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Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets
expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-
resolution PET cameras. System response probabilities are calculated online from a set of parameters
derived from Monte Carlo simulations. The shape of a system response for a given line of response
(LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the de-
velopment of efficient region-search techniques to sample the system response probabilities, which
are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high
accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel
models is applied in the proposed PET reconstruction algorithm.
Methods: A novel region-search technique has been used to sample the probability density func-
tion in correspondence with a small dynamic subset of the field of view that constitutes the region
of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dy-
namically calculated contour. The contour condition is currently defined as a fixed threshold over the
posterior probability, and arbitrary kernel models can be applied using a numerical approach. The
processing of the LORs is distributed in batches among the available computing devices, then, indi-
vidual LORs are processed within different processing units. In this way, both multicore and multiple
many-core processing units can be efficiently exploited. Tests have been conducted with probability
models that take into account the noncolinearity, positron range, and crystal penetration effects, that
produced tubes of response with varying elliptical sections whose axes were a function of the crystal’s
thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a
3D scalar field defined within a reference system aligned with the ideal LOR.
Results: This new technique provides superior image quality in terms of signal-to-noise ratio as
compared with the histogram-mode method based on precomputed system matrices available for a
commercial small animal scanner. Reconstruction times can be kept low with the use of multicore,
many-core architectures, including multiple graphic processing units.
Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte
Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed
and the image signal-to-noise of a given OSEM algorithm. The method has been validated using
simulated and real phantoms. A special advantage of the new method is the possibility of defining
dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control
on the trade-off between speed and quality during the reconstruction. © 2013 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4771936]
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I. INTRODUCTION

List-mode (LM) reconstruction has long been a promising
method for PET imaging.1–3 In high-resolution tomographs,
especially in dynamic PET studies with low-statistics three-
dimensional (3D) scans, the number of events acquired in
a histogram set may be less than the number of response
bins used in histogram mode (HM) reconstruction and, there-
fore, LM reconstruction can, in principle, be performed more
quickly and efficiently. Another advantage of LM reconstruc-
tion comes from the ease of including additional information
acquired by the PET scanner (i.e., photon energy, arrival time,
or full detector readout), which increases the accuracy of the
system model used in the reconstruction process. Thus, the
image signal-to-noise ratio can be improved significantly if
the reconstruction algorithm uses a per-event energy4 or time-
of-flight (TOF) information.5–7

A PET system response is described using a system ma-
trix (SM) that maps the relationships between the 3D radionu-
clide distribution and the acquired data.8 An enormous effort
has been expended to provide accurate estimations of statis-
tical and physical effects involved in the system response.
Many effects involved are object dependent, such as attenua-
tion and scatter effects, positron range, and gamma-rays non-
collinearity, while other effects are system dependent, and can
be characterized based on the PET scanner geometry, detec-
tion physics, and associated electronics. The methods used
to obtain accurate estimations of the system response include
Monte Carlo (MC) simulations of the acquisition process,9–12

point source measurements,13, 14 theoretical models,15–18 or
hybrid solutions.19

When the SM is calculated using MC methods, real mea-
surements, or complex numerical approximations, it must
be precomputed and stored off line to keep the reconstruc-
tion time low, thus requiring enormous storage space for
3D PET imaging. Size reduction is provided by histogram
compression, axial and rotational symmetries,20, 21 polar-
voxel symmetries,22, 23 quasi-symmetries,8 axial mashing,24

and factorization as a product of sparse matrices.25

It has been shown that MC calculated SM can be stored in
programmable graphic processing units (GPUs), which have
typically very limited memory resources. One possibility is
to use approximated symmetries,26 so as to reduce the size
of the SM by two orders of magnitudes. A different approach
has been also proposed,27 that factorizes the system response
into geometrical, voxel blurring, and detector blurring compo-
nents. However, compression can still be insufficient for LM
reconstruction in GPUs, where part of the memory must be
dedicated to the input LOR dataset, and when the SM must
take into account both timing and energy information.

In addition to this, the histogram compression technique
reduces the SM dimensionality. This drawback implies that
the SM factorization scheme can only be performed in the
image space and not in the projection space. Thus, SM factor-
ization suffers from accuracy limits in modeling projection-
dependent blurring effects when applied to LM data.15

For system matrices calculated on the fly, several tech-
niques have been adopted to reduce the computational com-

plexity, ranging from Siddon’s ray-tracing model28 to tube-
shaped kernels29 and volumes of response.18 Recently, it has
been shown that, using GPUs, it is possible to achieve good
results with the Gaussian blurring approximation for times
compatible with practical environments,30 by using the con-
cept of the symmetric blurring kernel.2, 31, 32 Kernels represent
the functions that associate a projection weight to a voxel for
a given line of response (LOR), based on the relative posi-
tion of the voxel with respect to the LOR, the crystal’s ef-
ficiency, the photon’s energy, the depth of interaction, and
TOF information.7 A symmetric Gaussian kernel was used in
the work cited above.7 Although more complex kernel mod-
els have been proposed, the inherent reconstruction architec-
ture has been specially optimized for circular tubes of re-
sponse (TORs). However, the shape of a system response for
a given LOR has been shown to be asymmetrical around the
LOR. Its transversal profile can be better approximated as a
two-dimensional (2D) Gaussian function, with the two stan-
dard deviation variables of the crystal’s thickness and angle
of incidence.16, 17 More accurate image-based approximations
can be achieved using nonstationary and non-Gaussian blur-
ring functions in the image domain.15, 33

In this work, we introduce a LM reconstruction method
that is especially optimized for PET scanners composed of
parallel planar detectors34–36 that is able to use kernel models
with an elliptical section based on MC simulations.

Processing parallelization was the main area of study with
this work. This is because replacing circular kernels with el-
liptical kernels hampers the efficient utilization of the tech-
niques previously used to accelerate the calculation of the
system probabilities. Therefore, a new scheme had to be im-
plemented to increase the parallelization efficiency.

II. MATERIALS AND METHODS

II.A. The reconstruction algorithm

The LM 3D-ordered-subsets expectation-maximization
(OSEM) algorithm used in this work is based on that de-
scribed in Ref. 37. It consists of the following iterative
process:

λk+1
j = λk

j

sj

∑
i∈Ln

aij

ri + ti + ∑
j ′ aij ′λk

j ′
. (1)

All the observed coincidence events, or LORs, are divided
into N subsets Ln; λk

j is the estimated intensity of voxel j at
subiteration k = hN + n, where n is the subset number and h
is the iteration number; s is the sensitivity of the image, and
aij is the likelihood that an emission from voxel j is detected
by LOR i.

In the current implementation, random coincidences es-
timates (ri) and scatter estimates (ti) are neglected. To pre-
vent reconstruction biases, LM subsets were composed by
sampling uniformly the entire acquired dataset with offsets
n ∈ [0, N − 1]. The sensitivity image s was obtained
by projecting all possible LORs. In the case of rotational
geometries, the computation can be relatively time con-
suming, but nonuniform sampling techniques,38 rotational
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symmetries, and parallel computation of different angular
views are planned to be used to accelerate the process.

The concept of kernel2, 30, 32 was used to model the system
response. The blurring effect was obtained by sampling the
scalar field defined by the kernel model in the voxel positions
close to each LOR. The volume of the sampled ROR was
regulated by using a constant cut-off peripheral probability.
Lower cut-off values produced larger volumes, thus reducing
the noise and slowing the reconstruction.

In Secs. II.B–II.F, different kernel models will be defined
and the sampling method will be described. Both the accu-
racy and the reconstruction times could be regulated by select-
ing the level of approximation of the kernel and the sampling
cut-off.

II.B. The kernel space frame

The projector kernel, i.e., the scalar field that describes the
TOR, was derived with respect to a Cartesian reference sys-
tem, in which the ideal LOR is aligned with one of the axes.
We will call this reference system the kernel space frame and
we will refer to it using coordinates x′, y′, and z′, in contrast
with the image space frame, whose coordinates x, y, and z are
aligned with the axes of the image.

For any LOR, a transformation matrix is used to con-
vert the coordinates of each voxel center p = xi + yj + zk
to the new reference frame p′ = x ′i′ + y ′j′ + z′k′, where i′ is
aligned with the projection on the detector surface of the vec-
tor joining the two crystal centers, k′ is aligned with the LOR,
and j′ is orthogonal to i′ and k′.

II.C. Kernel models

Our simplest PDF approximation was a TOR whose sec-
tion is a 2D circular Gaussian function with constant standard
deviation, σ . We refer to this as a circular constant Gaussian
kernel or shortly 0D kernel,

aij = A exp

(
− d2

ij

2σ 2

)
, (2)

where aij is the same as in (1), dij is the distance between the
center of voxel j (x′, y′, z′) and the LOR i (i.e., axis z′), and A is
the scale factor. The standard deviation σ was derived in our
experiments as the weighted mean of all standard deviations
observed in the MC simulations, being weighted proportional
to the LOR probability.

A better PDF approximation consists of TORs with cir-
cular Gaussian sections of variable standard deviation σ i, a
function of the angle ϕ between the LOR i and the normal to
the planar detectors (Fig. 1),

aij = A exp

(
− d2

ij

2σ 2
i

)
, (3)

where aij is the same as in (1) and dij is the same as in (2). We
refer to this as a circular varying kernel or 1D kernel. A more
accurate approximation of the PDF is a TOR with an elliptical
Gaussian section parameterized with two separated standard

(a) (b)

FIG. 1. Illustration of the global (x, y, z) reference system and the one lo-
cal to the LOR (x′, y′, z′). A point p = xi + yj + zk in the global reference
system corresponds to p′ = x′i′+ y′j′+ z′k′ in the local one. In (a) φ is the
angle between the LOR and the normal n to the detectors. The schematic in
(b) illustrates the alignment between the new reference system and the crys-
tals. The TOR section represents the probability distribution projected on the
plane orthogonal to the LOR.

deviations, σi,x ′ and σi,y ′ , which are functions of the angle ϕ

between the LOR i and the normal to the planar detectors. The
expression for the elliptical varying kernel (2D kernel) is

aij = A exp

(
− x ′2

2σ 2
i,x ′

− y ′2

2σ 2
i,y ′

)
, (4)

where (x′, y′) are the coordinates in the kernel space frame and
aij is the same as in (1). It is important to note that the pro-
posed reference system simplifies the general 2D Gaussian
function to a separable elliptical Gaussian function. More-
over, although there is a one-to-one correspondence between
the value of the Gaussian function and the distance from
the center in the 1D kernel, this is not true for 2D kernels.
This means that to neglect uniformly low-likelihood voxels,
the cut-off condition must be expressed and tested directly
against aij.

II.D. MC simulations

Several representative LORs were simulated using the MC
method and the obtained probability distributions were fit-
ted to our proposed numerical kernels. LORs were simulated
with incident angles ϕ (shown in Fig. 1) regularly distributed
between the minimum and maximum possible values. In the
adopted geometry, ϕ was directly related to the discrete dis-
tances expressed as the coordinate differences between co-
incident crystals cx,1 − cx,2 and cy,1 − cy,2, where cx,1, cy,1,
cx,2, and cy,2 are the x and y discrete crystal coordinates in
the first and second coincident detectors, respectively. These
differences were used as the indices of a look-up table of
standard deviations accessed during the forward and back
projections.

To improve the simulation speed, a preliminary simulation
was launched to obtain the minimum cylinder that contained
all the voxels whose detection probability was non-negligible.
As the generation density is constant in the cylinder and the
solid angle of emission is constant, there was no bias in the
MC simulations. Both the positron generation region and
the direction of annihilated gamma rays were then constrained
to the obtained cylinder.

Medical Physics, Vol. 40, No. 1, January 2013



012504-4 Sportelli et al.: Massively parallelizable LM-OSEM using an elliptical Gaussian model 012504-4

FIG. 2. σi,x′ and σi,y′ fitted values of representative LORs from the MC
simulations as a function of the absolute value of angle ϕ between the LOR
and the vector normal to the detector surface.

The custom MC method incorporates the effects of in-
tercrystal scatter, crystal penetration, positron range, and
photon-pair noncollinearity in the same way it has been al-
ready done for SM-based reconstructions.11

The positron range was modeled as the sum of two
exponentials and was simulated using an accept–reject
algorithm.39 Noncolinearity was modeled using a Gaussian
distribution40 and the intercrystal scatter followed the
Klein–Nishina distribution sampled using a double-rejection
technique.41

The coordinates of the positron sources associated with
the detected coincidences between the selected pair of scin-
tillating crystals were stored on a disk for further evaluation.
The kernel space frame transformation was applied to obtain
a source distribution aligned with the z′ axis. The histogram
of the projections onto the x′ − y′ plane were fitted to our pro-
posed 2D kernel model and averaged along z′ to derive the
parameters σi,x ′ and σi,y ′ of representative LORs Fig. 2. The
distribution variability along axis z′ was not considered dur-
ing the reconstruction. Isotropic generation of gamma rays in-
cluded in the MC method guarantees the adjustment for TOR
solid angle.

The value of σi,x ′ showed to depend on the absolute value
of the angle ϕ associated with the LOR, while σi,y ′ remained
almost constant. The standard deviation of the 1D was calcu-
lated as σi = √

σi,x ′σi,y ′ for all LOR i. The standard deviation
of the 0D kernel was chosen as the mean value of σ i over all
the possible LORs.

II.E. Identification of the region of response

For a given model, forward and backprojections were per-
formed by sampling the kernel at the centers of the voxels
of the ROR. The kernels can then be seen as being the body
of the innermost loop over such voxels. Therefore, their op-
timization is of paramount importance for the overall recon-
struction performance, as well as the optimization of the loop-
ing technique.

To compute kernels efficiently, we focused on using the
least number of operations possible. In addition, to parallelize
the computation to a large degree, it is important to use few
memory resources. To accomplish these requirements, a spe-
cific FOV sampling system was developed that was able to

process only the surroundings of each LOR within a region,
defined using a dynamically calculated peripheral threshold.

As was carried out in Ref. 30, in our method, we divided
the volume in slices and identified the voxel closest to the
LOR in each slice. In addition, we identified the region by
processing recursively the neighbors of each voxel, instead of
looping around the center within a fixed, predefined range. In
this way, it was possible to tailor efficiently the target region
for any peripheral condition, calculated on line, and to process
regions that were different from circular TORs, as in presence
of TOF-capable scanners or scatter-corrected algorithms.

The voxel identification algorithm was based on a hierar-
chical search approach, in which each identified voxel cor-
responds to a node of a tree that represents the ROR. In the
search algorithm, the voxels are divided into three partition-
ing levels, each referring to one of the three dimensions of the
image. The first level, referred to as the primary level, is ob-
tained by selecting the closest voxel to the LOR for each plane
of the FOV orthogonal to the main direction of the LOR. The
main direction is characterized by the greatest difference in
coordinates between the two vertices of the LOR. We refer
to this as the primary direction (Fig. 3, up-left). The selected
(primary) voxels represent the center of propagation for vox-
els of inferior levels. The next (secondary) level is obtained
by choosing a different axis of propagation. In Fig. 3 (up-right
side), the secondary direction corresponds to axis j. In a tree-
like scheme, each secondary voxel is obtained using a straight
propagation in the positive and negative directions from a pri-
mary voxel, and it is a child of that voxel. By analogy with
the secondary voxels, the tertiary voxels are obtained from a
straight propagation of the secondary voxels. By propagating
each primary voxel in the secondary and tertiary directions,
up to the contour calculated online for a given kernel and cut-
off condition, it is possible to achieve a ROR that contains
the most significant part of the PDF relative to a given LOR
(Fig. 3, down).

FIG. 3. (Top) Geometric diagrams of the ROR propagation technique. The
primary direction is along axis k, the secondary direction is along axis j, and
the tertiary direction is along axis i. (Bottom) 3D diagram of the full identified
ROR. A FOV of 15 × 15 × 18 voxels has been used as an example.
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FIG. 4. Clipping effect for the most oblique LOR using an elliptical
Gaussian projector model and a cutoff threshold of 10% of the Gaussian peak.

In the current implementation, axis k was always taken as
the primary direction, axis j as secondary direction, and axis
i as the tertiary direction. The importance of choosing the
best secondary and tertiary axes for each independent LOR
increases for highly eccentric tubes and with high (less accu-
rate) cutoff thresholds. This is because the search algorithm
neglects tertiary voxels whose probability is over threshold,
but which are not reachable because the parent secondary
voxel has been discarded. This behavior can be imagined as
if a clipping window were applied to each ROR section, cen-
tered on the primary voxel, and as large as the total number
of secondary voxels over the threshold. The resulting clipping
effect, illustrated in Fig. 4, is discussed in Sec. IV.D.

In the hierarchical structure, identifying the entire ROR
corresponds to performing a depth-first traversal. Our pro-
posed ROR identification scheme has the important charac-
teristic of processing each voxel in the surroundings of the
LOR only once, without requiring any memory write opera-
tion, except the recursive update of current voxel coordinates
during straight propagations. Voxel coordinates can be either
cached and used for both forward and back projections, or
used directly during the discovery process to access the FOV.
In the latter case, ROR identification must be performed twice
per LOR in OSEM reconstruction.

Using this new technique, no voxels were processed unless
they contributed significantly to the projections, or belonged
to the region contour that was cutoff. The propagation scheme
requires only integer operations and a few scalars to be stored
in the memory to control the peripheral conditions.

II.F. Parallelization strategies

Processing parallelization is a necessary step to make LM
reconstruction feasible using modern computing resources.
The pioneering approach of Ref. 7 has been shown to be ef-
fective, and was the first applicable in practice for LM recon-
struction in massive parallel processing units. The above work
resolved the problem of write synchronization and data de-
pendence by dividing the FOV into slices and processing each
in a different GPU core. Because all the parallel processors
are busy processing the same LOR, we refer to this method as
intra-LOR parallelization. With the increasing number of pro-
cessing cores available in modern graphics cards and the de-
creasing number of target slices in TOF-enabled reconstruc-
tion, the question arises of what happens when the number of
cores exceeds the number of slices. In fact, no strategies have

TABLE I. Spatial resolution FWHM measured on a point source at the center
and at 20 mm from the center in the transaxial plane.

Position Radial (mm) Tangential (mm) Axial (mm)

Center 1.1 1.1 0.9
20 mm from the center 1.2 1.1 1.0

been described to employ such exceeding cores. Moreover,
the intra-LOR parallelization technique imposes an overhead
on the number of voxels to be processed that may limit its
efficiency for more eccentric elliptical TORs.

To respond to this situation, we propose using two new
parallelization techniques that operate at the inter-LOR level,
i.e., allow us to process multiple lines of response in parallel.
The first technique allows for flexible work parallelization,
under the conditions of medium/high granularity, the latter
being the ratio between the computational size of the par-
allelized blocks, and the size of the full process itself. This
coarse-grained technique consists of grouping several LORs
into different processing blocks, each with a private memory
space. The high granularity is obtained by using sufficiently
large blocks. Parallelization is then achieved using a paral-
lel reduction pattern,42 applied using the (1) in the following
form:

λk+1
j =

∑
i∈Ln

λk
j

sj

aij

ri + ti + ∑
j ′ aij ′λk

j ′

=
�−1∑
p=0

∑
i∈Ln,p

λk
j

sj

aij

ri + ti + ∑
j ′ aij ′λk

j ′
=

�−1∑
p=0

λk+1
j,p , (5)

where � is the number of available processors and λk+1
j,p is the

partial result obtained by reconstructing only the pth block
Ln, p. All the partials λk+1

j,p for p ∈ (0, . . . , � − 1) are inde-
pendent of each other and, therefore, they can be computed
in parallel. The additional summatory function required in
Eq. (5), referred to as a reduction operation, introduces an
overhead on the entire reconstruction process that is negligi-
ble under the assumption of medium/high granularity, which
is true in the case of dividing the input LM file into a num-
ber of blocks of the same order, but higher than the num-
ber of cores present in a multicore CPU. In the current ver-
sion, software parallelization was implemented using the Intel
Threading Building Blocks library.43 The process of splitting
the LM subsets and reducing the results can be carried out dy-
namically to equalize workloads. As a result, the acceleration
factor is practically equal to the number of processors avail-
able, �. In principle, the same technique can be used in CPU
clusters. The difference would be that the reduction operation,
i.e., the sum of all the voxels in the image, has to take place
through Ethernet connections, which are typically slower than
a system main memory, thus resulting in a time overhead per
processing unit greater than in the case of multicore paral-
lelization.

Although the above parallelization technique is efficient
and flexible, it requires additional memory allocation for each
vector λk+1

j,p . This is not a problem for computing clusters and
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multicore CPUs, but it is not practically feasible if we wish
to distribute the computation among GPU cores where the
available memory per core is generally limited to hundreds
of kilobytes. To overcome this situation, we used a second,
fine-grained parallelization approach to accelerate the com-
putation of each single block Ln, p. The work subdivision is
performed in the same way as in Eq. (5), but using a shared
memory space. In this case, the problem is that multiple cores
can write to the same memory location at the same time, thus
incurring write-after-write race conditions. This problem can
be resolved by using thread-safe memory structures, at the
cost of a severely degraded write speed or to use atomic op-
erations, today available in most parallel computing devices
and GPUs.

The second parallelization level was implemented on an
NVIDIA graphics adapter able to provide atomic operations
using OpenCL 1.1.44 At the present state, dynamic workload
control has not been implemented, so the work distribution
has been decided previously based on the size of the recon-
structed list-mode data set.

III. EXPERIMENTAL VALIDATION

III.A. Scanner geometry

Our method is generalizable for all scanner geometries,
although a specific implementation has been developed for
scanners with parallel planar detectors with pixelated scintil-
lating crystals. The rPET scanner35, 45 used in our validations
is a small animal model consisting of two pairs of planar de-
tector modules in the coincidence mode, with 160 mm sepa-
ration distance between opposing modules. Each detector is
composed of a 30 × 35 array of 1.5 × 1.5 × 12.0 mm3 LSO

pixelated crystals, assembled on a 100 μm thick matrix of a
plastic reflector. The detectors are mounted on a gantry rotat-
ing in the continuous mode with a 180◦ span.

III.B. Reconstructed phantoms

The image quality phantom defined in the NEMA standard
for small-animal PET scanners46 was modeled using the MC
simulation toolkit GATE,47 and up to 5.1 × 107 coincidence
events were stored in a LM file. This experiment was designed
to evaluate the noise characteristics and recovery coefficients
of the proposed algorithms. In accordance with,46 the recov-
ery coefficients (RCs) are evaluated for the image slices cov-
ering the central 10 mm length of the rods, which were aver-
aged to obtain a single image slice with lower noise. Circular
ROIs with diameters of 2 and 4 mm were drawn around the
smaller rods with diameters of 1 and 2 mm, respectively. In
both ROIs, the maximum value was measured and divided
by the mean activity concentration to determine the RCs for
both rods. The mean activity concentration was evaluated for
a 22.5 mm diameter using a 10 mm long cylindrical ROI, cen-
tered on the uniform region. The noise-to-signal ratio was cal-
culated as the standard deviation of a circular ROI divided by
its mean value.

In order to assess the actual performance of the method,
real NEMA Image Quality and Derenzo phantom were ac-
quired using the rPET small animal scanner. A 22Na point
source was also acquired and reconstructed using the 2D
model for 12 iterations with 10 subsets. The diameter of the
source was 0.25 mm. The size of the epoxy capsule contain-
ing the source was 1 cm3. The point source was positioned at
the center of the field of view and at 20 mm from the center
in the transaxial plane.

FIG. 5. Axial and transaxial slices of the simulated (a)–(d) and real (e)–(h) image quality phantoms reconstructed with the 2D kernel. Transaxial (i) and axial
(j) slices of a reconstructed real Derenzo phantom and profile of its 3.2 and 1.6 mm rods (k).
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TABLE II. Improvement in RC and S/N ratio obtained by using the 2D kernel with respect to the previous histogram mode, SM-based algorithm.

Rod diameter (mm) RC (iteration 4) (%) RC (iteration 12) (%) S/N (iteration 4) (%) S/N (iteration 12) (% )

1 4.9 6.3 8.7 8.9
2 2.2 3.4 8.7 8.9

III.C. Hardware description

Reconstruction experiments were conducted using two dif-
ferent systems to assess the different parallelization strategies.
The first coarse parallelization level was tested using a Dual
Xeon Quad Core E5506 processor operating at 2.13 GHz.
With this system, eight cores were running in parallel, each
with a private memory space. The second, finer paralleliza-
tion level was tested using an Intel i5 750-based machine with
four cores operating at 2.67 GHz, equipped with two GeForce
GTX 580 with 512 cores operating at 770 MHz.

IV. RESULTS

IV.A. Point source

The resolution of the acquired Na22 point source has been
measured as the FWHM of the Gaussian fit in the radial, tan-
gential, and axial planes for both positions. The obtained mea-
surements are reported in Table I.

IV.B. Image quality

Reconstruction experiments were conducted to compare
the maximum image quality achievable with an OSEM algo-
rithm based on a precomputed SM,11 previously used with the
rPET commercial scanner for small animals.

The slices of the image quality phantom reconstructed
from both simulated and real data using the LM-OSEM al-
gorithm with a 2D kernel are shown in Figs. 5(a)–5(h). The
transaxial (i), axial (j), slices and the profile (k) of real 3.2
and 1.6 mm rods in the Derenzo phantom are also shown in
Fig. 5.

FIG. 6. RC vs noise-to-signal measured using a 1 mm diameter rod (left-
hand) and a 2 mm diameter rod (right-hand) of the simulated image quality
phantom for SM-based reconstructions and LM reconstructions. Results are
shown for up to 12 iterations with 10 subsets (i.e., 120 subiterations). Each
point in the figure represents a full iteration.

The recovery coefficients and noise-to-signal ratios, mea-
sured on the simulated data, are reported in Fig. 6 for up to 12
iterations, with 10 ordered subsets per iteration. The obtained
improvements in RC and signal-to-noise ratio are summarized
in Table II.

IV.C. Kernel accuracy

We have compared the modeled image quality obtained
with the kernel models described in Sec. II.C. The recovery
coefficients versus the noise-to-signal ratios are reported in
Fig. 7 for the 1 and 2 mm diameter rods of the image qual-
ity phantom. The values after 4 and 12 iterations are also
summarized in Table III. The data were reconstructed using
12 iterations and 10 ordered subsets. As shown in this fig-
ure, any improvement achieved in using the 2D model instead
of the 1D model becomes negligible after several iterations.
The limited improvement introduced by the more accurate
model is suspected to be caused by the rotational nature of the
scanner.

IV.D. Cut-off variation

Experiments were conducted to assess the trade-off be-
tween the reconstruction speed and the image quality, de-
cided in terms of cut-off thresholds in the kernel sampling
algorithm. The output of the fast ROR search technique was
also studied to assess the number of voxels lost owing to
the clipping effect. The voxels lost have been determined
using another implementation of the algorithm that uses a
slower ROR search technique unaffected by the clipping
effect.

FIG. 7. RC vs noise-to-signal measured using the 1 mm diameter rod (left-
hand) and 2 mm diameter rod (right-hand) of the simulated image quality
phantom for three different models of the LM reconstruction: 2D kernel, 1D
kernel, and 0D kernel. The LM-OSEM reconstructions used ten subsets.
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TABLE III. RC and noise-to-signal measured using the 1 mm diameter rod (left-hand) and 2 mm diameter rod (right-hand) after 4 and 12 OSEM iterations with
10 subsets for the 0D, 1D, and 2D kernel models.

Rod (mm) Kernel RC (iteration 4) (%) RC (iteration 12) (%) N/S (iteration 4) (%) N/S (iteration 12) (%)

1 0D 21.2 29.8 6.3 12.8
1 1D 21.8 31.8 6.2 12.9
1 2D 21.6 31.8 6.0 12.7
2 0D 70.0 77.9 6.3 12.8
2 1D 71.8 82.0 6.2 12.9
2 2D 71.9 82.5 6.0 12.7

Figure 8 shows the percentage of voxels that were lost for
a LOR that connects the top left-hand crystals of a detector to
any of the others on the facing detector when using a 1D ker-
nel with probability threshold of 10% (a), a 2D kernel with
thresholds 10% (b), and 1% (c). Figure 8(d) shows the cor-
responding percentage probability lost for the case of the 2D
model with a threshold of 1% of the Gaussian peak. The clip-
ping effect is almost absent in the 0D and 1D kernels, while
it mainly affects the most oblique LORs modeled with the
2D kernel. Histograms for the probability losses owing to the
clipping effect are shown in Figs. 8(e)–8(h): the loss per LOR
was approximately 2% in the worst case, and less than 1% in
97% of all the possible LORs when using a cutoff threshold
equal to 1% of the Gaussian peak. The images reconstructed
using the search technique unaffected by the clipping effect
showed no appreciable difference with respect to the proposed
implementation for probability thresholds lower than 10% the
Gaussian peak.

The results in Fig. 9 show the recovery coefficient vs the
noise-to-signal ratio trade-off when reducing the cutoff from

10% to 1%. Data were measured for the 1 and 2 mm diameter
rods of the simulated image quality phantom for LM-OSEM
reconstructions using the 0D and 2D kernels.

IV.E. Acceleration by parallelization

Figure 10 summarizes the number of LORs reconstructed
per second using the kernels described above. Data on the
CPU implementation correspond to the reconstruction times
for the image quality phantom for a FOV of 120 × 140 × 120
voxels.

Experiments show that the first level of the inter-LOR par-
allelization technique accelerates the process by a factor al-
most proportional to the number of processing units used,
with a mean proportionality factor, i.e., parallelization effi-
ciency, of about 80%. Thus, using eight cores, it is possible
to reconstruct up to 2 5000 LORs per second with a cut-off
threshold of 10%, or 15 000 LORs per second with a cut-off
threshold of 1%. It is evident that a single CPU is insufficient
for fast reconstructions.

FIG. 8. Percentage of voxels and corresponding probability that were lost owing to the clipping effect. In the first row, the loss is represented in color-scale
for every crystal from one detector in coincidence with the top left-hand crystal of the other detector. In the second row, the histograms of the same losses are
reported. The first three columns represent the loss in terms of number of voxels missing over the total for the 1D kernel with 10% threshold (a)–(e) and the 2D
kernel with 10% (b)–(f) and 1% (c)–(g) thresholds. The fourth column (d)–(h) represents the probability losses, i.e., the tails of the Gaussian distribution that
have been lost due to the clipping effect, for the 2D kernel with 1% threshold.
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FIG. 9. RC vs noise-to-signal measured for the 1 mm diameter rod (left-hand) and 2 mm diameter rod (right-hand) of the simulated image quality phantom for
LM-OSEM reconstructions using the 2D kernel and the 0D kernel. Cut-off values of p = 1% and p = 10% are compared for both cases.

The OpenCL implementation has been tested on both
CPU and GPU. This implementation lacks any voxel caching,
thus requiring double the computation per LOR, however,
its computation speed is higher because of a better uti-
lization of CPU parallel resources, so that the final re-
construction speed is almost the same for the two CPU
implementations.

The GPU cores run at a frequency that is about one-third
that of the CPU counterpart. The GPU reconstruction speed
is about four times (or eight times for 2 GPUs) that of the
speed obtained using the eight-core CPU. Considering these
factors, the mean CPU to GPU parallelization efficiency, was
estimated to be approximately 40%, while it was observed
that doubling the number of GPUs the reconstruction speed
doubles (i.e., 100% GPU parallelization efficiency). For the
three kernel models, the maximum observed reconstruction
speed on 2 GPUs is roughly 206 000 LORs per second with
a probability threshold of 10% and 103 000 LORs per second
with a threshold of 1%.

FIG. 10. A comparison of the reconstruction speed in terms of the LORs
forward and back projections per second for a FOV of 120 × 140
× 120 voxels. In the above figure, the speeds for all the kernel mod-
els described in the previous paragraphs are compared when executed
using the same machine with one, four, and eight cores running at
2.1 GHz versus the speed of a GPU-based version running on 512 cores at
770 MHz.

V. DISCUSSION AND CONCLUSIONS

A LM reconstruction method has been proposed based
on new techniques aimed at improving the reconstruction
speed and the image signal-to-noise ratio of the OSEM algo-
rithm used previously for the commercial rPET small animal
scanner.

We have described a methodology for the efficient deriva-
tion of elliptical kernel models based on a LOR–local refer-
ence system a MC simulations. The new reference system was
necessary because the kernel models used were not spatially
invariant like the circular models are. A new ROR identifi-
cation technique was also described, based on integer oper-
ations and with minimal memory usage, that is suitable for
low-memory processing units. A special advantage of the new
identification technique is the possibility of defining regions
of response based on a constant contour threshold over the
calculated probabilities.

The new technique allows for fast, accurate reconstruc-
tions with minimal memory usage per processing core. The
performances in terms of image quality are comparable
to SM based approaches,8, 27 because the used model in-
clude per-LOR MC simulations, but the minimal memory
requirements allow for LM storage and reconstruction in
the GPU as in analytical approaches.7 Moreover, the pro-
posed implementation does not present the mismatch be-
tween “ray-driven” forward projection and “voxel-driven”
back projection pointed out by Ref. 27 on other previous
works.

An undesirable effect of the voxel search technique pro-
posed here may limit the maximum threshold applicable: the
ROR clipping effect, which introduces a mismatch between
the actual ROR and the one obtained by voxel propagation.
The magnitude of the voxel and probability losses caused by
this mismatch have been characterized and shown to be neg-
ligible (2% in the worst case, and less than 1% in 97% for
all the possible cases) when using cut-off thresholds equal to,
or less than, 1% of the Gaussian peak. More advanced ver-
sions of the ROR search technique that can make use of LOR-
driven secondary axis selection and oblique propagation are
planned as future work. In any case, the clipping effect only
implies a lower limit on image quality and it has been shown
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that does not produce any sensible effect with the above
threshold.

The method was validated using simulated and real NEMA
2008 image quality phantoms, Derenzo phantoms and a real
Na22 point source. The results were compared with a spe-
cific commercial histogram-mode OSEM algorithm based on
a precalculated system matrix. It was shown how the LM re-
construction improves considerably the image quality with re-
spect to the previous SM-based algorithm (Fig. 6). The main
reason for this difference is attributed to the full-angle cov-
erage adopted by the LM version, while the SM version is
limited by the adopted symmetries. Thus, the number of co-
incidence events used in the reconstruction process for the
same acquisition is larger in the LM method, which results
in a lower noise level. Another reason for the relatively low
noise is that the MC simulation of the SM scheme adds statis-
tical noise, which is not present in the numerical fitted model
used in the LM method. Finally, the binning and interpola-
tion process involved in the histogram-mode reconstruction is
subject to approximation errors.

Figure 7 shows how the 2D provides a better image qual-
ity than do 0D and 1D kernels, although the difference with
respect to the 1D version is limited. The 2D kernel model
performs only slightly better than the 1D model, even if it
is more accurate in principle. The rotational symmetry of the
scanner used in the experiments, as well as the symmetries
in the NEMA phantom, could be the cause of the small dif-
ference between the outcomes of 1D and 2D models. More
research would be needed in this field. However, given that
the 2D kernel model is also slightly faster than the 1D ver-
sion, it represents in any case the best option for both quality
and speed.

The cut-off value has a clear impact on the quality of the
results. As can be seen in Fig. 10, all models reconstruct at
almost half the speed if the cut-off value is changed from 10%
of the Gaussian peak to 1% of the Gaussian peak. The effect
of changing the threshold was evaluated quantitatively and is
summarized in Fig. 9.

Multicore and many-core parallelized implementations
have been realized and characterized. For a given model, the
images obtained with the different implementations are com-
pletely equivalent. Reconstruction speed was evaluated for
both CPU- and GPU-based implementations, demonstrating
that the reconstruction could be accelerated by about 80%
of the number of processors used on the same CPU archi-
tecture. Conversely, GPU cores perform at 40% the speed of
CPU cores, but then the computation time decreases identi-
cally with the number of GPUs.
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