-
line given that the connections have a length smaller than the
annotated radius at the connected reference point. The measure
represents the accuracy of centerline extraction, provided that
the evaluated centerline is inside the vessel.
4.5. Observer performance and scores

Each of the evaluation measures is related to the performance of
the observers by a relative score. A score of 100 points implies that
the result of the method is perfect, 50 points implies that the perfor-
mance of the method is similar to the performance of the observers,
and 0 points implies a complete failure. This section explains how
the observer performance is quantified for each of the four evalua-
tion measures and how scores are created from the evaluation mea-
sures by relating the measures to the observer performance.

4.5.1. Overlap measures
The inter-observer agreement for the overlap measures is calcu-

lated by comparing the uncorrected paths with the reference stan-
dard. The three overlap measures (OV, OF, OT) were calculated for
each uncorrected path and the true positives, false positives and
false negatives for each observer were combined into inter-obser-
ver agreement measures per centerline as follows:

OVag ¼
P
ðkTPRi

ovk þ kTPMi
ovkÞP

ðkTPRi
ovk þ kTPMi

ak þ kFPi
ovk þ kFNi

ovkÞ
;

OFag ¼
P
kTPRi

ofkP
ðkTPRi

ofk þ kFNi
ofkÞ

;

Fig. 6. (a) shows an example of how overlap measures are transformed i
OTag ¼
P
ðkTPRi

otk þ kTPMi
otkÞP

ðkTPRi
otk þ kTPMi

otk þ kFPi
otk þ kFNi

otkÞ
;

where i ¼ f0;1;2g indicates the observer.
After calculating the inter-observer agreement measures, the

performance of the method is scored. For methods that perform
better than the observers the OV, OF, and OT measures are con-
verted to scores by linearly interpolating between 100 and 50
points, respectively corresponding to an overlap of 1.0 and an over-
lap similar to the inter-observer agreement value. If the method
performs worse than the inter-observer agreement the score is ob-
tained by linearly interpolating between 50 and 0 points, with 0
points corresponding to an overlap of 0.0:

ScoreO ¼
ðOm=OagÞ � 50; Om 6 Oag;

50þ 50 � Om�Oag
1�Oag

; Om > Oag;

(

where Om and Oag define the OV, OF, or OT performance of respec-
tively the method and the observer. An example of this conversion
is shown in Fig. 6a.

4.5.2. Accuracy measures
The inter-observer variability for the accuracy measure AI is de-

fined at every point of the reference standard as the expected error
that an observer locally makes while annotating the centerline. It is
determined at each point as the root mean squared distance between
the uncorrected annotated centerline and the reference standard:

AioðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

X
ðdðpðxÞ;piÞÞ

2
q

;

where n ¼ 3 (three observers), and dðpðxÞ; piÞ is the average distance
from point pðxÞ on the reference standard to the connected points
on the centerline annotated by observer i.

The extraction accuracy of the method is related per connec-
tion to the inter-observer variability. A connection is worth 100
points if the distance to the reference standard is 0 mm and it
is worth 50 points if the distance is equal to the inter-observer
variability at that point. Methods that perform worse than the in-
ter-observer variability get a decreasing amount of points if the
distance increases. They are rewarded per connection 50 points
times the fraction of the inter-observer variability and the meth-
od accuracy:

ScoreAðxÞ ¼
100� 50ðAmðxÞ=AioðxÞÞ; AmðxÞ 6 AioðxÞ;
ðAioðxÞ=AmðxÞÞ � 50; AmðxÞ > AioðxÞ;

�

where AmðxÞ and AioðxÞ define the distance from the method center-
line to the reference centerline and the inter-observer accuracy var-
iability at point x. An example of this conversion is shown in Fig. 6b.

The average score over all connections that connect TPR and
TPM points yields the AI observer performance score. Because
the average accuracy score is a non-linear combination of all the
nto scores. (b) Shows this transformation for the accuracy measures.
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distances, it can happen that a method has a lower average accu-
racy in millimeters and a higher score in points than another meth-
od, or vice-versa.

Note that because the reference standard is constructed from
the observer centerlines, the reference standard is slightly biased
towards the observer centerlines, and thus a method that performs
similar as an observer according to the scores probably performs
slightly better. Although more sophisticated methods for calculat-
ing the observer performance and scores would have been possi-
ble, we decided because of simplicity and understandability for
the approach explained above.

4.6. Ranking the algorithms

In order to rank the different coronary artery centerline extrac-
tion algorithms the evaluation measures have to be combined. We
do this by ranking the resulting scores of all the methods for each
measure and vessel. Each method receives for each vessel and
measure a rank ranging from 1 (best) to the number of participat-
ing methods (worst). A user of the evaluation framework can man-
ually mark a vessel as failed. In that case the method will be ranked
last for the flagged vessel and the absolute measures and scores for
this vessel will not be taken into account in any of the statistics.

The tracking capability of a method is defined as the average of
all the 3 ðoverlap measuresÞ � 96 ðvesselsÞ ¼ 288 related ranks.
The average of all the 96 accuracy measure ranks defines the track-
ing accuracy of each method. The average overlap rank and the
accuracy rank are averaged to obtain the overall quality of each
of the methods and the method with the best (i.e. lowest) average
rank is assumed to be the best.
5. Algorithm categories

We discern three different categories of coronary artery center-
line extraction algorithms: automatic extraction methods, meth-
ods with minimal user-interaction and interactive extraction
methods.

5.1. Category 1: automatic extraction

Automatic extraction methods find the centerlines of coronary
arteries without user-interaction. In order to evaluate the perfor-
mance of automatic coronary artery centerline extraction, two
points per vessel are provided to extract the coronary artery of
interest:

� Point A: a point inside the distal part of the vessel; this point
unambiguously defines the vessel to be tracked.

� Point B: a point approximately 3 cm (measured along the cen-
terline) distal of the start point of the centerline.

Point A should be used for selecting the appropriate centerline.
If the automatic extraction result does not contain centerlines near
point A, point B can be used. Point A and B are only meant for
selecting the right centerline and it is not allowed to use them as
input for the extraction algorithm.

5.2. Category 2: extraction with minimal user-interaction

Extraction methods with minimal user-interaction are allowed
to use one point per vessel as input for the algorithm. This can
be either one of the following points:

� Point A or B, as defined above.
� Point S: the start point of the centerline.
� Point E: the end point of the centerline.
� Point U: any manually defined point.

Points A, B, S and E are provided with the data. Furthermore, in
case the method obtains a vessel tree from the initial point, point A
or B may be used after the centerline determination to select the
appropriate centerline.

5.3. Category 3: interactive extraction

All methods that require more user-interaction than one point
per vessel as input are part of category 3. Methods can use e.g. both
points S and E from category 2, a series of manually clicked posi-
tions, or one point and a user-defined threshold.

6. Web-based evaluation framework

The proposed framework for the evaluation of CTA coronary ar-
tery centerline extraction algorithms is made publicly available
through a web-based interface (http://coronary.bigr.nl). The 32
cardiac CTA datasets, and the corresponding reference standard
centerlines for the training data, are available for download for
anyone who wishes to validate their algorithm. Extracted center-
lines can be submitted and the obtained results can be used in a
publication. Furthermore, the website provides several tools to in-
spect the results and compare the algorithms.

7. MICCAI 2008 workshop

This study started with the workshop ’3D Segmentation in the
Clinic: A Grand Challenge II’ at the 11th International Conference
on Medical Image Computing and Computer-Assisted Intervention
(MICCAI) in September 2008 (Metz et al., 2008). Approximately
100 authors of related publications, and the major medical imaging
companies, were invited to submit their results on the 24 test data-
sets. Fifty-three groups showed their interest by registering for the
challenge, 36 teams downloaded the training and test data, and 13
teams submitted results: five fully-automatic methods, three min-
imally interactive methods, and five interactive methods. A brief
description of the 13 methods is given below.

During the workshop we used two additional measures: the
average distance of all the connections (AD) and the average dis-
tance of all the connections to the clinical relevant part of the ves-
sel (AT). In retrospect we found that these accuracy measures were
too much biased towards methods with high overlap and therefore
we do not use them anymore in the evaluation framework. This re-
sulted in a slightly different ranking than the ranking published
during the MICCAI workshop (Metz et al., 2008). Please note that
the two measures that were removed are still calculated for all
the evaluated methods and they can be inspected using the web-
based interface.

7.1. Fully-automatic methods

� AutoCoronaryTree (Tek et al., 2008; Gulsun and Tek, 2008): The
full centerline tree of the coronary arteries is extracted via a
multi-scale medialness-based vessel tree extraction algorithm
which starts a tracking process from the ostia locations until
all coronary branches are reached.

� CocomoBeach (Kitslaar et al., 2008): This method starts by seg-
menting the ascending aorta and the heart. Candidate coronary
regions are obtained using connected component analysis and
the masking of large structures. Using these components a
region growing scheme, starting in the aorta, segments the com-
plete tree. Finally, centerlines within the pre-segmented tree are
obtained using the WaveProp (Marquering et al., 2005) method.

http://coronary.bigr.nl
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� DepthFirstModelFit (Zambal et al., 2008): Coronary artery cen-
terline extraction is accomplished by fitting models of shape
and appearance. A large-scale model of the complete heart in
combination with symmetry features is used for detecting coro-
nary artery seeds. To fully extract the coronary artery tree, two
small-scale cylinder-like models are matched via depth-first
search.

� GVFTube’n’Linkage (Bauer and Bischof, 2008): This method uses
a Gradient Vector Flow (Xu et al., 1998) based tube detection
procedure for identification of vessels surrounded by arbitrary
tissues (Bauer and Bischof, 2008a,b). Vessel centerlines are
extracted using ridge-traversal and linked to form complete tree
structures. For selection of coronary arteries gray value informa-
tion and centerline length are used.

� VirtualContrast (Wang and Smedby, 2008): This method seg-
ments the coronary arteries based on the connectivity of the
contrast agent in the vessel lumen, using a competing fuzzy con-
nectedness tree algorithm (Wang et al., 2007). Automatic rib
cage removal and ascending aorta tracing are included to initial-
ize the segmentation. Centerline extraction is based on the skel-
etonization of the tree structure.
7.2. Semi-automatic methods

� AxialSymmetry (Dikici et al., 2008): This method finds a mini-
mum cost path connecting the aorta to a user supplied distal
endpoint. Firstly, the aorta surface is extracted. Then, a two-
stage Hough-like election scheme detects the high axial symme-
try points in the image. Via these, a sparse graph is constructed.
This graph is used to determine the optimal path connecting the
user supplied seed point and the aorta.

� CoronaryTreeMorphoRec (Castro et al., 2008): This method gen-
erates the coronary tree iteratively from point S. Pre-processing
steps are performed in order to segment the aorta, remove
unwanted structures in the background and detect calcium.
Centerline points are chosen in each iteration depending on
the previous vessel direction and a local gray scale morphologi-
cal 3D reconstruction.

� KnowledgeBasedMinPath (Krissian et al., 2008): For each voxel,
the probability of belonging to a coronary vessel is estimated
from a feature space and a vesselness measure is used to obtain
a cost function. The vessel starting point is obtained automati-
cally, while the end point is provided by the user. Finally, the
centerline is obtained as the minimal cost path between both
points.
7.3. Interactive methods

� 3DInteractiveTrack (Zhang et al., 2008): This method calculates
a local cost for each voxel based on eigenvalue analysis of the
Hessian matrix. When a user selects a point, the method calcu-
lates the cost linking this point to all other voxels. If a user then
moves to any voxel, the path with minimum overall cost is dis-
played. The user is able to inspect and modify the tracking to
improve performance.

� ElasticModel (Hoyos et al., 2008). After manual selection of a
background-intensity threshold and one point per vessel,
centerline points are added by prediction and refinement.
Prediction uses the local vessel orientation, estimated by
eigen-analysis of the inertia matrix. Refinement uses centroid
information and is restricted by continuity and smoothness
constraints of the model (Hernández Hoyos et al., 2005).

� MHT (Friman et al., 2008): Vessel branches are in this method
found using a Multiple Hypothesis Tracking (MHT) framework.
A feature of the MHT framework is that it can traverse difficult
passages by evaluating several hypothetical paths. A minimal
path algorithm based on Fast Marching is used to bridge gaps
where the MHT terminates prematurely.

� Tracer (Szymczak, 2008): This method finds the set of core
points (centers of intensity plateaus in 2D slices) that concen-
trate near vessel centerlines. A weighted graph is formed by con-
necting nearby core points. Low weights are given to edges of
the graph that are likely to follow a vessel. The output is the
shortest path connecting point S and point E.

� TwoPointMinCost (Metz et al., 2008): This method finds a mini-
mum cost path between point S and point E using Dijkstra’s algo-
rithm. The cost to travel through a voxel is based on Gaussian
error functions of the image intensity and a Hessian-based vess-
elness measure (Frangi et al., 1998), calculated on a single scale.
8. Results

The results of the 13 methods are shown in Table 5–7. Table 6
shows the results for the three overlap measures, Table 7 shows
the accuracy measures, and Table 5 shows the final ranking, the
approximate processing time, and amount of user-interaction that
is required to extract the four vessels. In total 10 extractions (<1%)
where marked as failed (see Section 4.6).

We believe that the final ranking in Table 5 gives a good indica-
tion of the relative performance of the different methods, but one
should be careful to judge the methods on their final rank. A meth-
od ranked first does not have to be the method of choice for a spe-
cific application. For example, if a completely automatic
approximate extraction of the arteries is needed one could choose
GVFTube’n’Linkage (Bauer and Bischof, 2008) because it has the
highest overlap with the reference standard (best OV result). But
if one wishes to have a more accurate automatic extraction of
the proximal part of the coronaries the results point you toward
DepthFirstModelFit (Zambal et al., 2008) because this method is
highly ranked in the OF measure and is ranked first in the auto-
matic methods category with the AI measure.

The results show that on average the interactive methods per-
form better on the overlap measures than the automatic methods
(average rank of 6.30 vs. 7.09) and vice-versa for the accuracy mea-
sures (8.00 vs. 6.25). The better overlap performance of the interac-
tive methods can possibly be explained by the fact that the
interactive methods use the start- and/or end point of the vessel.
Moreover, in two cases (MHT (Friman et al., 2008) and 3DInterac-
tiveTrack (Zhang et al., 2008)) additional manually annotated points
are used, which can help the method to bridge difficult regions.

When vessels are correctly extracted, the majority of the meth-
ods are accurate to within the image voxel size (AI < 0.4 mm). The
two methods that use a tubular shape model (MHT (Friman et al.,
2008) and DepthFirstModelFit (Zambal et al., 2008)) have the high-
est accuracy, followed by the multi-scale medialness-based Auto-
CoronaryTree (Tek et al., 2008; Gulsun and Tek, 2008) method
and the CocomoBeach (Kitslaar et al., 2008) method.

Overall it can be observed that some of the methods are highly
accurate and some have great extraction capability (i.e. high over-
lap). Combining a fully-automatic method with high overlap (e.g.
GVFTube’n’Linkage (Bauer and Bischof, 2008)) and a, not necessar-
ily fully-automatic, method with high accuracy (e.g. MHT (Friman
et al., 2008)) may result in an fully-automatic method with high
overlap and high accuracy.

8.1. Results categorized on image quality, calcium score and vessel
type

Separate rankings are made for each group of datasets with cor-
responding image quality and calcium rating to determine if the



Table 5
The overall ranking of the 13 evaluated methods. The average overlap rank, accuracy rank and the average of these two is shown together with an indication of the computation
time and the required user-interaction.

Method Challenge Avg. Ov. rank Avg. Acc. rank Avg. rank Computation time User-interaction

1 2 3

MHT (Friman et al., 2008) � 2.07 1.58 1.83 6 min 2 to 5 points
Tracer (Szymczak, 2008) � 4.21 2.52 3.37 30 min Point S and point E
DepthFirstModelFit (Zambal et al., 2008) � 6.17 3.33 4.75 4–8 min
KnowledgeBasedMinPath (Krissian et al., 2008) � 4.31 8.36 6.34 7 h Point E
AutoCoronaryTree (Tek et al., 2008) � 7.69 5.18 6.44 <30 s
GVFTube’n’Linkage (Bauer and Bischof, 2008) � 5.39 8.02 6.71 10 min
CocomoBeach (Kitslaar et al., 2008) � 8.56 5.04 6.80 70 s
TwoPointMinCost (Metz et al., 2008) � 5.30 8.80 7.05 12 min Point S and point E
VirtualContrast (Wang and Smedby, 2008) � 8.71 7.74 8.23 5 min
AxialSymmetry (Dikici et al., 2008) � 6.95 9.60 8.28 5 min Point E
ElasticModel (Hoyos et al., 2008) � 9.05 8.29 8.67 2–6 min Global intens. thresh.

+ 1 point per axis
3DInteractiveTrack (Zhang et al., 2008) � 7.52 10.91 9.22 3–6 min 3 to 10 points
CoronaryTreeMorphoRec (Castro et al., 2008) � 10.42 11.59 11.01 30 min Point S

Table 6
The resulting overlap measures for the 13 evaluated methods. The average overlap, score and rank is shown for each of the three overlap measures.

Method Challenge OV OF OT

1 2 3 % Score Rank % Score Rank % Score Rank

MHT (Friman et al., 2008) � 98.5 84.0 1.74 83.1 72.8 2.64 98.7 84.5 1.83
Tracer (Szymczak, 2008) � 95.1 71.0 3.60 63.5 52.0 5.22 95.5 70.2 3.81
DepthFirstModelFit (Zambal et al., 2008) � 84.7 48.6 7.29 65.3 49.2 5.32 87.0 60.1 5.90
KnowledgeBasedMinPath (Krissian et al., 2008) � 88.0 67.4 4.46 74.2 61.1 4.27 88.5 70.0 4.21
AutoCoronaryTree (Tek et al., 2008) � 84.7 46.5 8.13 59.5 36.1 7.26 86.2 50.3 7.69
GVFTube’n’Linkage (Bauer and Bischof, 2008) � 92.7 52.3 6.20 71.9 51.4 5.32 95.3 67.0 4.66
CocomoBeach (Kitslaar et al., 2008) � 78.8 42.5 9.34 64.4 40.0 7.39 81.2 46.9 8.96
TwoPointMinCost (Metz et al., 2008) � 91.9 64.5 4.70 56.4 45.6 6.22 92.5 64.5 4.97
VirtualContrast (Wang and Smedby, 2008) � 75.6 39.2 9.74 56.1 34.5 7.74 78.7 45.6 8.64
AxialSymmetry (Dikici et al., 2008) � 90.8 56.8 6.17 48.9 35.6 7.96 91.7 55.9 6.71
ElasticModel (Hoyos et al., 2008) � 77.0 40.5 9.60 52.1 31.5 8.46 79.0 45.3 9.09
3DInteractiveTrack (Zhang et al., 2008) � 89.6 51.1 7.04 49.9 30.5 8.36 90.6 52.4 7.15
CoronaryTreeMorphoRec (Castro et al., 2008) � 67.0 34.5 11.00 36.3 20.5 9.53 69.1 36.7 10.74

Table 7
The accuracy of the 13 evaluated methods. The average distance, score and rank of each is shown for the accuracy when inside (AI) measure.

Method Challenge AI

1 2 3 mm Score Rank

MHT (Friman et al., 2008) � 0.23 47.9 1.58
Tracer (Szymczak, 2008) � 0.26 44.4 2.52
DepthFirstModelFit (Zambal et al., 2008) � 0.28 41.9 3.33
KnowledgeBasedMinPath (Krissian et al., 2008) � 0.39 29.2 8.36
AutoCoronaryTree (Tek et al., 2008) � 0.34 35.3 5.18
GVFTube’n’Linkage (Bauer and Bischof, 2008) � 0.37 29.8 8.02
CocomoBeach (Kitslaar et al., 2008) � 0.29 37.7 5.04
TwoPointMinCost (Metz et al., 2008) � 0.46 28.0 8.80
VirtualContrast (Wang and Smedby, 2008) � 0.39 30.6 7.74
AxialSymmetry (Dikici et al., 2008) � 0.46 26.4 9.60
ElasticModel (Hoyos et al., 2008) � 0.40 29.3 8.29
3DInteractiveTrack (Zhang et al., 2008) � 0.51 24.2 10.91
CoronaryTreeMorphoRec (Castro et al., 2008) � 0.59 20.7 11.59
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image quality or the amount of calcium has influence on the
rankings.

Separate rankings are also made for each of the four vessel
types. These rankings are presented in Table 8. It can be seen that
some of the methods perform relatively worse when the image
quality is poor or an extensive amount of calcium is present (e.g.
CocomoBeach (Kitslaar et al., 2008) and DepthFirstModelFit (Zam-
bal et al., 2008)) and vice-versa (e.g. KnowledgeBasedMinPath
(Krissian et al., 2008) and VirtualContrast (Wang and Smedby,
2008)).

Table 8 also shows that on average the automatic methods per-
form relatively worse for datasets with poor image quality (i.e. the
ranks of the automatic methods in the P-column are on average
higher compared to the ranks in the M- and G-column). This is also
true for the extraction of the LCX centerlines. Both effects can pos-
sibly be explained by the fact that centerline extraction from poor



Table 8
Ranks per image quality; poor (P), moderate (M) or good (G), calcium score; low (L), moderate (M) or severe (S) and vessel type. The numbers indicate the rank of each team if
only the specified datasets or vessels would have been taken into account.

Method Challenge Image quality Calcium score Vessel

1 2 3 P M G L M S RCA LAD LCX 4th

MHT (Friman et al., 2008) � 1 1 1 1 1 1 1 1 1 1
Tracer (Szymczak, 2008) � 2 2 2 2 2 2 2 2 2 2
DepthFirstModelFit (Zambal et al., 2008) � 5 4 3 4 3 5 5 4 5 3
KnowledgeBasedMinPath (Krissian et al., 2008) � 3 3 4 3 4 3 3 6 3 4
AutoCoronaryTree (Tek et al., 2008) � 7 8 7 8 7 6 6 9 6 9
GVFTube’n’Linkage (Bauer and Bischof, 2008) � 6 5 6 6 6 4 4 3 7 6
CocomoBeach (Kitslaar et al., 2008) � 12 7 9 9 8 8 8 8 10 8
TwoPointMinCost (Metz et al., 2008) � 4 6 5 5 5 7 7 5 4 5
VirtualContrast (Wang and Smedby, 2008) � 9 11 12 12 10 9 11 10 12 10
AxialSymmetry (Dikici et al., 2008) � 8 9 8 7 9 12 10 11 8 7
ElasticModel (Hoyos et al., 2008) � 11 12 10 10 12 11 9 12 11 12
3DInteractiveTrack (Zhang et al., 2008) � 10 10 11 11 11 10 12 7 9 11
CoronaryTreeMorphoRec (Castro et al., 2008) � 13 13 13 13 13 13 13 13 13 13
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image quality datasets and centerline extraction of the (on average
relatively thinner) LCX is more difficult to automate.

8.2. Algorithm performance with respect to distance from the ostium

For a number of coronary artery centerline extraction applica-
tions it is not important to extract the whole coronary artery; only
extraction up to a certain distance from the coronary ostium is re-
quired (see e.g. Wang et al., 2004; Hong et al., 2005).

In order to evaluate the performance of the methods with re-
spect to the distance from the ostium, charts are generated that
demonstrate the average performance over all 96 evaluated cen-
terlines for each of the methods at a specific distance from the os-
tium (measured along the reference standard). Fig. 7a shows these
results for the automatic methods, Fig. 7b shows the results for the
methods with minimal user-interaction, and Fig. 7c shows the re-
sults for the semi-automatic methods.

The graphs show that all the evaluated methods are better able
to extract the proximal part of the coronaries than the more distal
part of the vessels.

They also show that after approximately 5 cm the accuracy of
almost all the methods is relatively constant. Furthermore, the
graphs again demonstrate the fact that the automatic methods
are on average more accurate than the semi-automatic or interac-
tive methods.

8.3. More statistics available online

Space limitations prevent us to incorporate more statistics here,
but the online evaluation framework (http://coronary.bigr.nl) pro-
vides the possibilities to rank the methods based on different mea-
sures or scores, create statistics on a subset of the data and create
overview tables for specific measures, categorized on image quality
or score. It is for example possible to create Table 5–7 for a specific
subset of the data or to create Table 8 with a measure or score of
choice, instead of the overall ranks.

The website also contains the most recent version of the results.
The online results may be different from the results reported in this
paper because of recent improvements in implementation of the
different methods.

9. Discussion

A framework for the evaluation of CTA coronary artery center-
line extraction techniques has been developed and made available
through a web-based interface (http://coronary.bigr.nl). Currently
32 cardiac CTA datasets with corresponding reference standard
centerlines are available for anyone how wants to benchmark a
coronary artery centerline extraction algorithm.

Although the benefits of a large-scale quantitative evaluation
and comparison of coronary artery centerline extraction algo-
rithms are clear, no previous initiatives have been taken towards
such an evaluation. This is probably because creating a reference
standard for many datasets is a laborious task. Moreover, in order
to get a good reference standard, annotations are needed from
multiple observers and combining annotations from multiple
observers is known to be difficult (Warfield et al., 2004) and until
recently unexplored for three-dimensional curves (Walsum et al.,
2008). Furthermore, an appropriate set of evaluation measures
has to be developed and a representative set of clinical datasets
have to be made available. By addressing these issues we were able
to present and use the proposed framework.

A limitation of the current study is the point-based vessel selec-
tion step for fully-automatic methods. Because the coronary artery
tree contains more vessels than the four annotated vessels this
selection step had to be included, but it introduced the problem
that fully-automatic methods can extract many false positives
but still obtain a good ranking. This fact combined with the pre-
sented results of the fully-automatic methods for the four evalu-
ated vessels makes us believe that a future evaluation framework
for coronary artery extraction methods should focus on the com-
plete coronary tree. An obvious approach for such an evaluation
would be to annotate the complete coronary artery tree in all the
32 datasets, but this is very labor intensive. An alternative ap-
proach would be to use the proposed framework for the quantita-
tive evaluation of the four vessels and to qualitatively evaluate the
complete tree. In this qualitative evaluation an observer should
score if any vessels are falsely extracted and if all vessels of interest
are extracted.

A further limitation of this study is that all the data have been
acquired on two CT scanners of the same manufacturer in one
medical center. We aim to extend the collection of datasets with
datasets from different manufacturers and different medical
centers. Further studies based on this framework could extend
the framework with the evaluation of coronary lumen segmenta-
tion methods, coronary CTA calcium quantification methods or
methods that quantify the degree of stenosis.
10. Conclusion

A publicly available standardized methodology for the evalua-
tion and comparison of coronary centerline extraction algorithms
is presented in this article. The potential of this framework has

http://coronary.bigr.nl
http://coronary.bigr.nl
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Fig. 7. The algorithm performance of each method with respect to the distance from the ostium averaged over all 96 evaluated vessels over the first 175 mm (only 10% of the
vessels were longer than 175 mm). Overlap: the fraction of points on the reference standard marked as true positive. Accuracy: the average distance to the centerline if the
point is marked true positive. Each of the three graphs shows in light-gray the results of all the 13 evaluated methods and in color the results of the respective algorithm
category. The graphs also show in black the average accuracy and overlap for all 13 evaluated methods. (a) Fully-automatic coronary artery centerline extraction methods; (b)
semi-automatic coronary artery centerline extraction methods; and (c) interactive coronary artery centerline extraction methods.
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successfully been demonstrated by thoroughly comparing 13 dif-
ferent coronary CTA centerline extraction techniques.
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