
 

 
 Abstract-- Dynamic positron emission tomography studies 
produce a large amount of image data, from which clinically 
useful parametric information can be extracted with the use of 
tracer kinetic methods. In order to facilitate the initial 
interpretation and visual analysis of these large image sequences, 
data reduction methods can be applied which at the same time 
maintain important information and allow basic feature 
characterization. We show here that the application of principal 
component analysis can provide high-contrast parametric image 
sets of lesser dimension than the original ones separating 
structures with different kinetic characteristics. This method has 
been shown to be an alternative quantification method, 
independent of any kinetic model and particularly useful when 
the retrieval of the arterial input function is complicated. 
Furthermore, novel similarity mapping techniques are proposed, 
which can summarize in a single image the temporary properties 
of the whole image sequence according to a reference region. 
Based on the newly introduced cubed sum coefficient similarity 
measure, we show that structures with similar time activity 
curves similar to the tumor's ones can be identified, thus 
facilitating the detection of lesions not easily discriminated with 
the conventional  method using standardized uptake values.  

I. INTRODUCTION 

N oncology, the visual inspection of the PET images is 
the practice routinely used for tumor diagnosis, detection 

of metastases and evaluation of treatment. However, 
quantitative measures based on the normalization of tracer 
concentrations for the injected activity and body weight 
(standardized uptake values, SUV) are becoming common in 
the clinical praxis in oncological PET studies [1]. 

SUV-based evaluation requires a well-calibrated PET 
platform in order to produce quantitatively accurate results. It 
also reflects the late stage in the process of glucose uptake by 
tissues ignoring the kinetics of this predominantly dynamic 
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process, which might be able to provide valuable information 
on the molecular events that characterize tumor development 
and associated vasculature, as well as its specific resistance to 
treatment. In fact, the use of SUV as a method of classification 
of tissue areas as benign or malign is still under discussion 
among nuclear medicine physicians and oncologists [2],[3]. 

Dynamic 18F-FDG PET studies (temporal sequences of 
images at the same bed position) offer differential diagnostic 
information and therefore represent an accurate approach to 
quantify 18F-FDG kinetics. Such studies are been increasingly 
used in oncological PET studies for diagnosis, therapy 
management and evaluation [4]. The analysis of dynamic PET 
sequences, however, often requires complex analysis using 
compartmental or non-compartmental models, where many 
difficulties must be overcome, such as the determination of the 
input function of the concentration of the radioactive tracer in 
plasma, the intrinsic inaccuracies at the time of selecting the 
appropriate compartmental model, or time-consuming 
computations involving a large amount of image data to be 
processed. 

In this work we investigate the use of principal component 
analysis (PCA) and similarity mapping (SM) techniques in 
order to reduce the initial amount of image data to a smaller, 
comprehensive and easily managed set of parametric images. 
Such methods have the advantage that can produce results in 
very short time, as they have little computational complexity, 
and can provide an accurate tool for the support of both the 
visual inspection and the posterior detailed kinetic analysis of 
the dynamic series via compartmental or non-compartmental 
models [5]. Furthermore, the application of independent 
component analysis (ICA) is briefly discussed, as it has been 
recently shown to produce promising results in the analysis of 
task-related functional magnetic resonance imaging (fMRI) 
techniques [6], as well as in the extraction of the input function 
in dynamic myocardial PET studies [7]. ICA is a statistical 
technique that can be used as a method for blind source 
separation. The observed data are assumed to be unknown 
linear mixtures of unobserved independent source signals, 
which can be recovered with no prior information using ICA. 
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II. METHODS 
PCA explains the variance-covariance of a set of variables 

through a few linear combinations of these in order to achieve 
data reduction and facilitate their interpretation [8]. Although 
N components are required to reproduce the total system 
variability, often much of this variability can be accounted for 
by a small number p of the principal components. These 
components can then replace the initial N variables, and the 
original data set, consisting of k measurements on N variables, 
is reduced to a data set consisting of k measurements on p 
principal components. 

Let ´

1 2( , , ..., )N=F F F F  have covariance matrix: C  with 

eigenvalue – eigenvector pairs 1 1 2 2( , ), ( , ), ..., ( , )N Nλ λ λe e e , 

where 1 2 ... 0Nλ λ λ≥ ≥ ≥ ≥ . The ith principal component is 
given by: 

'

1 1 2 2 ...
i i i i i iN Ne e e= = + + +e FP F F F , 1, 2, ...,i N=     (1) 

with '( )i i i iVar λ= =P e Ce &
'( , ) 0i m i mCov = =P P e Ce  if i m≠  

The total population variance is given by: 

1 1 1

( ) ( )
N N N

i i i
i i i

Var Var λ
= = =

= =∑ ∑ ∑F P          (2) 

Consequently, the proportion of total variance described by 
the ith principal component is: 

1

i
i N

m
m

tv λ

λ
=

=
∑

, 1, 2, ...,m N=            (3) 

Typically the largest part of the total variance can be attributed 
to the first few principal components, which can be considered 
as containing the same information (excluding the contribution 
of noise which can be attributed to the rest of them) as the 
original data set. For dynamic PET images, these few principal 
components constitute a reduced set of principal component 
images (PCI) that can be considered as representing a 
“summary” of the kinetic information that is contained in 
original study frames and can therefore be used to extract basic 
information for an initial evaluation of the dynamic study.  

As mentioned before, the main goal of the initial evaluating 
step for large dynamic oncological PET studies is the accuracy 
in localizing and staging primary tumors and metastases. 
Similarity mapping methods create a temporal match of the 
intensity values of the pixels in the image sequence with the 
ones of a selected reference region of interest (rROI).  

The similarity measures described in the literature [9],[10] 
applied on dynamic MRI studies are based on the calculation 
of the correlation (COR) and normalized correlation (NCOR) 
coefficients. We introduce here the following additional 
measures which are more appropriate for the low contrast PET 

image sets: sum of squares (SSQ), squared sum (SQS), sum of 
cubes (SC) and cubed sum (CS) coefficients: 
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where N is the frame number in the study, Vijn is the value of 
pixel (i,j) in frame n, Rn is the value of the time activity curve 
(TAC) in the rROI, µR is the mean value of the TAC of the 
rROI and µVij is the mean value of the TAC of pixel (i,j). 

The SM analysis has been based as a first step on synthetic 
data from a digital phantom shown in Figure 3. This has been 
created by simulating a single-slice image series from a 
clinical 18F-FDG PET study of a colorectal tumor recurrence, 
including the noise characteristics of the measured data.  

 

 
Figure 1: An example of the application of PCA to a dynamic FDG PET study 
(15 frames, 21 slices/frame, 256x256 image matrix), showing a large lesion on 
the upper left liver lobe. 
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Figure 2: Tumor vascular fraction VB can be estimated from PCI1 and PCI2. 
The correlation coefficient of the polynomial regression equals 0.834. 

III. RESULTS 

A. Application of PCA 
The application of PCA to a dynamic PET image sequence 

(15 frames, 21 slices/frame, 256x256 image matrix), resulted 
in 15 principal component images (PCI), of which the first one 
(PC1) resembled to a summed SUV image of all 15 original 
image frames, where all structures (lesion, vasculature and 
other high-activity structures) were visible. The second PCI 
(PC2) showed only the vascular components leaving the area 
covered by the lesion black, whereas the third one (PC3) 
contained a bright area corresponding to the lesion. Figure 1 
summarizes these results and shows for reference the 
corresponding CT slice image, as well as the SUV image that 
corresponds to the late emission part of the dynamic study 
(summation of the last 4 frames). The rest of the resulting 
images contained mainly noise.  

The results obtained for this case and the initial conclusions 
drawn have been verified by applying the same analysis to the 
data obtained from 17 colorectal tumor recurrence clinical 
studies (23 frames, 32 slices/frame, 128×128 pixels/slice). 
Only for the PC3 the lesions were clearly visible in 14 of the 
cases, as in 3 cases their size due to partial volume effects and 
possibly to the physiologic activity in the surrounding tissues 
did not allow the direct correlation of PC3 to the tumor. The 
average proportion of the total variance described by these first 
3 principal components, in all 17 studies according to (3) were: 

1 78.3 2.6tv = ± , 2 3.7 1.0vt = ± , 3 1.8 0.2tv = ±  

PCA therefore is able to separate different structures of interest 
in large dynamic sequences in different PCIs for FDG PET 
oncological studies.  

 Figure 3: Two frames (a)-(b) of a real dynamic PET study used for the 
formation of a simulated dynamic PET phantom image series (c). The TACs 
(d) from the study were used as basis for the definition of the corresponding 
TAC functions of the phantom. The phantom consists of a big ellipse (M) 
corresponding to normal tissue mass and three smaller ellipses corresponding 
to the bladder (B), tumor (T) and a vessel (V).  

 
This approach facilitates the visual analysis of the sequence 

on the one hand and, although for the application of PCA no 
region of interest (ROI) is necessary to be drawn, it provides a 
tool for a more accurate selection of the ROIs on lesions and/or 
vessels in order to proceed to further parametric analysis of the 
dynamic sequences.  

For the kinetic analysis based on the 2-compartment model, 
the input function is obtained by continuously extracting blood 
samples during acquisition. The vascular fraction (VB) must 
be taken into account for the calculation of the transport 
constant K1 and the rate constants k2, k3 and k4 for such a 
kinetic model. We have here investigated the possibility to 
retrieve the input function from the PCI obtained.  

In the resulting PCIs, volumes of interest (VOIs) were 
placed over the lesions and the surrounding normal tissue in 
the first two PCI, and the mean counts for each of them were 
calculated. Polynomial regression up to the second order was 
used to establish a quantitative relationship between the 
predictor variables (Xi, mean counts) and the response (VB): 

2 2
2

1 1
VB i i i i

i i
c a X b X

= =

= + +∑ ∑           (10) 

The unknown coefficients were computed using a least squares 
fit, which minimized the sum of the squares of the deviations 
of the data from the model. Figure 2 shows the polynomial 
regression line coefficients based on (10) computed for the 
tumor fractional blood volume estimation. The correlation 
coefficient is 0.834. 

c: 0.7610273 

b1: 3.99E-05 
b2: 2.35E-09 

a1: -2.77E-05 
a2: 3.94E-10 
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Figure 4: Similarity maps of the simulated dynamic PET study shown in Figure 
3, calculated using a reference ROI placed over the bladder and the similarity 
measures (a) COR, (b) NCOR, (c) SSQ, (d) SQS, (e) SC and (f) CS (f). 

  
Figure 5: Similarity maps of the simulated dynamic PET study shown in Figure 
3, calculated using a reference ROI placed over normal tissue mass and the SM 
measures (a) COR, (b) NCOR, (c) SSQ, (d) SQS, (e) SC and (f) CS (f). 

 

B. Application of SM 
Figure 4 shows the results from the application of the 

similarity coefficients by placing a ROI over the bladder 
(ROIb) of the simulated phantom image series. Figure 5 shows 
the results after placing the reference ROI over normal tissue 
mass (ROIm). The contrast in the resulting images is measured 
as CR = (T-M)/M (where T and M are the mean activity 
distributions in ROIs placed over the tumor and normal tissue 
masses areas respectively).  

In the ROIb case, the tumor can be distinguished in all SM 
images with different levels of contrast and clarity. The SUV 
for the lesion was 34 and the CS metric resulted to a contrast 
value of 54, whereas the COR-image contrast was 0.15 
(showing the lesions at similar contrast level with normal 
tissue) and the NCOR-image reached a contrast level of 2.46. 
In some of the maps, the vessel can be also distinguished with 
negative values (shown in black) or positive values (as is the 
case of the SSQ-image). For the ROIm case in most of the 
maps the lesion is visible but has similar (low) contrast levels 
with the reference muscle tissues in almost all SM images. 

When the same approach has been applied to the set of 17 
clinical dynamic studies of colorectal lesions mentioned 
before, the SM based on the correlation coefficient and the 
normalized correlation coefficient are very noisy and the 
tumors can not be separated from the other structures. The CS 
method was the only one to detect all lesions (from the 20 
individual ones present in all studies) and all vessels present in 
the images. It provides a way to discriminate these two 
different groups of structures, assigning positive values to 
tumors and negative values to vessels, due to their different 
kinetic characteristics. 

IV. DISCUSSION 
In contrast to PCA, which generates different images for 

each structure in a dynamic study, SM depicts all these 
structures in one single image. The SM generation is not 
automatic, as in the case of PCA, since these maps represent 
the contrast of a lesion area versus muscle tissue, after the 
placement of a ROI over the lesion and the vessels 
respectively. The application of the COR and NCOR maps 
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could discriminate among structures in the dynamic phantom 
dataset, however they were ineffective in separating structures 
in clinical data. The new similarity coefficients proposed here 
in (6)-(9) managed to reveal all structures of interest to visual 
inspection. Particularly CS (9) provided better parametric 
images and could be the method of choice as far as the 
discrimination between the tumor and other structures is 
concerned, both on simulated phantom studies and clinical data 
from PET studies of colorectal tumor recurrences, even in the 
vicinity of hot organs such as the bladder. 

Both PCA and SM methods require that the image frames 
for the same tomographic slice are spatially registered. In order 
to correctly classify voxels or volumes/regions of interest 
based on similarity criteria, the images should be previously 
checked for spatial registration. Patient motion and respiratory 
artifacts should be therefore corrected prior to the application 
of these methods on dynamic PET images. 

Independent component analysis (ICA) is currently under 
investigation, in order to evaluate if this approach could 
improve further the results currently obtained. ICA is a 
statistical technique that can be used as a method for blind 
source separation. The observed data are assumed to be 
unknown linear mixtures of unobserved independent source 
signals, which can be recovered with no prior information 
using ICA.  

ICA can be used in two complementary ways to decompose 
an image sequence into a set of images and a corresponding set 
of time-varying image amplitudes. Spatial ICA seeks a set of 
mutually independent component (IC) source images and a 
corresponding set of unconstrained time courses. Temporal 
ICA seeks a set of IC source time courses and a corresponding 
set of unconstrained images.  

These conventional ICA approaches embody the assumption 
that the PDF of the independent sources are highly cyrtotic and 
symmetric. However this assumption is not warranted for 
dynamic PET data sets. Skew-ICA is a third approach, based 
on the assumption that images are characterised by the 
skewness (rather than the kurtosis) of their PDFs; an 
assumption consistent with spatially localized regions of 
activity. 

Both PCA and ICA which are apparently data driven 
methods, imply a particular statistical model, whether or not 
this model is made explicit. The model implicit in PCA is that 
different modes are Gaussian and uncorrelated, whereas ICA 
model is that different modes are non-Gaussian and 
independent. Therefore, ICA is expected not only to de-
correlate the signals but also reduce the higher order statistical 
dependencies. 
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VI. CONCLUSIONS 
 

The PCA and SM techniques represent efficient methods for 
data reduction in large PET dynamic image sequences. They 
support visual interpretation of the dynamic studies and assist 
the application of compartment modeling. The methods 
developed represent promising alternative techniques for 
quantification, fast, independent of any kinetic model and 
useful when the retrieval of the input function is complicated. 
Treatment planning and assessment of angiogenesis blocking 
drugs using PCA and SM can be investigated. In the case of 
SM, manual selection of the reference ROI could be time 
consuming and prone to operator bias, therefore research is 
ongoing for the development of a semi-automatic technique for 
the optimum selection of reference ROI. Future work will 
include the investigation of the ICA methodology.  
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