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The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of dif-
ferent algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is
fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel
segmentation is prohibitively time consuming, any real world application requires some form of automa-
tion. Several approaches exist for automated vessel segmentation, but judging their relative merits is dif-
ficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20
CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation
algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge,
held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at
the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to
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new participants. Our three contributions are: (1) an annotated reference dataset available online for
evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms;
and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation meth-
ods in the presence of various lung diseases.

� 2014 Published by Elsevier B.V.
1. Introduction

The vasculature is involved in many diseases including the most
lethal ones, such as cardiovascular and cerebrovascular disease.
Vascular trees are ubiquitous, found nearly in every organ, com-
plex and highly intertwined; and vessel segmentation is both a
common and a challenging task. Reliable quantitative medical
image analysis requires automatic vessel segmentation, whenever
possible, to discriminate vessels from organs of interest. It is thus
not surprising that vessel segmentation has received a large
amount of interest.
1.1. Overview of existing methods

To date, no single method can successfully segment vessels
from every imaging modality and every organ. The complexity of
vessel segmentation in different organs and for different purposes
has given rise to multiple segmentation methods.

Many methods rely on combination of vascular models, image
features, and extraction schemes; most models rely on some prior
knowledge about the features of vessels such as intensity, curva-
ture, tubularity, centerline and smoothness. Applying Hessian-
based scale-space enhancement filters (Frangi et al., 1998; Sato
et al., 1998; Krissian et al., 2000) results in disconnection because
filter response is low along bifurcations. Enhancement filters have
been combined with tracking (Aylward and Bullitt, 2002), bifurca-
tion enhancement and suppression of non-vessel structures (Zhou
et al., 2006). Seed-point based algorithms have also been used, in
both region growing techniques (Lavi et al., 2004; Metz et al.,
2007) and fast marching techniques (Bülow et al., 2005). Other
recent methods include fuzzy shape representation (Agam et al.,
2005), and fuzzy-connectedness (Kaftan et al., 2008). These are
but few of the most recent methods in vessel segmentation. A more
exhaustive review can be found in Lesage et al. (2009), which clas-
sified various vessel lumen segmentation methods in contrast-
enhanced imaging modalities (such as magnetic resonance angiog-
raphy and computed tomography angiography), analyzing the dif-
ferent models, features and extraction schemes. A slightly older,
extensive vessel segmentation review (Kirbas and Quek, 2004)
classified the various methods according to which approach they
belong to: pattern recognition, model-based, tracking, artificial
intelligence-based, or machine learning.

In analysis of data generated by 3D imaging modalities such as
thoracic computed tomography (CT) scans, vessel segmentation is
often required before proceeding to diagnose higher order disease
patterns. It has been used to aid segmentation of nearby anatomi-
cal structures such as pulmonary lobes (Kuhnigk et al., 2005; Ukil
and Reinhardt, 2009; Lassen et al., 2012) and lung airways (Lo
et al., 2010; Bülow et al., 2005). In computer-aided nodule detec-
tion, having vessel segmentation reduces ambiguities and
improves nodule detection performance (Agam et al., 2005).
Excluding vessel volume is also important where accurate quanti-
fication is essential, such as follow-up studies of tumor volumetry
(Reeves et al., 2006), lung perfusion study (Risse et al., 2009), as
well as parenchymal (Korfiatis et al., 2011) and interstitial lung
diseases (Marten et al., 2009; Kumar et al., 2012). Vessel segmen-
tation is fundamental in automated detection of lung-related
conditions such as pulmonary emboli that occur in pulmonary
arteries (Masutani et al., 2002; Zhou et al., 2005; Peters et al.,
2007). Pulmonary vessel tree dimensions also help to characterize
pulmonary hypertension (Linguraru et al., 2010; Matsuoka et al.,
2010), and using these dimensions, to calculate bronchoarterial
ratio to characterize risk of cardiovascular diseases.

Segmenting vessels in the lungs has been addressed by various
groups (Agam et al., 2005; Shikata et al., 2004; Fetita et al.,
2009a; Kaftan et al., 2008; Xiao et al., 2011) using variants of the
techniques described in the overview of existing methods. In lung
images, there is a natural contrast due to the high density difference
between the vessels and the background, lung parenchyma.
Although it is relatively straightforward to use the difference in
intensity to segment vessels, there are other structures besides ves-
sels having similar intensities (e.g. tumor nodules, dense lesion),
and vessel trees are highly complex and highly intertwined. There
is a still more complicated task of distinguishing arteries from
veins, which only few have begun to explore (Lei et al., 2001; van
Bemmel et al., 2003; Yonekura et al., 2007; Gao et al., 2012).

1.2. Necessity of fair performance comparison

Producing a complete vessel tree segmentation for a single scan
manually is a daunting task. For multiple scans this requires a pro-
hibitive amount of time and resources. As a result, many vessel
segmentations – as shown in the previously cited reviews (Kirbas
and Quek, 2004; Lesage et al., 2009) – are evaluated on a set of data
particular to their respective studies, and there is a lack of stan-
dardized reference data and validation criteria to objectively com-
pare various segmentation algorithms. The BrainWeb (Aubert-
Broche et al., 2006) project for vessels in brain magnetic resonance
images provides a valuable, although synthetic, reference.

Distinct from publicly available databases, collaborative efforts
to solve complex problems gave rise to various challenge frame-
works. Challenge frameworks provide a fair comparison and ability
to analyze in depth the strengths and weaknesses of each method.
Direct comparison between algorithms becomes possible when
standardized evaluation is performed using standardized data.
From most of these challenges emerged publicly available dat-
abases for future comparison. Several past and ongoing challenge
frameworks are listed on sites such as http://www.grand-
challenge.org. The first one was the liver segmentation challenge
SLIVER07 (Heimann et al., 2009). Several of these frameworks
focus on vessels, e.g. coronary artery centerline extraction CORO-
NARY (Schaap et al., 2009), and carotid artery lumen segmentation
CAROTID (Hameeteman et al., 2011). Several more challenges
focusing on the lungs, include nodule detection ANODE09 (van
Ginneken et al., 2010), airway detection EXACT09 (Lo et al.,
2012), lung registration evaluation EMPIRE10 (Murphy et al.,
2011), lung lobe analysis LOLA11 (http://www.lola11.com) and
nodule volume change analysis VOLCANO’09 (http://www.via.
cornell.edu/challenge).

1.3. Objectives

The aim of VESSEL12 Challenge, organized in conjunction with
the International Symposium on Biomedical Imaging 2012

http://www.grand-challenge.org
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(ISBI’12), is to provide a public platform to compare the perfor-
mance of different segmentation algorithms to identify lung
vessels in thoracic computed tomography (CT) data. An additional
goal is to characterize what kind of anatomical neighborhood may
complicate vessel segmentation, for example the presence of
nodules, dense consolidation and parenchymal or bronchial
abnormalities.

1.4. Contributions

The first contribution of this paper is an annotated reference
data set. Constructing such a data set is an extremely labor-
intensive task. Secondly, we propose a quantitative scoring system
for objective comparison of algorithms. Thirdly, we present an
evaluation of the strengths and weakness of the various vessel
segmentation methods in the presence of various lung diseases.

1.5. Structure

In Section 2 of this paper, we describe the images that make up
the reference data, the method to select points for evaluation and
the data annotation process. In Section 3, we describe the evalua-
tion categories, the evaluation process for each submission, and
the scoring system used. In Section 4, we describe the challenge
setup and challenge participation, both before and after the ISBI’12
Challenge Workshop. In Section 5, we describe the results. In Sec-
tion 6, we discuss the challenge evaluation, the influence of lung
pathologies, and the performance of each segmentation method,
with a conclusion in Section 7.
2. Material and methods

2.1. Data collection

The scans for this challenge were collected from the anony-
mized image repositories of three hospitals: University Medical
Center Utrecht (Utrecht, The Netherlands), the University Clinic
of Navarra (Pamplona, Spain), and Radboud University Nijmegen
Medical Centre (Nijmegen, The Netherlands). The data included
both clinical exams taken for a variety of indications, and scans
from two lung cancer screening trials: NELSON, the Dutch-Belgian
randomized controlled lung cancer CT screening trial (van
Klaveren, 2011) and I-ELCAP, the International Early Lung Cancer
Action program (de Torres et al., 2007). In the institutes where
approval of the institutional ethics committee is required, a writ-
ten consent for retrospective studies had been previously obtained
from each participant.

The variety of sources ensures that a wide range of clinical
images typically used in diagnostic settings is present in the data-
set: high and low resolution, standard or low-dose chest CT, and
Angio-CT – CT with intravenous contrast; each with their own
scanning parameters and reconstruction kernels. Scanners from
three major manufacturers were included: Philips, Siemens, and
Toshiba. We selected CT scan images taken from individual
patients diagnosed with a spectrum of lung pathologies, including
diffuse interstitial disease, pulmonary thromboembolism,
pulmonary hypertension, alveolar inflammation, lung nodules,
and emphysema. To ensure that the images were as isotropic as
possible, we selected only thin slice images having slice spacing
between 0.59 mm and 0.89 mm, averaging at 0.74 mm. Accurate
vessel segmentation requires thin slice data, as vessels are often
blurred out in CTs with thicker slices. From this cohort of images,
we finally selected 20 scans, described in Table 1. This heteroge-
neous data closely reflects the diversity of CT scans encountered
in clinical practice.
All 20 scans were then anonymized and made available for
download to registered VESSEL12 challenge participants in Meta
(MHD/raw) format. To facilitate vessel segmentation only within
the lung areas, the lung masks for each image were also provided.
The lung masks were generated using the method described in van
Rikxoort et al. (2009) and were slightly edited manually in a few
cases where necessary.

2.2. Reference data annotation

In this challenge we use real world data. Therefore, human anno-
tation is the only method of obtaining a reliable reference. Since it is
not feasible to perform manual segmentation of the entire vessel
tree for all twenty scans, manual annotation was performed only
on specific pre-generated points of interest (POIs). In addition, for
evaluation of specific vessel-like structures and abnormalities
within the lung, points were freely chosen by the annotators.

Using fully human annotation has its limitations. Due to the
partial volume effect, human performance at assessing whether a
voxel on the border of a vessel is truly part of a vessel (i.e. consists
of more than 50% of vessel), is at best erratic. Taking this into
consideration, the POIs were generated to avoid most of the vessel
border points, following an approach previously proposed by van
Dongen and van Ginneken (2010).

To automatically generate POIs, we first computed the 3D local
maxima on a blurred version of each scan. Blurring was done on
each axial slice using a Gaussian kernel with a scale of 1.0 mm
(see Fig. 1). To prevent points from being too close to each other,
the list of initial points was pruned. First, the points were sorted
by density in descending order. Starting from the top of the list,
moving downwards, all points within distance of five voxels to a
point higher on the list were removed. As the majority of points
selected in this way turn out to be vessels, an equal number of ran-
domly generated points at least five voxels from any other point
were then added to the list of POIs. For each scan, four axial sec-
tions along the z-axis direction were filled with POIs in this way.
In each scan, we have selected sections which are approximately
evenly distributed in the z-axis and which contain a large propor-
tion of lung tissue. Fig. 2 illustrates the location of the four sections
in which POIs have been generated from two scans.

For each POI to be annotated, the graphical interface (developed
using MevisLab (Ritter et al., 2011)) displays the corresponding
slice centered at the point to be evaluated. The point to be classified
is also shown in three orthogonal sideviews: axial, coronal and sag-
ittal. For both main and sideview displays, 4 mm Average Intensity
Projection reformatting was used to better discriminate noise from
small vessels. Having orthogonal views is important for the annota-
tors to be able to distinguish vessels from structures which may
look vessel-like when viewed only from a single plane. In addition,
annotators could zoom in or scroll through the scan in the z-direc-
tion. Each point to be annotated was shown sequentially.

The annotation of the POIs was performed by three trained
medical students. Training was done in three stages: (1) two hours
of initial familiarization with the graphical interface, (2) 8.5 h of
free testing annotation, followed by (3) a revision with radiologists,
before the actual annotation of all images was performed. During
the familiarization and free testing sessions, all annotators were
trained to distinguish the appearance of vessels as seen through
all three orthogonal views. Each annotator worked individually
to mark POIs and labeled it with one out of four possible labels:
vessel, lung parenchyma, airway wall, or lesion. Only POIs for
which all three annotators agreed on the label have been included
in the analysis.

Specific types of lesions that only occur occasionally – rare
among the POIs – such as atelectasis, fibrosis, adhesive straining,
consolidation and mucus filled bronchi, were interactively added



Table 1
Description of the twenty CT scans that make up the VESSEL12 challenge dataset. Angio-CT: CT with contrast agent, LD: low-dose, HR: high resolution, ILD: (diffuse) interstitial
lung disease

Scan Image type Pathology Scanner and kernel Spacing
(mm)

Z-spacing
(mm)

# Of
slices

kV/mAs

01 Angio-CT Alveolar inflammation Siemens SOMATOM Sensation 64,
B60f

0.76 1 355 120/40

02 Chest CT Alveolar inflammation Philips Mx8000 IDT 16, B Kernel 0.71 0.7 415 140/74
03 Chest CT ILD Philips Mx8000 IDT 16, B Kernel 0.62 0.7 534 120/77
04 LD Chest CT ILD Toshiba Acquilion ONE, FC55 0.86 1 426 100/44a

05 Chest CT ILD Philips Mx8000 IDT 16, B Kernel 0.72 0.7 424 140/73
06 Angio-CT ILD Siemens SOMATOM Sensation 64,

B30f
0.63 1 375 120/81

07 LD Chest CT ILD Toshiba Acquilion ONE, FC55 0.69 1 461 100/23a

08 Chest CT ILD Philips Mx8000 IDT 16, B Kernel 0.78 0.7 442 140/64
09 Angio-CT ILD Siemens SOMATOM Sensation 64,

B25f
0.68 1 543 100/150

10 Angio-CT ILD Toshiba Acquilion ONE, FC83 0.88 1 426 120/68a

11 Angio-CT ILD and emphysema Toshiba Acquilion ONE, FC83 0.77 1 421 100/120
12 Angio-CT Secondary pulmonary arterial hypertension Toshiba Acquilion ONE, FC83 0.8 1 446 100/92a

13 Angio-CT Pulmonary thromboembolism Toshiba Acquilion ONE, FC83 0.89 1 471 120/
117a

14 LD Chest CT Pulmonary thromboembolism and
emphysema

Toshiba Acquilion ONE, FC83 0.71 1 386 100/33a

15 Angio-CT Pulmonary thromboembolism Siemens SOMATOM Sensation 64,
B25f

0.65 1 378 100/150

16 LD Chest CT Small nodules Toshiba Acquilion ONE, FC83 0.75 1 451 100/38a

17 Angio-CT Nodules and diffuse abnormalities Siemens SOMATOM Sensation 64,
B25f

0.59 1 429 100/135

18 Chest CT Normal Philips Brilliance 16P, B Kernel 0.78 0.7 408 140/73
19 HR Chest

CT
Small nodules Toshiba Acquilion ONE, FC83 0.69 1 396 120/68a

20 LD Chest CT Emphysema Toshiba Acquilion ONE, FC55 0.75 1 406 100/32a

a Toshiba Acquilion ONE modulates the dosage during acquisition. Average dose over all slices is given.

Fig. 1. (Left) Original axial section from scan 01; (Right) same slice after blurring, overlaid with automatically generated POIs. The POIs are local maxima, sorted by intensity
and pruned to be further than five voxels apart. Squares in the figure have been magnified for illustration purpose.
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by a radiologist going through all scans. Similarly, the number of
automatically generated POIs labeled as airway wall points is too
low for reliable statistics, therefore the annotators were asked to
specifically label additional airway wall points in each scan. Fur-
thermore, extra POIs labeled as lung nodules were generated by
a nodule-detecting CAD system (Murphy et al., 2009), which were
then manually reviewed by the annotators. Only points on struc-
tures that were visually confirmed to represent pulmonary nodules
were then included.
2.3. Training data

We did not initially provide any training data for this challenge.
Upon request of several participants, reference data was published
for three example CT scans outside the original set of 20 scans. This
reference data has been constructed using the same procedure as
the original dataset. The three scans and their annotations are
intended as an illustration of the annotation process rather than
a machine learning dataset.
3. Evaluation

3.1. Evaluation categories

Performance of vessel segmentation algorithms cannot be ade-
quately captured in a single parameter. We therefore defined sev-
eral metrics which express segmentation performance in specific
contexts. We looked at sensitivity of methods in segmenting larger
and smaller vessels, and specifically focused on the effect of the
presence of disease-induced confounding structures. Diseases such
as interstitial lung disease, cystic fibrosis, asthma and chronic
obstructive pulmonary disease (COPD) can cause lung tissue to
deform into structures which might be mistaken for vessels. In
addition, such diseases can be accompanied by mucus production,



Fig. 2. Illustration of the slices and annotated POIs in scan 01 (left) and 06 (right) after labeling process; red points indicate those which are marked as vessels, green non-
vessels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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filling the bronchi, giving rise to images in which a bronchus sud-
denly looks like a vessel.

For nodule detection, the most widely studied CAD task in chest
CT, good vessel segmentation helps to eliminate false positives on
vessels, and yet it is crucial that nodules do not get classified as
vessels. Similarly, there are also vessels within consolidations,
which may take up significant volume that is not strictly part of
the lesion.

To evaluate different performance aspects of vessel segmenta-
tion algorithms, we present nine evaluation categories, as summa-
rized in Table 2.

� Principal (1st)
The Principal category evaluates how well the algorithm distin-
guishes vessels from non-vessels. All the points given the same
label by three annotators independently make up the principal
dataset that is used for this category. A total of 9419 points
across all 20 scans were annotated. Of these, the annotators
unanimously agreed upon the labels of 7352 points (78%). This
is the general evaluation category used for overall ranking.
� Small vessel (2nd), Medium vessel (3rd), and Large vessel (4th)

These categories evaluate to what extent the vessel sizes affect
segmentation performance. Vessel points from the Principal
category are subdivided into three subsets: large, medium and
small. As proxy for vessel size, we used the intensity of a point
after 1 mm Gaussian blurring, assuming lower intensity points
belong to smaller vessels. In the set of all vessel points from
the Principal category, we used the 33rd and the 66th percentile
intensity values as dividing points between large medium and
small vessels. We divided the data into large (intensity higher
than �615 HU), medium (intensity between �765 and �615
HU) and small (intensity lower than �765 HU) vessels. The
threshold values were used on both contrast and non-contrast
images, as separating these two image types does not yield sig-
nificant difference in the values calculated. To these three
groups of vessel points, all the non-vessel points were added
to make up the Large vessel, Medium vessel, and Small vessel
categories, respectively. See Fig. 3(a)–(c) for examples.
� Vessel/Airway walls (5th)

The Vessel/Airway walls category was designed to evaluate the
ability of segmentation methods to distinguish vessels from air-
way walls (see Fig. 3(d)). Airway walls have tissue density val-
ues similar to vessels, and are therefore easily confounded with
vessels. Part of the airway wall points in this category are points
labeled as airway walls in the principal dataset. Because these
are relatively few in number, airway wall points were interac-
tively added. These airway wall points were then combined
with an equal number of vessel points from the Principal
category.
� Vessel/Dense lesions (6th), Vessel/Mucus-filled bronchi (7th),

and Vessel-in-Lesion/Dense lesions (8th)
The three categories Vessel/Dense lesions, Vessel/Mucus-filled
bronchi, and Vessel-in-lesion/Dense lesions, are designed to
evaluate the ability of segmentation methods to distinguish sev-
eral types of dense abnormalities from vessels. The datasets for
these categories contain lesions that can be divided roughly into
three classes: (1) dense lesions, which include atelectasis, fibro-
sis, adhesive straining, and other dense lesions, (2) mucus-filled
bronchi, which are airways that instead of being clear, are filled
with liquid such as mucus, which might lead them to be identi-
fied as high-intensity tubular structures, and (3) consolidations,
which may also contain vessels, visible only in contrast scans.
Fig. 4 shows examples of dense abnormalities present.
In contrast-enhanced images, some vessels are visible even
within the dense lesions, as shown in Fig. 5. In the Vessel-in-
Lesion/Dense lesions category, only vessel points from the prin-
cipal dataset and points within dense lesions, added by a radiol-
ogist, were included.
� Vessel/Nodules (9th)

The last category evaluated the ability of segmentation methods
to distinguish vessels from nodules. Fig. 4(d) shows an example
of a nodule.

3.2. Submission format requirement

To ensure that all results provided by the participants of the
VESSEL12 Challenge could be fairly evaluated, the submission
requirement was standardized. For each scan, the participant was
asked to submit an image of 8-bit unsigned char, with each voxel
value representing the probability (between 0 and 255) of that
voxel being a vessel. Binary submissions were also accepted. Each
submission was then evaluated for all the categories described in
the earlier section.

3.3. Evaluation methods of submitted data

For each scan in the VESSEL12 dataset, each submission con-
tains a full vessel tree segmentation. Our evaluation data consists



Table 2
Categories used for the evaluation. Note that only unanimously labeled automatic points have been included. AW: airway wall, DL: dense lesion, MB: mucus-filled bronchi.

Category Source Positive class Negative class Number of points

Total Positive Negative

1 Principal (ALL) Automatic All vessel points All non-vessel points 7352 2238 5114
2 Large vessel Automatic All largea vessel points All non-vessel points 5891 777 5114
3 Medium vessel Automatic All mediumb vessel points All non-vessel points 5860 746 5114
4 Small vessel Automatic All smallc vessel points All non-vessel points 5818 704 5114
5 Vessel/Airway walls Automatic + Interactive All vessel points All automatic + interactively added AW

points
8101 2238 5863

6 Vessel/Dense lesion Automatic + Interactive All vessel points All automatic + interactively added DL
points

2702 2238 464

7 Vessel/Mucus-filled
bronchi

Automatic + Interactive All vessel points Interactively added MB points 2336 2238 98

8 Vessel-in-lesion/Lesion Automatic + Interactive All vessels points within
consolidation

All automatic + interactively added DL
points

401 146 255

9 Vessel/Nodules CAD All vessel points All CAD-detected nodule points manually
verified

3227 2238 989

a Large: greater than �615 HU after blurring.
b Medium: between �765 and �615 HU after blurring.
c Small: less than �765 HU after blurring.

Fig. 3. A slice from scan 05 showing (a) small (�818 HU), (b) medium (�727 HU) and (c) large (�382 HU) vessel points. The post-blurring CT values of each vessel point is
within the range of CT values corresponding to each vessel size classification. (d) Point showing airway wall.

Fig. 4. Examples of lesions which might be confounded with vessels: (a) mucus-filled bronchus (scan 12) is shown here as a bright tubular structure with an air bubble, (b)
dense lesions (scan 01), (c) fibrosis (scan 02), and (d) nodule (scan 01).
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of hundreds of labeled points in each scan (see Section 3.1 for an
exact numerical breakdown). Evaluating a submission then con-
sists of iterating over each point and checking whether the submis-
sions label corresponds to the label given by the panel of
annotators.

An important question arises here: should anything which is
probably a vessel be labeled as such, or should only vessels which
are absolutely certain be labeled? Different medical applications
have different requirements: an application scanning for lung
emboli will require a high sensitivity, while preprocessing for nod-
ule detection will emphasize specificity. To evaluate algorithm per-
formance without confining ourselves to any specific application,
we use Receiving Operator Characteristic (ROC) curve analysis.
An ROC curve yields information about an algorithms’ perfor-
mance at different levels of sensitivity. This type of analysis
requires a probabilistic segmentation, in which each voxel is
assigned a probability of being a vessel. A probabilistic segmenta-
tion can yield many binary segmentations—including only those
with probabilities higher than the given threshold value. An ROC
curve is created by plotting the sensitivity against 1-specificity.
High thresholds will typically yield a segmentation with low sensi-
tivity but good specificity, and lower threshold typically increases
sensitivity but loses specificity. We refer readers unfamiliar with
ROC to Fawcett (2006) for further treatment of ROC analysis.

The principal metric for VESSEL12 evaluation is the area under
the ROC curve (Az). A purely random classifier would give a point



Fig. 5. Examples of vessels found within dense lesion (from contrast scan 05) shown in three orthogonal views: (a) axial, (b) sagittal, and (c) coronal. Window level has been
modified to preferentially increase contrast for this illustration purpose only.
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along the diagonal line of no-discrimination, giving an Az score of
0.5. The ideal curve, correctly classifying all positive voxels while
making no mistakes, would go through the point (0,1) in the upper
left corner, yielding an Az score of one.

When the submission is in binary format, only a single operat-
ing point will be obtained in the ROC curve. To compare perfor-
mance to probabilistic submissions, a signed distance transform
was computed on each binary submission. In this way the binary
segmentation is transformed into an approximation of a probabi-
listic segmentation.

Additionally, ROC curve analysis also yields an optimal specific-
ity/sensitivity point, which we define as the point on the ROC curve
closest to point (1,0). For binary submissions, the original
submission (distance transform thresholded at zero) is taken as
the optimal specificity/sensitivity point.

The evaluation method is summarized in Fig. 6.

3.4. Scoring

ROC curve analysis was performed on all the nine categories
described in Table 2. In the ISBI’12 VESSEL12 challenge, methods
were ranked according to their score on the Principal category. This
category was chosen as the most unbiased overall measure of ves-
sel segmentation performance. To evaluate various aspects of seg-
mentation performance in detail, scores on the other eight
categories are published for each method in addition to the princi-
pal score.

4. Challenge setup

4.1. Challenge format

Teams from both academia and industry were invited to partic-
ipate in the challenge. We sent out notifications to various medical
imaging mailing lists and individual invitations to authors as well
as research groups that have previously published on the topic of
vessel segmentation.

We opened online registration on November 15th, 2011, and
made the data available for download on January 6th, 2012.
Between the latter date and the day of the ISBI’12 Challenge,
May 2nd, 2012, we worked to develop the annotation interface,
annotate the reference data, define the evaluation categories and
automate the online evaluation process.

4.2. Challenge participants

Out of 113 registered teams, more than half downloaded the
data, and a total of 14 teams submitted their segmentations in time
for the challenge day – resulting in 20 methods – with several
teams submitting results from multiple methods. After the
challenge day, three more teams uploaded their algorithm results,
and one previously signed up team uploaded two new submis-
sions. The labels A–W will henceforth be used to refer to each sub-
mission. Teams which did not upload algorithm descriptions or
who explicitly asked to remain anonymous were excluded from
the analysis (n = 2, methods A and R). To set up a baseline
performance evaluation, we have included two reference methods:
density method and vesselness filter method.
4.3. Brief description of each submission

Only teams which submitted their algorithm descriptions have
been included in this section, described below and summarized in
Table 3.

The various submissions used techniques that can be classified
as: (1) variants or direct use of Hessian-based ‘‘vesselness’’ filters,
(2) variants of region growing methods, or (3) thresholding-based
methods, or (4) machine-learning based methods.

Method B (Telecom SudParis, France) applied hysteresis thres-
holding within the segmented lung parenchyma region, coupled
with a 3D connectivity criterion between vessels and mediastinal
region (Fetita et al., 2009a). The airway wall areas were previously
removed from the lung parenchyma exploiting airway lumen seg-
mentation (Fetita et al., 2009b) and lumen caliber-related wall
thickness information (Fetita et al., 2010). Finally, a shape filter
based on medial axis and vessel caliber analysis (Fetita et al.,
2010) was applied to remove juxtavascular nodules or fibrosis tis-
sue. To obtain probabilities, Euclidian distance transform was then
applied to the binary response.

Method C (Arizona State University, USA) used Hessian-based
vesselness (Zhou et al., 2007), followed by vesselness-oriented
level set (Zhu et al., 2009) and removal of large structures with
low vesselness response. The probabilities were generated by
applying a Gaussian kernel (size = 6, r = 1.5) to the vessel
segmentation.

Method D (Bahcesehir University, Turkey) employed Hessian-
based vesselness on images denoised by 3D median filtering. The
scale of the filter was selected empirically as two to achieve
robustness of the algorithm. The probabilistic values were trained
with the help of the training dataset. Log transformation was then
performed to discriminate whenever possible – from the difference
in variance – false positives from true positives. Finally, after post-
processing the vessel regions were highlighted in the probability
map. Details can be found in Oksuz et al. (2013).

Method E (Brigham and Women’s Hospital, USA) first
deconvolved the images, then pre-blurred them with a bank of



Fig. 6. Overview of processes in the evaluation method.

Table 3
Challenge participants and submission types.

Team Algorithm type Multi-scale Postprocessing

Probabilistic
B Thresholding N/A Airway wall and nodules removal
C Hessian-based No Large low-vesselness structure removal
D Hessian-based Yes No
E Hessian-based Yes No
G Hessian-based Yes Airway walls removal
H Hessian-based Yes No
I Hessian- and region growing-based No Airway walls removal
K Hessian-based Yes Histogram equalization
L Hessian-based Yes Histogram equalization
M Hessian-based Yes Histogram equalization
N Hessian-based Yes Histogram equalization
Q Hessian-based Yes Histogram equalization

Binary
F Hessian- and region growing-based Yes No
J Machine-learning N/A Large nodule removal
O Region growing-based N/A Airway walls removal
P Hessian-based Yes Airway walls and lobe fissure removal

Reference
R1 Thresholding N/A No
R2 Hessian-based Yes No

Post-challenge submissions
S Machine-learning Yes No
T Hessian-based Yes No
U Hessian-based Yes No
V Hessian- and region growing-based Yes (Preprocessing) Airway walls removal
W Hessian- and region growing-based Yes Yes
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discrete Gaussian kernels with ten scales, uniformly distributed in
the range [0,6] pixels. Scale-space particle sampling was then per-
formed to find strongest Hessian matrix-based response (Estepar
et al., 2012). The particle scale was used to estimate vessel radius.
Log transformation was then applied to transform binary response
to probability.

Method F (CREATIS, Universite de Lyon, France & Universidad de
los Andes, Colombia) is based on a variational region growing
(VRG) approach introduced in Rose et al. (2009), which performs
energy minimization using a region-descriptor function. Similar
to Pacureanu et al. (2010), this function enforces an appropriate
range of gray-levels and a tubular shape of the segmented struc-
tures by combining an intensity term and a vesselness term calcu-
lated with the Hessian-based Sato’s filter (Sato et al., 1997). These
two terms were normalized by the respective maximum values
found within the volume of interest (lung mask). The vesselness
was calculated at scales between 0.2 and 6.0. The seeds for VRG
were selected using the Hessian-based criteria proposed by Lo
et al. (2010).

Method G (Radboud University Nijmegen Medical Center, the
Netherlands) used normalized multiscale Frangi’s vesselness
(Frangi et al., 1998) filter (scales = 7, r = 1.0–4.5 mm), followed
by optimal local thresholding. Airway wall exclusion was then per-
formed to reduce false positives, and distance transform was
applied to the final segmentation (van Dongen and van
Ginneken, 2010).

Method H (Fraunhofer MEVIS, Germany) is very basic, using
multiscale Frangi’s vesselness method (Frangi et al., 1998)
(scales = 4, r = 0.9, 1.6, 2.3 and 3 mm) without preprocessing.

Method I (Fraunhofer MEVIS, Germany) generated seeds for
region growing using Frangi’s vesselness filter with 1 mm scale
resulting in vesselness image V ~xð Þ. Seedpoint precursors were then
defined as any voxel above the 97th percentile of intensity values.
Final seedpoints ~si were obtained after spatial filtering: a shrunk
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(eroded) lung mask was used to exclude all seedpoints less than
15 mm away from the outer lung boundary. In addition, a simple
bronchi segmentation was used to remove seedpoints within bron-
chi. Region growing was then performed on V ~xð Þ, starting from~si,
in direction of descending vesselness values. For the ‘‘probabilistic
segmentation mask’’ P ~xð Þ, we output masks for different threshold
values of the Region Growing:

P ~xð Þ ¼max g � Rh gð Þ ~xð Þ
� �

where Rh ~xð Þ is a binary result mask (0 for background, 1 for vessel
voxels) resulting from Region Growing in direction of descending
vesselness values, stopping at the vesselness threshold h. Every pos-
sible gray value g 2 ½1 . . . 255� is linearly mapped to a threshold
h gð Þ ¼ hmax � g

255 (hmax was set to 100 for the submission).
In method J (Universitat Politècnica de València, Spain), images

were first normalized to 8 bits (0–255). Area opening filter was
applied to reduce noise and local bright objects that have an area
lower than k (8 pixels), followed by close-hole operator to enhance
vessel structures. Classification was then performed using K-means
clustering (k = 3), followed by 3D filtering to remove spurious ele-
ments – such as tumors – with size lower than certain threshold
(4000 voxels).

Method K (LUMC, the Netherlands & Hunan University, China)
performed Frangi’s vesselness (r = 1, 2, and 3 mm) filter. The free
parameters were chosen as a ¼ b ¼ 0:5 as recommended in
Frangi et al. (1998) and c ¼ 500 (related to the intensity range in
lung CT data). All output images were first rescaled to a range
[0;106] and rounded to the nearest integer. Subsequently,
histogram equalization was employed in order to have an equal
distribution of the responses at a certain threshold. Finally, the
result was rescaled to the range [0,255].

Method L (LUMC, the Netherlands & Hunan University, China)
was similar to submission K. The vesselness enhancement filter
that was used, however, was a central adaptive medialness func-
tion, inspired by the work of Krissian et al. (2000). It is defined
as �k2=k3ðk2 þ k3Þ when the sum of all eigenvalues is less than
zero, and zero otherwise. It uses no free parameters.

Like method L, the processing in method M (LUMC, the
Netherlands & Hunan University, China), is similar to submission
K. The vesselness enhancement filter used was the same as L,
except that the underlying Gaussian kernel to compute the eigen-
values was replaced by a bi-Gaussian kernel (Xiao et al., 2013). The
traditional Gaussian operator has infinite support and its response
is therefore influenced by structures adjacent to a vessel. The bi-
Gaussian kernel, however, allows independent selection of fore-
ground and background scales. By taking a narrower local neigh-
borhood for contrast computation, closely located adjacent
structures can be separated better, while keeping the intra-vessel
noise suppressing ability of the conventional Gaussian scale space.

Similar to what was described in method K, method N (LUMC,
the Netherlands & Hunan University, China) also performed post-
processing. The vesselness enhancement filter however was based
on a strain energy tensor decomposition, measuring intensity con-
trast, structure strength and shape. These measures were com-
bined with an intensity continuity term along the vessel and a
step edge suppression mechanism. Details can be found in Xiao
et al. (2011).

Method O (Technical University of Lodz, Poland) first normal-
ized input data to the range of [0,1]. Assuming bimodal histogram
distribution, region growing was then performed using 26-connec-
tivity from seed areas – defined as regions of more than 50 pixels
above the value at the object histogram peak. The intensity thresh-
old was individually determined by averaging the peak values of
the bimodal histogram for each normalized CT scan. Airway
segmentation was performed to explicitly exclude airway walls.
Method P (Norwegian University of Science and Technology,
Norway) used a multiscale tubular detection filter that fits a spline
instead of circle, adapted from Krissian et al. (2000). Response was
calculated as the average dot product of the inward normal of the
spline and the direction of the underlying gradient vector. Region
growing was performed to connect voxels with high tubularity
response. A conservative segmentation of airway, followed by
dilation to obtain airway walls, and lung lobe fissure segmentation
were then performed to remove these known structures.

Method Q (Shahed University, Iran) employed a modified Frangi
filter, followed by multiscale medialness. Radius was estimated by
graph analysis, and finally vessel was grown from medial axis
using estimated radius.

Reference method R1 (density method) is based on the assump-
tion that vessels have higher density than the surrounding lung tis-
sue and airways. Simply rescaling the values of all voxels between
�1024 and 200 HU, to the range of 0–255, gives a segmentation in
which any structure with higher intensity are given higher proba-
bility of being vessels. The density method should then find most
vessels, but also mistake other structures for vessels.

Reference method R2 (vesselness filter method) used a vesselness
filter implemented as a module (MLModule ‘‘Vesselness’’) by Mev-
isLab was employed with seven scales, evenly distributed from 1 to
4.5 mm.

4.4. Post-ISBI’12 submissions

Three more teams uploaded their submissions post-ISBI’12
Challenge Day. Methods S (University of Alberta), T (Universidad
Politécnica de Madrid), and U (Graz University of Technology),
enjoy the advantage of being able to study the performance of
the methods submitted pre-challenge. Methods V and W were sub-
mitted by a pre-ISBI’12 participant, CREATIS.

Method S (University of Alberta, Canada) used stacked multi-
scale feature learning. The features are learned from sample
patches, randomly extracted at multiple scales from a 6-level
Gaussian pyramid expansion of the data. Filter banks are learned
using spherical k-means (Coates and Ng, 2012). A two-layer
stacked representation was obtained by performing the learning
on the outputs of the first layer. Each layer had 32 features. While
learning is from randomly sampled patches, usage is by conven-
tional convolution with the image data to obtain the filter response
vector for each voxel. The three example scans were used for train-
ing a L2-regularized logistic regression classifier using the learned
voxel features as inputs. The parameters were selected using 10-
fold cross validation. Final probability was then obtained by line-
arly scaling the predicted probabilities to [0,255].

Method T (Universidad Politécnica de Madrid, Spain) used a mod-
ified multiscale Frangi’s vesselness enhancement filter, by incorpo-
rating airway wall information to penalize the probability of a voxel
being a vessel (Jimenez-Carretero et al., 2013). Airways enhance-
ment was first performed applying eigenvalue analysis of the Hes-
sian to give a higher response in dark tubes. Voxels where the
plane perpendicular to the airway direction eigenvector intersects
a hollow sphere of radius r, with wall thickness w (estimated from
the maximum scale), following Montaudon et al. (2007), were then
marked as airway walls. The probability of being a vessel of each
voxel was then subtracted by its probability of being airway wall.

Method U (Graz University of Technology) used a multiscale
vessel enhancement filter adapted from the tube detection filter
by Bauer et al. (2010), followed by centerline extraction. Vessel
enhancement consisted of an analysis of the Hessian eigenvectors
and computation of an offset vesselness function containing the
gradient information sampled at circles of different radii
perpendicular to the tube direction (eigenvector with smallest
eigenvalue), a local symmetry measure, and an adaptive vesselness
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threshold. Centerline fragments from non-maxima suppression
were then connected using a shortest path algorithm, and the ves-
sel radius was estimated using a spherical ray-cast approach,
which was finally refined by minimizing a geodesic active contour
energy, as proposed by Reinbacher et al. (2010). The final probabil-
ity was obtained by weighting the segmentation based on the
original vesselness response, which was rescaled to [0,255]. The
method was presented in more detail in Helmberger et al. (2013).

Method V used the same variational region growing (VRG)
approach and same initialization as method F. However, the vess-
elness term was calculated using the Frangi’s filter (Frangi et al.,
1998) at scales ranging from 0.2 to 3.5, and the lung mask was
modified as follows. The volume of interest was eroded to reduce
false positives near the pleural surface. The bronchi and their walls
were masked. To do so, first the bronchial tree was segmented by
region growing with leakage detection (Mori et al., 2000), which
iteratively increases a threshold value until the number of voxels
aggregated in one iteration becomes too large. Then the branches
of the segmented tree were dilated proportionally to the branch
thickness. The tree was successively pruned by morphological
opening with a bank of increasing-size structuring elements, thus
generating several trees, each one only keeping the branches
thicker than the structuring element. Each of these trees was then
dilated with a structuring element half as large as the one used for
opening. The final bronchial-tree mask was obtained as union of all
the dilated trees.

Method W is a probabilistic version of method V. It uses the bin-
ary segmentation result and the vesselness map calculated by
method V. The latter were scaled to fit the dynamics required from
the submissions. Each voxel belonging to the segmented vascular
tree was assigned the value of the corresponding voxel from the
vesselness map, while the voxels beyond the vessel tree were
assigned zeros. The method was presented in more detail in
Orkisz et al. (2014).

5. Results

On the principal dataset, the Az value was calculated for each
individual image, as well as combining all points. For each submis-
sion, the optimal threshold – threshold at which the optimal spec-
ificity/sensitivity was obtained – was calculated with the principal
dataset and was used as the optimal threshold across the other
datasets. Each submission received a table containing the Az score
and the specificity and sensitivity point at the optimal threshold,
across all nine datasets as well as for each of the twenty scans.

For the Principal category, the majority of methods do a good
job segmenting vessels, with the median performer having Az
score of 0.932, and thirteen submissions scoring more than 0.9
(see Tables 4 and 5 for exact scores breakdown). Individually, the
top five methods have very similar optimal specificity-sensitivity
points (above 0.93/0.93), as shown in Fig. 7 (right).

Analyzing the different categories, however, shows a wide
spread (see Fig. 8 (left)) in the performance for every category
except for Large Vessels (4th), where all submissions generally per-
form very well – as expected, gradually worsening in Medium Ves-
sels (3rd) and Small Vessels (2nd). This reveals that small vessels
segmentation is still generally difficult. Airway walls (5th category)
are also source of false positives for many submissions. Several cat-
egories are more difficult – such as Vessel/Dense Lesions (median
Az score: 0.625), Vessel/Mucus-filled Bronchi (median Az score:
0.509) and Vessel/Nodules (median Az score: 0.461).

Overall, we found no significant difference between the perfor-
mance across all 20 scans (see Fig. 8 (right)). There is no single
pathology that confounds the vessel segmentation significantly.
Rather, it is the presence of very specific structures caused by
underlying lung diseases (i.e. mucus-filled bronchi, nodules and
dense lesions), which is the primary confounding factor among
the submitted methods. We note, however, that in low-dose CT
scans of lungs affected by emphysema (images 14 and 20), perfor-
mance spread is smaller, although the median Az scores are com-
parable to the rest. This could be due to increased contrast
observed in emphysematous lungs, characterized by destruction
of lung tissues, leaving larger airspaces. We also found no statisti-
cal difference between segmentation performance for contrast and
non-contrast images.
6. Discussion

In this section, we analyze the reference annotation process, the
performance analysis by ROC curves and trends, strengths and
weaknesses of participating algorithms.
6.1. Reference annotation and evaluation

The points whose labels the annotators did not unanimously
agree made up about 22% of the total number of generated POIs.
The majority of these points lie on the border of the lungs. Revisit-
ing the rest of these contested points reveals that label discrepancy
did not arise due to confounding structures which might look like
vessels, but rather because many of them are located on the edge of
a vessel structure. The points which lie on the vessel borders
become interesting when we are addressing vessel sizes while, in
the VESSEL12 Challenge, we focus on vessel detection and not in
exact demarcation of vessel borders. To avoid confusion about
whether a POI is just on the border or just off the border of a vessel,
we included only the unanimously agreed POIs.

The manual annotation process is highly time consuming. It
took an average of 14 h for each evaluator to finish annotating all
the automatically generated POIs in the Principal category. A natu-
ral consequence of the evaluation process we adopted is that the
annotation process did not produce complete vessel trees, which
may be useful for quick visual evaluation. In addition, using only
four sections from each image might seem to suggest that we are
evaluating over a minuscule proportion of the CT image. To ascer-
tain that our evaluation framework gives a stable result – that is,
that we have evaluated on a sufficiently large number of points –
we compared the performance of the submissions using the POIs
generated for two sections only. As shown in Fig. 10, we found
no significant difference between using only two slices and four
slices (R = 0.9995), suggesting that with four slices we have sam-
pled the points for the Principal category sufficiently.

When deciding on a procedure for evaluation, one faces a num-
ber of choices. We opted for ROC analysis because it is a well-
established, widely used paradigm. To allow methods that produce
a binary segmentation to participate, and to be able to directly
compare these methods with probabilistic methods, we decided
to convert binary results into probabilistic results via a distance
transform. A binary result has numerous possible corresponding
probabilistic distributions. The distance transform gives but one
possibility. There is a simple intuition behind this: the further
away a voxel is from a confirmed vessel, the lower the probability
is for it to be a vessel. Upon hindsight, it is hard to say if this pro-
cedure could really represent the actual probabilistic distribution
of these methods.

We observe a marked difference in performance between the
probabilistic and binary submissions (see Fig. 8 and Table 4),
though not all binary submissions performed poorly, as seen from
Fig. 8 – where Method P is a binary submission in the top 10 rank-
ing for the Principal category. Generally, probabilistic submissions
seem to have higher sensitivity than the binary methods in the
Principal category (see Fig. 9).



Table 4
Scores for all submissions across all categories. Principal Rank is derived from the Az score on the Principal category. For each method, Average Rank indicates the average of its
rank across all categories. (Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense Lesion, 7: Vessel/Mucus-filled
bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

Principal score Az score for each category As of ISBI’12 Post-ISBI’12

1 2 3 4 5 6 7 8 9 Average rank Principal Average rank Principal

Probabilistic
B 0.837 0.665 0.885 0.947 0.819 0.709 0.660 0.627 0.735 9.9 13 13.2 18
C 0.812 0.583 0.862 0.972 0.658 0.479 0.355 0.712 0.355 13.6 14 17.8 19
D 0.980 0.976 0.979 0.985 0.934 0.635 0.607 0.757 0.358 6.2 5 7.9 6
E 0.852 0.645 0.918 0.974 0.766 0.655 0.597 0.699 0.557 10.0 12 13.2 17
G 0.932 0.885 0.954 0.955 0.912 0.625 0.404 0.649 0.461 10.7 10 13.1 12
H 0.984 0.972 0.986 0.993 0.908 0.555 0.397 0.654 0.330 8.1 1 10.1 2
I 0.981 0.975 0.985 0.983 0.943 0.706 0.617 0.750 0.617 4.0 3 5.2 4
K 0.975 0.952 0.975 0.995 0.738 0.565 0.462 0.750 0.336 8.3 6 10.8 7
L 0.984 0.979 0.982 0.991 0.940 0.624 0.513 0.734 0.300 6.7 1 8.2 2
M 0.981 0.978 0.983 0.981 0.941 0.679 0.619 0.752 0.397 5.1 3 6.4 4
N 0.956 0.964 0.955 0.949 0.953 0.726 0.661 0.652 0.466 7.1 8 8.9 10
Q 0.561 0.479 0.485 0.709 0.492 0.528 0.450 0.651 0.571 14.7 18 18.9 23

Binary
F 0.739 0.444 0.766 0.981 0.544 0.510 0.276 0.790 0.385 12.9 15 16.7 20
J 0.652 0.448 0.566 0.920 0.376 0.419 0.184 0.829 0.544 14.4 17 18.4 22
O 0.737 0.500 0.742 0.947 0.556 0.554 0.236 0.779 0.580 12.7 16 16.6 21
P 0.902 0.821 0.921 0.955 0.865 0.683 0.462 0.645 0.507 10.3 11 13.1 13

Reference
R1 0.970 0.929 0.984 0.995 0.775 0.471 0.416 0.745 0.248 9.6 7 12.4 9
R2 0.946 0.933 0.946 0.957 0.948 0.792 0.707 0.730 0.788 5.9 9 7.4 11

Post-ISBI’12 submissions
S 0.986 0.977 0.986 0.994 0.944 0.667 0.595 0.654 0.439 - - 6.2 1
T 0.972 0.943 0.983 0.987 0.900 0.58 0.509 0.763 0.287 - - 9.9 8
U 0.863 0.781 0.848 0.951 0.851 0.712 0.677 0.646 0.659 - - 12.0 16
V 0.874 0.673 0.950 0.982 0.794 0.480 0.364 0.696 0.281 - - 16.0 15
W 0.879 0.693 0.953 0.976 0.845 0.583 0.495 0.766 0.367 - - 12.2 14

Table 5
Optimal Specificity/Sensitivity points across all categories. For probabilistic methods, the optimal operating point is calculated across all the points within the category. For binary
methods, the optimal operating point is the original binary submission. (Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6:
Vessel/Dense Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

Specificity/Sensitivity score for each category

1 2 3 4 5 6 7 8 9

Probabilistic
B 0.99/0.68 1.00/0.34 0.99/0.78 0.99/0.90 0.94/0.68 0.56/0.68 0.44/0.68 0.55/0.62 0.56/0.68
C 0.98/0.64 0.98/0.19 0.98/0.74 0.98/0.95 0.66/0.64 0.44/0.64 0.25/0.64 0.66/0.82 0.32/0.64
D 0.95/0.95 0.94/0.94 0.98/0.95 0.98/0.97 0.82/0.95 0.37/0.95 0.29/0.95 0.50/0.83 0.06/0.95
E 0.92/0.74 0.98/0.36 0.95/0.85 0.95/0.95 0.52/0.74 0.33/0.74 0.21/0.74 0.53/0.84 0.16/0.74
G 0.94/0.90 0.92/0.84 0.96/0.93 0.95/0.93 0.83/0.90 0.35/0.90 0.18/0.90 0.50/0.82 0.15/0.90
H 0.94/0.95 0.91/0.94 0.96/0.95 0.99/0.98 0.70/0.95 0.26/0.95 0.11/0.95 0.08/0.97 0.03/0.95
I 0.95/0.94 0.92/0.93 0.96/0.96 0.97/0.96 0.85/0.94 0.39/0.94 0.26/0.94 0.56/0.78 0.16/0.94
K 0.91/0.96 0.89/0.95 0.93/0.97 0.98/0.98 0.38/0.96 0.20/0.96 0.06/0.96 0.44/0.86 0.03/0.96
L 0.96/0.95 0.94/0.96 0.96/0.96 0.98/0.98 0.83/0.95 0.37/0.95 0.20/0.95 0.49/0.84 0.07/0.95
M 0.95/0.95 0.93/0.95 0.95/0.96 0.98/0.94 0.83/0.95 0.43/0.95 0.29/0.95 0.58/0.77 0.16/0.95
N 0.94/0.92 0.93/0.95 0.96/0.91 0.98/0.90 0.95/0.92 0.57/0.92 0.43/0.92 0.60/0.59 0.17/0.92
Q 0.95/0.17 0.95/0.01 0.95/0.02 0.95/0.45 0.79/0.17 0.88/0.17 0.70/0.17 0.93/0.36 0.98/0.17

Binary
F 0.83/0.56 0.33/0.65 0.78/0.61 0.98/0.97 0.28/0.56 0.42/0.56 0.14/0.56 0.57/0.91 0.29/0.56
J 0.56/0.60 0.41/0.59 0.51/0.58 0.94/0.84 0.08/0.60 0.31/0.60 0.00/0.60 0.34/0.96 0.53/0.60
O 0.75/0.59 0.43/0.59 0.76/0.59 0.98/0.89 0.26/0.59 0.42/0.59 0.02/0.59 0.63/0.79 0.59/0.59
P 0.95/0.84 0.94/0.71 0.96/0.88 0.96/0.92 0.74/0.84 0.48/0.84 0.16/0.84 0.60/0.64 0.35/0.84

Reference
R1 0.92/0.91 0.85/0.91 0.96/0.97 0.98/0.99 0.50/0.91 0.21/0.91 0.12/0.91 0.44/0.86 0.02/0.91
R2 0.88/0.89 0.85/0.89 0.89/0.88 0.90/0.89 0.89/0.89 0.57/0.89 0.38/0.89 0.69/0.70 0.53/0.89

Post-ISBI’12 submissions
S 0.94/0.95 0.93/0.93 0.95/0.95 0.96/0.96 0.75/0.95 0.29/0.95 0.13/0.95 0.48/0.80 0.07/0.95
T 0.96/0.89 0.87/0.96 0.96/0.95 0.99/0.96 0.78/0.89 0.32/0.89 0.22/0.89 0.49/0.84 0.02/0.89
U 0.97/0.74 0.97/0.59 0.97/0.72 0.97/0.91 0.93/0.74 0.57/0.74 0.44/0.74 0.66/0.58 0.46/0.74
V 0.94/0.77 0.73/0.54 0.94/0.92 0.94/0.96 0.77/0.77 0.25/0.77 0.09/0.77 0.56/0.82 0.11/0.77
W 0.97/0.77 0.96/0.42 0.97/0.92 0.98/0.95 0.85/0.77 0.34/0.77 0.13/0.77 0.56/0.81 0.12/0.77
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6.2. Strengths and weaknesses of the methods

Across all submissions, none used anatomic knowledge apart
from density and structure tubularity. To our knowledge, none
used information about noise level associated with different recon-
struction kernels, nor average vessel density in contrast vs. non-
contrast scans, nor the average vessel tree volume that corre-
sponds to different lung pathologies.

To their merit, several groups reported that their algorithms
were adapted from vessel segmentation in other organs or other
modalities (e.g. liver from abdominal CT, brain MRI), highlighting
the relatively low barrier to develop algorithms for segmenting
lung vessels.

For the challenge, each team was required to provide an esti-
mate of the running time of each method. However, running times
are as reported by individual teams and each algorithm has been
run on different hardware specifications. As such, they were not
exactly comparable and we have decided not to include them in
the analysis.

When we performed the optimal threshold calculation, the
value tends towards a low value (average: 90.3, min: 1, max:
204). There are two possible reasons: either many submissions
tend to favor higher sensitivity as opposed to specificity, as seen
from the optimal threshold value calculated, or they used a subop-
timal conversion from other numeric types to unsigned char
required to represent the probability. A method which returns a
larger range of probability values that is not uniformly distributed
would need to ensure that the conversion to the required range of
0–255, properly captures the method’s optimal performance range.

The performance of each method is not uniform across all
categories. Most methods that performed well in the Principal cat-
egory also did well in the others – the exceptions include several
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top-performing methods which did not take into account that
there are other structures in the lungs with similar attributes –
intensity or Hessian eigenvalues – such as nodules and
mucus-filled bronchi. Method H, for instance, scores 18th and
19th position in the Mucus-filled bronchi (7th) and Nodules (9th)
categories, while scoring 1st in the Principal category (as of ISBI’12).

We find that most Hessian-based methods generally obtain the
highest Az scores on the Principal category. However, these meth-
ods still suffer in the evaluation categories containing structures
with Hessian eigenvalues similar to those of vessels (e.g. airway
walls, mucus-filled bronchi), since accurate determination of the
structures depends highly on the scale used. Using a large number
of scales—seven—, the Hessian-based method R2 was able to per-
form fairly in categories containing nodules, mucus-filled bronchi
and dense lesions. Although structures such as nodules typically
have eigenvalue scale signatures distinct from vessels, when the
number and range of scales used is inadequate, many Hessian-
based vesselness filters return a false significant response. See
Fig. 11(e) for examples.

Overall, the most difficult categories turn out to be Mucus-filled
bronchi (7th) and Nodules (9th). Several methods filtered the
images to remove known non-vessel structures such as fissures,
airway walls, and nodules. Methods which explicitly exclude nod-
ules have less false positives on nodules, as can be seen in
Fig. 11(f). Similarly, airway wall exclusion also reduces false posi-
tives, as shown in Fig. 12. The Vessel-in-Consolidation/Consolida-
tion (8th) category is another difficult category; none of the
methods was very successful in this task.

Most intensity threshold-based methods include high-density
structures in the lung which are not vessels. For this reason, many
submissions include postprocessing steps, which explicitly
excludes known structures such as airway walls, nodules, and
lobar fissures. However, the postprocessing steps do not always
ensure better performance. In many cases postprocessing does
not catch all false positives and could be improved.
One surprising observation could be made with regards to the
baseline method R1 that simply uses density as a predictor of vess-
elness. While multiscale vesselness filter methods perform well in
all categories, the much simpler density method performs admira-
bly in nearly all categories. This method completely fails, however,
where confounding structures with similar density as vessels are
present: R1 is one of the worst performers in the categories Ves-
sel/Mucus filled bronchi (ranked 16th) and Vessel/Nodule (23rd
among all participants).



(a) Original (b)Method S (c)Method L (d) Method M (e) Method R2 (f ) Method J

Fig. 11. Top to bottom: axial, sagittal, and coronal views. (a) Original scan of a nodule from scan 01. (b–d) Same slice overlaid with vessel segmentations by top three teams
(methods S, L and M). (e) Same nodule overlaid with segmentation by method R2. As the size of the nodules are larger than the scales used for vessel enhancement filter,
pixels at the nodule borders return high response for vesselness. (f) Same nodule overlaid with segmentation from method J, which used explicit nodule removal.

Fig. 12. Effect of explicit exclusion of airway walls on vessel segmentation of scan 04 (left to right): original, with no airway wall removal (method K), and airway wall
excluded (method O) where the bright circles indicate airway walls which were removed explicitly. Middle image shows oversegmentation, not severely penalized because
our choice of evaluation method. Refer to text of Section 6.2 for details.
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6.3. Limitations of the methodology

Even though we included a large number of categories on which
to assess the participating methods, the evaluation procedure
adopted for the VESSEL12 Challenge has its limitations. First, the
performance of the methods in determining vessel diameter can-
not be evaluated. Using our method to select POIs, negative points
tend to be located in the lung parenchyma – typically at several
pixels from the real vessel border, thus not penalizing oversegmen-
tation close to vessel borders (see middle plot of Fig. 12 for exam-
ple of oversegmentation), nor segmentation which includes voxels
where vessels are obviously not to be found (e.g., noisy area). For
specifically measuring vessel size, manual precise annotations of
vessel would have to be painstakingly constructed by human
experts, or a scan of a physical phantom with tubes of known
diameters could be used, but this would expand the scope of the
challenge substantially.

The prohibitive amount of time it took to manually segment the
images made it impractical to produce complete reference – which
may be useful for comparing reconstructed vasculature tree and
evaluating the connectivity of the submissions. In the next section,
we address ways to improve a future version of the challenge
without invalidating the existing results.
6.4. Future of the VESSEL12 challenge

Following the example of previous challenges, VESSEL12 will
remain open to receive new submissions and evaluate these in
the same manner as all already submitted results, thus providing
a fair comparison. As identified in the previous Section, there is a
number of limitations with respect to the evaluation procedure.
Even though nine different categories are reported, several aspects
of the quality of vessels segmentations are not covered by these
nine metrics. However, the results of the submitted methods make
it clear that methods perform very differently on these nine cate-
gories (see Fig. 9).

One of the ways to improve the challenge is to invite the
research community to contribute and extend the existing evalua-
tion procedures. This can be done in two ways. The first method is
to upload new sets of labeled reference points. These could include
new categories of negative points not included in the current met-
rics, such as fissure points and vessel junctions. Another category
could be points deemed just inside and just outside vessel
cross-sections, to evaluate the accuracy of diameter measurements
submitted by the various methods – not captured by the current
metrics. Users can then decide which combination of negative
and positive points should be evaluated, similar to the selection
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of sets of points given in Table 2. The second method is to upload
entirely new evaluation code in the form of standard C++ or Python
executables. This could be used to evaluate connectivity of
extracted vessels trees, for example. It could also pave the way to
provide proper training and testing data sets for the evaluation
of future methods.

We believe that the possibility to add new evaluation metrics to
an existing challenge framework is a new step in its evolution that
may stimulate further research in the area of thoracic vessel seg-
mentation in CT.
7. Conclusions

We have presented the VESSEL12 Challenge framework that
allows for direct comparison of vessel segmentation algorithms
for thoracic CT data. Results show that there exist substantial per-
formance differences between methods.

Most methods that employ techniques that detect tubular
structure (vesselness-based approaches) do an admirable job in
distinguishing vessels from lung parenchyma, with more than half
the submissions scoring more than 0.9 in the Principal category,
and the top five methods scoring more than 0.97 in the more diffi-
cult category of small vessels. Not all methods perform as well,
highlighting the difficulty of the task. The other evaluation catego-
ries, however, demonstrate that none of submitted methods are
capable of distinguishing vessels from other dense structures in
the lungs – parenchymal and bronchial abnormalities. Some meth-
ods specifically remove well-known structures such as airway
walls, but other commonly present abnormalities pose a problem.
We conclude therefore that highly accurate vessel segmentation in
the lungs is still very much an open problem.

We hope the contribution of the VESSEL12 Challenge will help
future researchers in this area. The manually annotated reference
dataset for vessels in the lungs is available online for testing of
future algorithms. The categories proposed could also help those
who are designing lesion-specific algorithms to focus on certain
aspects of lung vessel segmentation. The evaluation of the various
vessel segmentation methods in the presence of structures caused
by lung diseases could help those who are working on improving
techniques, to better understand the nature of the problem and
address specific shortfalls of existing methods.
References

Agam, G., Armato III, S.G., Wu, C., 2005. Vessel tree reconstruction in thoracic CT
scans with application to nodule detection. IEEE Trans. Med. Imag. 24, 486–499.

Aubert-Broche, B., Evans, A.C., Collins, L., 2006. A new improved version of the
realistic digital brain phantom. NeuroImage 32, 138–145.

Aylward, S.R., Bullitt, E., 2002. Initialization, noise, singularities, and scale in height
ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imag.
21, 61–75.

Bauer, C., Pock, T., Sorantin, E., Bischof, H., Beichel, R., 2010. Segmentation of
interwoven 3D tubular tree structures utilizing shape priors and graph cuts.
Med. Image Anal. 14, 172–184.

van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J., 2003. Level-set
based artery-vein separation in blood pool agent CE-MR angiograms. IEEE
Trans. Med. Imag. 22, 1224–1234.

Bülow, T., Wiemker, R., Blaffert, T., Lorenz, C., Renisch, S., 2005. Automatic
extraction of the pulmonary artery tree from multi-slice CT data. In:
Proceedings of the SPIE, pp. 730–740.

Coates, A., Ng, A.Y., 2012. Learning Feature Representations with K-Means. Springer-
Verlag, pp. 561–580.

van Dongen, E., van Ginneken, B., 2010. Automatic segmentation of pulmonary
vasculature in thoracic CT scans with local thresholding and airway wall
removal. In: 2010 7th IEEE International Symposium on Biomedical Imaging
(ISBI), pp. 668–671.

Estepar, R.S.J., Ross, J.C., Russian, K., Schultz, T., Washko, G.R., Kindlmann, G.L., 2012.
Computational vascular morphometry for the assessment of pulmonary
vascular disease based on scale-space particles. In: 2012 9th IEEE
International Symposium on Biomedical Imaging (ISBI), pp. 1479–1482.

Fawcett, T., 2006. An introduction to ROC analysis. Patt. Recog. Lett. 27, 861–874.
Fetita, C., Brillet, P.Y., Prêteux, F.J., 2009a. Morpho-geometrical approach for 3D
segmentation of pulmonary vascular tree in multi-slice CT. In: Pluim, J.P.W.,
Dawant, B.M. (Eds.), Medical Imaging 2009: Image Processing. SPIE, pp.
72594F–72594F-12.

C. Fetita, M. Ortner, P.Y. Brillet, Y. Ould Hmeidi, F. Prêteux, Labeling the pulmonary
arterial tree in CT images for automatic quantification of pulmonary embolism.
In: Wong, K.H., Miga, M.I., (Eds.), Medical Imaging 2010: Visualization, Image-
Guided Procedures, and Modeling, SPIE. International Society for Optical
Engineering, 2010, pp. 76251E–76251E-12.

Fetita, C., Ortner, M., Brillet, P.Y., Prêteux, F., Grenier, P., et al., 2009b. A
morphological-aggregative approach for 3d segmentation of pulmonary
airways from generic MSCT acquisitions. In: Proceedings of Second
International Workshop on Pulmonary Image Analysis, pp. 215–226.

Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A., 1998. Multiscale vessel
enhancement filtering. In: Medical Image Computing and Computer-Assisted
Intervention, pp. 130–137.

Gao, Z., Grout, R.W., Hoffman, E.A., Saha, P.K., 2012. Multilevel tree analysis of
pulmonary artery/vein trees in noncontrast CT images. In: Haynor, D.R.,
Ourselin, S. (Eds.), Medical Imaging 2012: Image Processing. SPIE, pp.
83142W–83142W–8.

van Ginneken, B., Armato, S.G., de Hoop, B., van de Vorst, S., Duindam, T., Niemeijer,
M., Murphy, K., Schilham, A.M.R., Retico, A., Fantacci, M.E., Camarlinghi, N.,
Bagagli, F., Gori, I., Hara, T., Fujita, H., Gargano, G., Belloti, R., Carlo, F.D., Megna,
R., Tangaro, S., Bolanos, L., Cerello, P., Cheran, S.C., Torres, E.L., Prokop, M., 2010.
Comparing and combining algorithms for computer-aided detection of
pulmonary nodules in computed tomography scans: the ANODE09 study.
Med. Image Anal. 14, 707–722.

Hameeteman, K., Zuluaga, M., Freiman, M., Joskowicz, L., Cuisenaire, O., Valencia,
L.F., Glsn, M., Krissian, K., Mille, J., Wong, W., Orkisz, M., Tek, H., Hoyos, M.H.,
Benmansour, F., Chung, A., Rozie, S., van Gils, M., van den Borne, L., Sosna, J.,
Berman, P., Cohen, N., Douek, P., Snchez, I., Aissat, M., Schaap, M., Metz, C.,
Krestin, G., van der Lugt, A., Niessen, W., van Walsum, T., 2011. Evaluation
framework for carotid bifurcation lumen segmentation and stenosis grading.
Med. Image Anal. 15, 477–488.

Heimann, T., van Ginneken, B., Styner, M., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A.,
Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A.,
Cashman, P., Chi, Y., Cordova, A., Dawant, B., Fidrich, M., Furst, J., Furukawa, D.,
Grenacher, L., Hornegger, J., Kainmuller, D., Kitney, R., Kobatake, H., Lamecker,
H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H.P., Nemeth, G., Raicu, D.,
Rau, A.M., van Rikxoort, E., Rousson, M., Rusko, L., Saddi, K., Schmidt, G., Seghers,
D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J.,
Wimmer, A., Wolf, I., 2009. Comparison and evaluation of methods for liver
segmentation from CT datasets. IEEE Trans. Med. Imag. 28, 1251–1265.

Helmberger, M., Urschler, M., Pienn, M., Balint, Z., Olschewski, A., Bischof, H., 2013.
Pulmonary vascular tree segmentation from contrast-enhanced CT images.
CoRR abs/1304.7140.

Jimenez-Carretero, D., Santos, A., Kerkstra, S., Rudyanto, R., Ledesma-Carbayo, M.,
2013. 3D Frangi-based lung vessel enhancement filter penalizing airways. In:
2013 10th IEEE International Symposium on Biomedical Imaging (ISBI), pp.
914–917.

Kaftan, J.N., Kiraly, A.P., Bakai, A., Das, M., Novak, C.L., Aach, T., 2008. Fuzzy
pulmonary vessel segmentation in contrast enhanced CT data. In: Reinhardt,
J.M., Pluim, J.P.W. (Eds.), Medical Imaging 2008: Image Processing. SPIE, pp.
69141Q–69141Q-12.

Kirbas, C., Quek, F., 2004. A review of vessel extraction techniques and algorithms.
ACM Comput. Surv. 36 (2), 81–121.

van Klaveren, R.J., 2011. Is CT screening for lung cancer ready for prime time? J.
Thorac. Imag. 26, 4–5.

Korfiatis, P.D., Kalogeropoulou, C., Karahaliou, A.N., Kazantzi, A.D., Costaridou, L.I.,
2011. Vessel tree segmentation in presence of interstitial lung disease in MDCT.
IEEE Trans. Inform. Technol. Biomed. 15, 214–220.

Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y., 2000. Model based
detection of tubular structures in 3D images. Comp. Vis. Image Understand. 80,
130–171.

Kuhnigk, J.M., Dicken, V., Zidowitz, S., Bornemann, L., Kuemmerlen, B., Krass, S.,
Peitgen, H.O., Yuval, S., Jend, H.H., Rau, W.S., Achenbach, T., 2005. New tools for
computer assistance in thoracic CT part 1. Functional analysis of lungs, lung
lobes and bronchopulmonary segments. Radiographics 25, 525–536.

Kumar, I.V., Jeyanthi, S., Maheswari, N.U., Venkatesh, R., 2012. Vascular
segmentation of interstitial pneumonia patterns in lung using MDCT. Int. J.
Comp. Sci. Inform. Technol. Sec. 2, 66–71.

Lassen, B., van Rikxoort, E.M., Schmidt, M., Kerkstra, S., van Ginneken, B., Kuhnigk, J.,
2012. Automatic segmentation of the pulmonary lobes from chest CT scans
based on fissures, vessels, and bronchi. IEEE Trans. Med. Imag. 32, 210–222.

Lavi, G., Lessick, J., Johnson, P., Khullar, D., 2004. Single-seeded coronary artery
tracking in CT angiography. In: IEEE Symposium Conference Record Nuclear
Science 2004.. IEEE, pp. 3308–3311.

Lei, T., Udupa, J.K., Saha, P.K., Odhner, D., 2001. Artery-vein separation via MRA-an
image processing approach. IEEE Trans. Med. Imag. 20, 689–703.

Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G., 2009. A review of 3D vessel lumen
segmentation techniques: models, features and extraction schemes. Med.
Image Anal. 13, 819–845.

Linguraru, M.G., Pura, J.a., Van Uitert, R.L., Mukherjee, N., Summers, R.M., Minniti, C.,
Gladwin, M.T., Kato, G., Machado, R.F., Wood, B.J., 2010. Segmentation and
quantification of pulmonary artery for noninvasive CT assessment of sickle cell
secondary pulmonary hypertension. Med. Phys. 37, 1522.

http://refhub.elsevier.com/S1361-8415(14)00111-X/h0005
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0005
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0010
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0010
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0015
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0015
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0015
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0020
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0020
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0020
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0025
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0025
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0025
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0035
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0035
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0050
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0055
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0055
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0055
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0055
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0075
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0075
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0075
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0075
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0080
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0085
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0090
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0105
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0105
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0105
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0105
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0110
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0110
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0115
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0115
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0120
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0120
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0120
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0125
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0125
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0125
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0130
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0130
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0130
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0130
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0135
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0135
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0135
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0140
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0140
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0140
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0145
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0145
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0145
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0150
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0150
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0155
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0155
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0155
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0160
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0160
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0160
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0160


1232 R.D. Rudyanto et al. / Medical Image Analysis 18 (2014) 1217–1232
Lo, P., van Ginneken, B., Reinhardt, J.M., Tarunashree, Y., de Jong, P.A., Irving, B.,
Fetita, C., Ortner, M., Pinho, R., Sijbers, J., Feuerstein, M., Fabijanska, A., Bauer, C.,
Beichel, R., Mendoza, C.S., Wiemker, R., Lee, J., Reeves, A.P., Born, S., Weinheimer,
O., van Rikxoort, E.M., Tschirren, J., Mori, K., Odry, B., Naidich, D.P., Hartmann,
I.J., Hoffman, E.A., Prokop, M., Pedersen, J.H., de Bruijne, M., 2012. Extraction of
airways from CT (EXACT’09). IEEE Trans. Med. Imag. 31, 2093–2107.

Lo, P., Sporring, J., Ashraf, H., Pedersen, J.J.H., de Bruijne, M., 2010. Vessel-guided
airway tree segmentation: a voxel classification approach. Med. Image Anal. 14,
527–538.

Marten, K., Dicken, V., Kneitz, C., Hhmann, M., Kenn, W., Hahn, D., Engelke, C., 2009.
Interstitial lung disease associated with collagen vascular disorders: disease
quantification using a computer-aided diagnosis tool. Euro. Radiol. 19, 324–332.

Masutani, Y., MacMahon, H., Doi, K., 2002. Computerized detection of pulmonary
embolism in spiral CT angiography based on volumetric image analysis. IEEE
Trans. Med. Imag. 21, 1517–1523.

Matsuoka, S., Washko, G.R., Yamashiro, T., Estepar, R.S.J., Diaz, A., Silverman, E.K.,
Hoffman, E., Fessler, H.E., Criner, G.J., Marchetti, N., Scharf, S.M., Martinez, F.J.,
Reilly, J.J., Hatabu, H., 2010. Pulmonary hypertension and computed
tomography measurement of small pulmonary vessels in severe emphysema.
Am. J. Resp. Crit. Care Med. 181, 218–225.

Metz, C., Schaap, M., Der Giessen, A., Walsum, T., Niessen, W., 2007. Semi-automatic
coronary artery centerline extraction in computed tomography angiography
data. In: 2007 4th IEEE International Symposium on Biomedical Imaging (ISBI).
IEEE, pp. 856–859.

Montaudon, M., Desbarats, P., Berger, P., de Dietrich, G., Marthan, R., Laurent, F.,
2007. Assessment of bronchial wall thickness and lumen diameter in human
adults using multi-detector computed tomography: comparison with
theoretical models. J. Anat. 211, 579–588.

Mori, K., Hasegawa, J., Suenaga, Y., Toriwaki, J., 2000. Automated anatomical
labeling of the bronchial branch and its application to the virtual bronchoscopy
system. IEEE Trans. Med. Imag. 19, 103–114.

Murphy, K., van Ginneken, B., Reinhardt, J.M., Kabus, S., Ding, K., Deng, X., Cao, K., Du,
K., Christensen, G.E., Garcia, V., Vercauteren, T., Ayache, N., Commowick, O.,
Malandain, G., Glocker, B., Paragios, N., Navab, N., Gorbunova, V., Sporring, J., de
Bruijne, M., Han, X., Heinrich, M.P., Schnabel, J.A., Jenkinson, M., Lorenz, C., Modat,
M., McClelland, J.R., Ourselin, S., Muenzing, S.E.A., Viergever, M.A., Nigris, D.D.,
Collins, D.L., Arbel, T., Peroni, M., Li, R., Sharp, G.C., Schmidt-Richberg, A., Ehrhardt,
J., Werner, R., Smeets, D., Loeckx, D., Song, G., Tustison, N., Avants, B., Gee, J.C.,
Staring, M., Klein, S., Stoel, B.C., Urschler, M., Werlberger, M., Vandemeulebroucke,
J., Rit, S., Sarrut, D., Pluim, J.P.W., 2011. Evaluation of registration methods on
thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imag. 31, 1901–1920.

Murphy, K., van Ginneken, B., Schilham, A.M.R., de Hoop, B.J., Gietema, H.A., Prokop,
M., 2009. A large scale evaluation of automatic pulmonary nodule detection in
chest CT using local image features and k-nearest-neighbour classification.
Med. Image Anal. 13, 757–770.

Oksuz, I., Unay, D., Kadipasaoglu, K., 2013. Region growing on frangi vesselness
values in 3-D CTA data. In: 21st Signal Processing and Communications
Applications Conference (SIU), pp. 1–4.

Orkisz, M., Hernández Hoyos, M., Pérez Romanello, V., Pérez Romanello, C., Prieto, J.,
Revol-Muller, C., 2014. Segmentation of the pulmonary vascular trees in 3D CT
images using variational region-growing. IRBM.

Pacureanu, A., Revol-Muller, C., Rose, J.L., Ruiz, M.S., Peyrin, F., 2010. Vesselness-
guided variational segmentation of cellular networks from 3D micro-CT. In: 2010
7th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 912–915.

Peters, R.J.M., Marquering, H.A., Doan, H., Hendriks, E.A., de Roos, A., Reiber, J.H.C.,
Stoel, B.C., 2007. SPIE, pp. 65143Q–65143Q-11.

Reeves, A.P., Chan, A.B., Yankelevitz, D.F., Henschke, C.I., Kressler, B., Kostis, W.J.,
2006. On measuring the change in size of pulmonary nodules. IEEE Trans. Med.
Imag. 25, 435–450.

Reinbacher, C., Pock, T., Bauer, C., Bischof, H., 2010. Variational segmentation of
elongated volumetric structures. In: 23rd IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010. IEEE, San Francisco, CA, USA, pp. 3177–
3184.

van Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., van Ginneken, B., 2009.
Automatic lung segmentation from thoracic computed tomography scans using
a hybrid approach with error detection. Med. Phys. 36, 2934–2947.

Risse, F., Kuder, T.A., Kauczor, H.U., Semmler, W., Fink, C., 2009. Suppression of
pulmonary vasculature in lung perfusion MRI using correlation analysis. Euro.
Radiol. 19, 2569–2575.

Ritter, F., Boskamp, T., Homeyer, A., Laue, H., Schwier, M., Link, F., Peitgen, H.O.,
2011. Medical image analysis. IEEE Pulse 2, 60–70.

Rose, J.L., Revol-Muller, C., Reichert, C., Odet, C., 2009. Variational region growing.
In: VISAPP-09 International Conference on Computer Vision Theory and
Applications, pp. 51–56.

Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R., 1997. 3-
D multi-scale line filter for segmentation and visualization of curvilinear
structures in medical images. In: CRVMed and MRCAS. Springer Verlag, pp.
213–222.

Sato, Y., Nakajima, S., Shigara, N., Atsumi, H., Koller, T., Gerig, G., Kikinis, R., 1998.
Three-dimensional multi-scale line filter for segmentation and visualization of
curvilinear structures in medical images. Med. Image Anal. 2, 143–168.

Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet,
N.R., Bauer, C., Bogunovi, H., Castro, C., Deng, X., Dikici, E., O’Donnell, T., Frenay,
M., Friman, O., Hoyos, M.H., Kitslaar, P.H., Krissian, K., Khnel, C., Luengo-Oroz,
M.A., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C.,
Warfield, S.K., Zambal, S., Zhang, Y., Krestin, G.P., Niessen, W.J., 2009.
Standardized evaluation methodology and reference database for evaluating
coronary artery centerline extraction algorithms. Med. Image Anal. 13, 701–
714.

Shikata, H., Hoffman, E.A., Sonka, M., 2004. Automated segmentation of pulmonary
vascular tree from 3D CT images. In: Proceedings of the SPIE, pp. 107–116.

de Torres, J.P., Bastarrika, G., Wisnivesky, J.P., Alcaide, A.B., Campo, A., Seijo, L.M.,
Pueyo, J.C., Villanueva, A., Lozano, M.D., Montes, U., Montuenga, L., Zulueta, J.J.,
2007. Assessing the relationship between lung cancer risk and emphysema
detected on low-dose CT of the chest. Chest 132, 1932–1938.

Ukil, S., Reinhardt, J.M., 2009. Anatomy-guided lung lobe segmentation in X-ray CT
images. IEEE Trans. Med. Imag. 28, 202–214.

Xiao, C., Staring, M., Shamonin, D., Reiber, J.H., Stolk, J., Stoel, B.C., 2011. A strain
energy filter for 3D vessel enhancement with application to pulmonary CT
images. Med. Image Anal. 15, 112–124.

Xiao, C., Staring, M., Wang, Y., Shamonin, D.P., Stoel, B.C., 2013. Multiscale bi-
Gaussian filter for adjacent curvilinear structures detection with application to
vasculature images. IEEE Trans. Image Process. 22, 174–188.

Yonekura, T., Matsuhiro, M., Saita, S., Kubo, M., Kawata, Y., Niki, N., Nishitani, H.,
Ohmatsu, H., Kakinuma, R., Moriyama, N., 2007. Classification algorithm of
pulmonary vein and artery based on multi-slice CT image. In: Medical Imaging
2007: Computer-Aided Diagnosis. SPIE, pp. 65142E–65142E-8.

Zhou, C., Chan, H.P., Patel, S., Cascade, P.N., Sahiner, B., Hadjiiski, L.M., Kazerooni,
E.A., 2005. Preliminary investigation of computer-aided detection of pulmonary
embolism in three-dimensional computed tomography pulmonary angiography
images. Acad. Radiol. 12, 782–792.

Zhou, C., Chan, H.P., Sahiner, B., Hadjiiski, L.M., Chughtai, A., Patel, S., Wei, J., Ge, J.,
Cascade, P.N., Kazerooni, E.A., 2007. Automatic multiscale enhancement and
segmentation of pulmonary vessels in CT pulmonary angiography images for
CAD applications. Med. Phys. 34, 4567–4577.

Zhou, X., Hayashi, T., Hara, T., Fujita, H., Yokoyama, R., Kiryu, T., Hoshi, H., 2006.
Automatic segmentation and recognition of anatomical lung structures from
high-resolution chest CT images. Computer. Med. Imag. Graph. 30, 299–313.

Zhu, X., Xue, Z., Gao, X., Zhu, Y., Wong, S.C., 2009. Voles: Vascularity-oriented level
set algorithm for pulmonary vessel segmentation in image guided intervention
therapy. In: 2009 6th IEEE International Symposium on Biomedical Imaging
(ISBI), pp. 1247–1250.

http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0165
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0170
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0170
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0170
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0175
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0175
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0175
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0180
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0180
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0180
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0185
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0185
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0185
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0185
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0185
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0190
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0190
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0190
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0190
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0195
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0195
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0195
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0195
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0200
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0200
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0200
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0205
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0210
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0210
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0210
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0210
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0230
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0230
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0235
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0235
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0235
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0240
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0240
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0240
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0240
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0245
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0245
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0245
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0250
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0250
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0250
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0255
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0255
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0270
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0270
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0270
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0275
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0285
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0285
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0285
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0285
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0290
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0290
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0295
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0295
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0295
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0300
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0300
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0300
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0305
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0305
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0305
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0305
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0310
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0310
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0310
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0310
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0315
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0315
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0315
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0315
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0320
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0320
http://refhub.elsevier.com/S1361-8415(14)00111-X/h0320

	Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study
	1 Introduction
	1.1 Overview of existing methods
	1.2 Necessity of fair performance comparison
	1.3 Objectives
	1.4 Contributions
	1.5 Structure

	2 Material and methods
	2.1 Data collection
	2.2 Reference data annotation
	2.3 Training data

	3 Evaluation
	3.1 Evaluation categories
	3.2 Submission format requirement
	3.3 Evaluation methods of submitted data
	3.4 Scoring

	4 Challenge setup
	4.1 Challenge format
	4.2 Challenge participants
	4.3 Brief description of each submission
	4.4 Post-ISBI’12 submissions

	5 Results
	6 Discussion
	6.1 Reference annotation and evaluation
	6.2 Strengths and weaknesses of the methods
	6.3 Limitations of the methodology
	6.4 Future of the VESSEL12 challenge

	7 Conclusions
	References


