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Abstract
Respiratory motion in emission tomography leads to reduced image quality.
Developed correction methodology has been concentrating on the use of
respiratory synchronized acquisitions leading to gated frames. Such frames,
however, are of low signal-to-noise ratio as a result of containing reduced
statistics. In this work, we describe the implementation of an elastic
transformation within a list-mode-based reconstruction for the correction of
respiratory motion over the thorax, allowing the use of all data available
throughout a respiratory motion average acquisition. The developed algorithm
was evaluated using datasets of the NCAT phantom generated at different points
throughout the respiratory cycle. List-mode-data-based PET-simulated frames
were subsequently produced by combining the NCAT datasets with Monte
Carlo simulation. A non-rigid registration algorithm based on B-spline basis
functions was employed to derive transformation parameters accounting for
the respiratory motion using the NCAT dynamic CT images. The displacement
matrices derived were subsequently applied during the image reconstruction
of the original emission list mode data. Two different implementations for
the incorporation of the elastic transformations within the one-pass list mode
EM (OPL-EM) algorithm were developed and evaluated. The corrected images
were compared with those produced using an affine transformation of list mode
data prior to reconstruction, as well as with uncorrected respiratory motion
average images. Results demonstrate that although both correction techniques
considered lead to significant improvements in accounting for respiratory
motion artefacts in the lung fields, the elastic-transformation-based correction
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leads to a more uniform improvement across the lungs for different lesion sizes
and locations.

1. Introduction

One of the parameters affecting quantitation in emission tomography (ET) imaging of
the thoracic and abdominal regions is respiratory motion. Respiratory motion has been
shown to reduce the accuracy of determining functional lesion volumes and associated
recovered activity concentrations (Nehmeh et al 2002, Boucher et al 2004) influencing
positron emission tomography (PET) applications such as radiotherapy treatment planning
and response to therapy monitoring, respectively. Furthermore, the introduction of scanning
devices combining anatomical and functional imaging has revealed various artefacts in the
functional images caused by the use of the anatomical datasets for attenuation correction
in combination with associated differences in the respiratory motion conditions during the
acquisition of the CT and ET datasets (Goerres et al 2002, Visvikis et al 2004, Erdi et al
2004).

In order to account for respiratory motion effects the gated acquisition of both CT and
PET datasets has been suggested as a potential solution. Pan et al have demonstrated that the
acquisition of a 4D CT can be equally used to derive a truly respiratory average CT that can
be subsequently used to correct a PET respiratory average dataset for attenuation effects in
the thoracic region (Pan et al 2005). On the other hand, using the 4D CT frames to correct a
respiratory average PET dataset has been shown to lead to an activity concentration variation
of over 30% depending on the phase of the CT frame used for the attenuation correction of
the PET images (Erdi et al 2004). Similarly, an increase of 36% in the standardized uptake
values (SUV) was observed by Nehmeh et al when using phase-matched 4D CT frames for
the attenuation correction of the corresponding 4D PET frames relative to the use of a static
CT scan (Nehmeh et al 2004). However, the result of such multi-frame acquisitions leads to
gated PET images suffering from poor signal-to-noise ratio since each of the frames contains
only part of the counts available throughout the acquisition of a respiration average PET study
(Visvikis et al 2005). Therefore, the need exists for the development of methodology that
corrects for respiratory motion effects between individual gated frames in order to allow the
use of the data available throughout a respiratory cycle.

Different authors have attempted to correct the effects of respiratory motion in cardiac
ET imaging through the use of either a rigid body transformation of list mode PET datasets
(Livieratos et al 2005) or through tracking the centre of mass in single photon emission
tomography (SPECT) projections (Bruyant et al 2003). Although such relatively simple
respiratory motion models could be sufficient focusing on single organs such as the heart,
it may be inadequate in oncology cases where the thoracic and diaphragmatic areas are of
interest. In an attempt to make use of all data available throughout a respiratory gated
acquisition for such applications, numerous authors have previously suggested the use of 4D
CT datasets to derive transformation maps that could be subsequently used to shift the detected
lines of response in the corresponding PET gated frames (Lamare et al 2005, 2007, Qiao
et al 2006, Li et al 2006). This work, based on the use of an affine transformation of list-mode
data prior to reconstruction, has demonstrated that although this approach leads to significant
improvements in lesion contrast and position in the lung fields, it is impossible to use such a
model to account at the same time for respiratory motion effects in both the lung fields and
organs under the diaphragm. On the other hand, several authors have in the past explored



Elastic respiratory motion correction in PET list-mode reconstruction 5189

the use of elastic deformation algorithms to realign individual gated frames suggesting that
the resulting deformed gated images could be subsequently summed together making use of
all the available data (Klein and Huesman 1997, Dawood et al 2006, Visvikis et al 2006).
However, the summing together of individual gated frames following their reconstruction will
obviously lead to inferior quality images than the incorporation of such deformations into the
reconstruction process, particularly in the case of using iterative reconstruction algorithms
which have become a standard in current clinical practice (Visvikis et al 2001, Schoder et al
2004, Asma et al 2006).

The use of list mode data acquisitions for gated PET may facilitate the a posteriori
binning of the acquired data. This in turn allows fine temporal sampling and the potential
of implementing different binning methodologies reducing the effect of generally observed
irregular respiratory motion patterns (Bruyant et al 2006). Although the application of a rigid or
affine transformation in the raw data domain is feasible considering individual lines of response
(Livieratos et al 2005, Lamare et al 2007), a similar approach for elastic transformation poses
obvious challenges. In the past, different approaches for the incorporation of transformations
in the system matrix during the reconstruction process have been described (Qi and Huesman
2002, Jacobson and Fessler 2003, Rahmim et al 2004, Lamare et al 2005, Qiao et al 2006,
Li et al 2006). While the work of Qi and Huesman as well as Rahmim et al considered
only rigid body transformations, Jacobson and Fessler described the theoretical framework of
incorporating non-rigid transformations in the reconstruction algorithm without evaluating the
proposed methodology. In addition, Qiao et al and Li et al evaluated their proposed algorithm
on a phantom study simulating only rigid body motion, therefore not allowing the evaluation
of elastic transformations in the performance of their algorithm implementation. Finally, the
patient study included in Li et al was at the level of the pancreas with limited respiratory
motion extend of approximately 1 cm and of limited non-rigid nature. The objectives of this
study are multiple. Firstly, two different implementations of a list-mode-based reconstruction
algorithm incorporating elastic deformations in the system matrix are described and compared
using an anthropomorphic phantom, which includes the non-rigid effects of physiological
motion at the level of the lung and the diaphragm. Lesions at different locations throughout
the lung and liver were included to assess the impact of this correction approach for oncology
applications. Secondly, the performance for respiratory motion correction of incorporating
elastic transformations in the reconstruction process is compared to the use of an affine
transformation applied prior to the reconstruction process (Lamare et al 2007). Finally, we
establish the qualitative and quantitative image improvements associated with applying the
deformation during the reconstruction process of the raw data rather than applying them in
individual gated frames which are subsequently summed.

2. Materials and methods

2.1. Simulation study

A digital NURBS-based 4D cardiac-torso phantom (NCAT) was used in the simulation of
PET respiratory gated acquisitions (Segars et al 2001). A number of different size lesions
(7, 11, 15 and 21 mm) were included at different locations throughout the lungs. Normal FDG
activity levels were placed in the lung and liver fields, while a tumour to background ratio
of 8 to 1 was used. Eight NCAT emission images were produced, corresponding to 0.625 s
considering a normal respiratory cycle of 5 s. The first frame represented full exhalation,
while the maximum magnitude of respiratory motion (full inspiration) is occurring between
the 4th and 5th frames. The model of a clinical PET system (Lamare et al 2006) developed
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with GATE (Geant4 Application for Tomographic Emission) was combined with the generated
NCAT phantom frames in order to obtain dynamic emission images throughout the respiratory
cycle. The attenuation images of the NCAT phantom were also integrated in order to simulate
the effects of attenuation. Finally, the data simulated for each individual frame was saved in a
list mode format.

2.2. Transformation fields

In the clinical case, 3D spatial transformations to be used for the correction of respiratory
motion may be obtained through the use of dynamic (respiratory gated) PET/CT datasets,
as a number of different authors have already demonstrated (Nehmeh et al 2004, Klein and
Huesman 1997, Dawood et al 2006, Visvikis et al 2006). In the simulation study presented
here, the generated NCAT attenuation/CT images without any blurring effects (resolution,
image statistics effects, etc) were used in combination with an elastic or affine registration
algorithm to define the transformation fields to be used during the reconstruction of the
simulated list mode emission datasets. Deformation matrices were derived between all
individual frames (frames 2–8) and that corresponding to full exhalation (i.e. frame 1, see
section 2.1), referred to from here onwards as the reference frame. In the case of the affine
registration a normalized mutual information algorithm was employed (Studholme et al 1999,
Lamare et al 2007). On the other hand, respiratory motion compensation fields were also
obtained performing independent non-rigid registration processes (Ledesma-Carbayo et al
2006) of the NCAT CT frames. The transformation gt(x) between frames 2–8 f (x, t) and
the reference f (x, 0) frame was defined as a linear combination of B-spline basis functions,
located in a rectangular grid (Kybic and Unser 2003, Ledesma-Carbayo et al 2006, Sorzano
et al 2005):

Dt ≡ gt(x) = x +
∑
j∈Z

N

cjβr (x/h − j) (1)

where βr(x) is a tensor product of centred B-splines of degree r and j are the indices of the
grid locations. The spacing between grid points h determines the number of parameters cj

to be optimized and the final rigidity of the solution. The registration is then formulated
as an optimization procedure that minimizes the sum of squared differences metric to find
the best transformation parameters cj. The optimization used a variation of the Marquart–
Levenverg nonlinear least-squares optimization in combination with an efficient estimation
of the Hessian matrix (Broyden–Fletcher–Goldfarb–Shanno (BFGS)) (Sorzano et al 2005).
Spline interpolation provides a continuous function of the discrete images, allowing an
excellent framework for finding a subpixel solution and to compute analytically the derivatives
needed in the optimization process. Speed and robustness are improved by the use of a
multiresolution approach in both the image and the transformation space. The multiresolution
methodology used creates a pyramid of subsampled images optimal in the L2-sense taking
advantage of the spline representation (Unser et al 1993). The problem is solved starting at
the coarser level of the pyramid (the most subsampled image) and proceeding to the finest
level. For each image level two levels of deformation are optimized also following a coarse to
fine strategy.

In order to choose the optimal parameters for the particular application in this paper,
we performed a set of initial tests. Three different transformation grid spacings were tested:
h = 8, h = 16 and h = 32 pixels. As a result, cubic B-splines with a grid spacing set to
8 × 8 × 8 pixels (8 pixels ∼25 mm) provided the best results and were used to represent
the deformation. Cubic B-splines were also used for image interpolation and for providing
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a continuous representation. The multi-scale processing scheme was set at four levels with
successive levels having half size in each dimension.

2.3. Image reconstruction on list-mode data

The one-pass list mode EM (OPL-EM) algorithm (Reader et al 2002) was implemented for
the reconstruction of the transformed LORs:

nk+1
j = nk

j

sj

∑
i∈T k

pij

1

qk
i

for k = 1, . . . , K (2)

where qk
i = ∑J

j=1 pijn
k
j is the expected count in LOR i, pij is the purely geometric term and

represents the geometric probability of detecting at LOR i an event generated in voxel j, nj

is the intensity of voxel j, J is the total number of voxels, sj is the voxel j of the sensitivity
image including the normalization and attenuation corrections and K is the number of time
subsets. k is both the iteration number and the subset used in that iteration. T k is the set of
list mode events in the kth subset. The forward projection step was implemented using the
accelerated version of the Siddon ray tracing (Siddon 1986, Han et al 1999, Zhao and Reader
2002).

An overall sensitivity image S including the normalization and attenuation corrections
for each of the individual simulated frames was produced through a forward projection and
backprojection of the corresponding NCAT attenuation images. Each voxel sj of the sensitivity
image S is computed as follows:

sj = 1

Nframes

∑
Nframes

∑
i∈I

pijNiAi , with Ai = exp


−

J∑
j=1

pijµj


 (3)

where Ni is the normalization term of the LOR i, Ai is the attenuation correction factor of the
LOR i, I is the total number of detectable LORs, J is the total number of voxels and µj is
the linear attenuation coefficient at the energy of 511 keV (µj is the intensity of the voxel j in
the NCAT attenuation image) and Nframes is the number of temporal gated frames.

2.4. Implementation of elastic transformations in the system matrix

The elastic motion correction can be integrated in a mathematical representation of the system
matrix in the PET reconstruction process. If one notes P the system matrix usually describing
the PET system, and whose elements pij represent the geometric probability of detecting at
LOR i an event generated in voxel j , the data acquisition in PET can be represented by the
equation

m = Pf (4)

where m are the measured datasets and f is the radioactive distribution. If t0 corresponds to the
reference frame time, the system matrix can be modified to take into account the deformation
of the radioactive distribution from time t to time t0 giving

mt = Ptf (5)

where mt are the measured datasets at time t and f remains the radioactive distribution had
the object not moved (i.e corresponding to the reference frame time). The number of system
matrices, Pt , corresponds to the number of available PET/CT synchronized frames.

This elastic-based respiratory motion correction can be integrated in any reconstruction
process using a representation of the system matrix as described in equation (4), allowing
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Figure 1. Comparison of the Frame 1 (a), Non-Corrected (b), LORs-Affine (c), Elastic Method 1
(d) and Elastic Method 2 (e) images. Visual differences can be clearly seen at the levels of the liver
and the heart.
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Figure 2. Graphical representation of the incorporation of the elastic motion compensation during
reconstruction for (a) the elastic interpolation-based methodology (Elastic Method 1) and (b) the
elastic direct methodology (Elastic Method 2).

the reconstruction of a motion-free image. In our case, the list-mode reconstruction
algorithm OPL-EM, given by equation (2), is modified as follows to incorporate the elastic
transformations:

f k+1 = f k

S

∑
Nframes

Pt
T 1

Ptf k
(6)

where T is the transpose operator and Nframes is the number of temporal gated frames.
In this study, the transformation matrices are provided by the elastic registration described

earlier (see section 2.2). The discrete motion deformation matrix Dt contains 3D vectors
describing individual voxel motion parameters, such that a voxel j ′ at time t0 = 0 has been
moved to the location j = Dt(j

′) at acquisition time t (due to object motion). If J is the
total number of voxels, the matrix Dt is a J × J matrix and represents the deformation of
the radioactive distribution from time t0 to time t, on a voxel-by-voxel basis. As figure 2(a)
demonstrates the voxel j ′ at time t0 = 0 (reference image = NCAT frame 1) corresponds to
an actual grid voxel, whereas the voxel j = Dt(j

′) can overlap several voxels of the grid:

Dt :

{
reference
image (t0)

}
→

{
image at
time t

}
voxel j ′ → voxel j = Dt(j

′).
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Assume pij is the geometric probability of detecting at LOR i an event generated in voxel j .
pij corresponds to the overlap between a voxel j and an LOR i. The overlap between a voxel
j and an LOR i at time t is equivalent to the overlap with the transformed voxel j ′ had the
object not moved (reference acquisition time = 0) (see figure 2):

pt
ij δj ≡ p0

ij ′ , where j = Dt(j
′) (7)

where i is the index of the detected LOR, j is the index of the voxel at acquisition time t and j ′

those of the corresponding motion corrected voxel at time t0 = 0. The function δj is defined
by

δj =
{

1, if the voxel j at time t is inside the field of view
0, otherwise.

The coefficients p0
ij ′ correspond to the coefficients of the system matrix Pt . Since the

position of the voxel j = Dt(j
′) can overlap several voxels of the grid, the accelerated

version of the Siddon ray tracing in the implementation of the forward projection step
cannot be implemented without an interpolation step. Therefore, in terms of calculating
the reconstruction system matrix two different approaches have been evaluated in the current
study. The first involves the use of a trilinear interpolation of the coefficient pt

ij based on
the overlapping volumes of the eight neighbouring voxels (Qiao et al 2006) (see figure 2(a)),
which subsequently permits the use of the Siddon algorithm for the calculation of the system
matrix coefficients. The second approach involves a direct calculation of the coefficients pt

ij

with the exact location of voxel j at acquisition time t (see equation (7) and figure 2(b)).
As the exact location of voxel j at acquisition time t does not match a voxel of the grid,
the Siddon algorithm cannot be used to calculate these coefficients (Lamare et al 2005). On
the one hand, the first approach allows an acceleration of the reconstruction process through the
use of the Siddon algorithm while on the other hand it could potentially be introducing errors
as a result of the interpolation process in combination with the use of an elastic transformation
to derive the displacement matrices Dt . It is worth noting that neither of the two approaches
takes explicitly into consideration the deformation of the voxel shape that can be encountered
during the use of a non-rigid transformation. However, only the interpolation-based method
(through the assumption that the volume of all voxels is the same in the calculation of the
overlapping volumes) is affected by such voxel shape deformations.

For both methodologies, the sensitivity image S used to correct for attenuation and
normalization has to equally take into account the movement of the voxel location. Therefore,
the coefficients sj of the sensitivity image S are now defined as

S = 1

Nframes

∑
Nframes

Pt
T NA, with A = exp(−Ptµ) (8)

where µ is the linear attenuation coefficient at the energy of 511 keV in the initial position
(µj is the intensity of the voxel j in the NCAT attenuation image). Nframes is the number of
temporal gated frames.

2.5. Image analysis

Five different reconstructions were performed:

• The first frame of the respiratory cycle was reconstructed with the same statistics as for
the entire respiratory cycle and represents the reference image (Frame 1 image)

• The eight temporal frames were summed without any transformation and reconstructed
(Non-Corrected image).
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• Each of the list-mode files corresponding to the last seven frames were corrected
using the affine registration parameters. They were subsequently summed together and
reconstructed using the standard OPL-EM algorithm (LORs-Affine image) (Lamare et al
2007).

• The elastic transformation fields were included during the reconstruction of the
corresponding list-mode datasets (Elastic Method 1 and Elastic Method 2 images,
corresponding to the implementation of the methodology with and without interpolation,
respectively, as described in section 2.4).

• Each of the individual temporal gated frames were reconstructed. The reconstructed
images corresponding to the last seven frames were corrected using the elastic parameters
cited above and were subsequently summed together (gated-Frames image).

Two reconstructed image sizes were considered for the different lesion diameters. Images
of 128 × 128 × 60 (voxel size of 3.125 × 3.125 × 3.125 mm3) and 256 × 256 × 120 (voxel
size of 1.5625 × 1.5625 × 1.5625 mm3) were obtained for each of the reconstructed temporal
NCAT frames with the lung lesions of 15, 21 mm and 7, 11 mm in diameter, respectively. For
a list mode dataset of 10 million detected coincidences, an iteration of the OPL-EM algorithm
was <4 min for an image of the above dimensions (Intel Xeon 3 GHz dual core). A total of
seven iterations were found to be optimum for the reconstruction of the NCAT images. Using
the interpolation- and the non-interpolation-based approaches in the implementation for the
incorporation of the non-rigid transformations in the reconstruction system matrix increased
the time of acquisition by less than 5% and over a factor of 10, respectively.

The motion corrected images using the affine model and the two different implementations
of the elastic model were compared to the first temporal frame (Frame 1 = reference image).
The total number of coincidences were kept the same for all images in order to distinguish
the effects purely associated with motion, rather than including those arising from differences
in statistical quality between the single temporal frame (including only part of the data) and
the corrected frames (including all of the available data). In order to better quantify motion
compensation, we have also compared the motion corrected images with the respiratory
average image (Non-Corrected).

The percent relative difference (PRD) of the radioactivity concentration (Lamare et al
2007) was used to quantify the improvement in terms of contrast, position and FWHM of the
simulated lesions. The PRD is computed as

%PRD =
∣∣∣∣Evaluated − Frame 1

Frame 1

∣∣∣∣ × 100 (9)

where the variable Evaluated can be either the LORs-Affine, the gated-Frames, the Non-
Corrected or the Elastic image. Based on the calculated PRD, the contrast and FWHM
improvements as a result of the respiratory correction are computed using

%improvement = PRDCorrected − PRDNon-Corrected

PRDNon-Corrected
× 100 (10)

where the variable Corrected can be either the LORs-Affine, the gated-Frames or the Elastic
image.

To assess the improvement in terms of contrast in the reconstructed images, regions of
interest (ROI) were placed in each of the lung lesions and in the background lung. The slice
with the maximum count density over the lesion was identified for the ROI analysis. Average
count densities were subsequently derived for each lesion.

On the other hand, to quantify the position and FWHM improvement as a result of the
motion compensation, line profiles were drawn in the x-, y- and z-directions for each lesion.
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Table 1. Contrast improvement analysis (equation (10)) on a lesion by lesion basis in the lung
field through comparison of the Non-Corrected and Corrected images. Results are shown for both
correction approaches Elastic Method 1 and Elastic Method 2.

Lesion
% Contrast diameter Elastic Elastic
improvement (mm) Method 1 Method 2

Upper lobes 15 78.08 94.11
of the lungs 21 86.41 94.80

Middle lobes 15 73.82 88.99
of the lungs 21 83.90 99.39

Lower lobes 15 65.88 95.28
of the lungs 21 90.38 98.25

Table 2. Position improvement analysis (equation (10)) of the different size lung lesions along
the Y- and Z-axes. Results are shown for both correction approaches Elastic Method 1 and Elastic
Method 2.

Elastic Elastic
Lesion

Method 1 Method 2
% Position diameter

improvement (mm) Y Z Y Z

Upper lobes 15 91.15 90.16 96.48 96.48
of the lungs 21 76.90 79.54 98.64 95.17

Middle lobes 15 84.34 78.83 92.65 94.60
of the lungs 21 84.79 93.65 78.84 96.07

Lower lobes 15 91.04 94.88 94.66 97.50
of the lungs 21 62.55 88.87 86.64 97.41

Table 3. FWHM improvement analysis (equation (10)) of the different size lung lesions along the
Y- and Z-axes. Results are shown for both correction approaches Elastic Method 1 and Elastic
Method 2.

Elastic Elastic
Lesion

Method 1 Method 2
% FWHM diameter

improvement (mm) Y Z Y Z

Upper lobes 15 73.37 60.62 93.96 84.55
of the lungs 21 81.00 75.85 81.89 87.02

Middle lobes 15 47.95 90.06 92.39 99.26
of the lungs 21 77.20 96.81 94.26 97.40

Lower lobes 15 73.84 86.58 90.13 92.22
of the lungs 21 94.45 68.20 92.74 92.65

Each of the lung lesion profiles was subsequently fitted with a Gaussian in order to derive the
position and FWHM in all three dimensions.

3. Results

Tables 1–3 allow the direct comparison of the two elastic methodologies presented in terms
of contrast, position and FWHM improvements, respectively. For all these three parameters,



5196 F Lamare et al

 0

 20

 40

 60

 80

 100

211511721151172115117

%
 C

on
tr

as
t i

m
pr

ov
em

en
t

Lesion diameter (mm)

gated-Frames
LORs-Affine

Elastic Method 2

Upper lobes of the lungs Lower lobes of the lungsMiddle lobes of the lungs
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 3. Contrast improvement due to the two respiratory motion correction techniques.

the direct-calculation-based methodology (see section 2.4) demonstrates better results than the
trilinear interpolation-based method. The average difference in terms of contrast improvement
between the two methods is ∼13%. Concerning the position improvement the difference
between the two methodologies is on average ∼11% and ∼9% along the Y- and the Z-axis,
respectively. Finally in terms of FWHM, the improvements observed on the Elastic Method 2
image are higher by an average of 20% and 11% along the Y- and the Z-axis, respectively, in
comparison to the interpolation-based approach (Elastic Method 1 image).

The results obtained for the LORs-Affine image reconstruction methodology are those
presented in (Lamare et al 2007) and included here for completeness and in order to facilitate an
easy comparison to the performance of the elastic-transformation-based approaches evaluated
in this work. The relative difference in terms of contrast between the reference image (i.e.
Frame 1) and the other reconstructed images (see section 2.5), including the different correction
approaches evaluated in this work, is shown in table 4. Using the results from table 4 and
equation (10) the contrast improvement results for gated-Frames, LORs-Affine and Elastic
Method 2 images are shown in figure 3. A significant contrast improvement of the lung lesions
(between 85% and 99%) can be seen as a result of the elastic transformation. In addition,
the contrast improvement in both gated-Frames and LORs-Affine images is, for all the lesion
sizes, lower than with the Elastic Method 2 image.

On the other hand, in the case of the affine transformation, the contrast of the liver lesions
(independently of their size) was higher by a maximum of 10%, which is significantly less
than the minimum improvement obtained for the lung lesions. This was to be expected since
as already mentioned in (Lamare et al 2007) a common set of transformation parameters
(i.e. in this case those of the lung) does not correct for respiratory effects on organs below
the diaphragm. With the Elastic Method 1 and Elastic Method 2 images, the contrast
improvement on the liver lesions was <55% and ∼77%, respectively. The worst performance
of the Elastic Method 1 image is most probably due to the inaccuracies introduced by the
trilinear interpolation methodology in the area of the diaphragm suffering from large elastic
deformations.

The corrected image should be similar to the first frame of the respiratory cycle. The
percentage differences in terms of the lesion spatial position and FWHM relative to the
reference image are summarized in tables 5 and 6.
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Table 4. Contrast per cent relative difference analysis (equation (9)) on a lesion by lesion basis in
the lung field through comparison of the Non-Corrected and Corrected images. Results are shown
for both approaches of applying the transformation in the raw data prior to the reconstruction
process (LORs-Affine) as well as in the images and subsequently summing them together (gated-
Frames) or integrating the elastic transformation parameters within the reconstruction process
(Elastic Method 1).

Lesion
diameter Non- gated- LORs- Elastic

Contrast (mm) Corrected Frames Affine Method 2

Upper lobes 7 28.30 10.83 4.39 1.21
of the lungs 11 31.48 4.23 2.82 1.21

15 30.33 6.20 3.05 1.79
21 12.96 1.50 0.65 0.67

Middle lobes 7 18.87 7.14 1.56 4.20
of the lungs 11 28.86 3.35 1.38 0.19

15 30.87 3.89 2.66 3.40
21 21.16 2.09 1.14 0.13

Lower lobes 7 32.42 2.92 2.63 1.66
of the lungs 11 35.35 7.89 4.45 5.28

15 38.68 4.01 3.07 1.82
21 27.56 0.69 1.30 0.48

Table 5. Position per cent relative difference analysis (equation (9)) of the different size lung lesions
along the Y- and Z-axes. Results are shown for both approaches of applying the transformation
in the raw data prior to the reconstruction process (LORs-Affine) as well as in the images and
subsequently summing them together (gated-Frames) or integrating the elastic transformation
parameters within the reconstruction process (Elastic Method 1).

Non- gated- LORs- Elastic
Lesion

Corrected Frames Affine Method 2
Position diameter

Y/Z (mm) Y Z Y Z Y Z Y Z

Upper lobes 7 0.76 4.67 0.83 0.79 0.52 1.06 0.36 0.40
of the lungs 11 0.65 3.37 0.57 0.51 0.37 1.40 0.18 0.28

15 2.69 7.38 0.08 0.36 0.11 0.43 0.09 0.26
21 1.51 5.62 0.14 0.33 0.08 0.59 0.02 0.27

Middle lobes 7 1.19 3.87 0.38 0.49 0.36 1.81 0.27 0.61
of the lungs 11 2.16 3.83 0.10 0.61 0.20 0.60 0.06 0.59

15 0.84 4.27 0.09 0.36 0.13 0.74 0.06 0.23
21 2.02 5.76 0.68 0.71 0.54 0.34 0.43 0.23

Lower lobes 7 3.35 9.34 0.38 0.29 0.27 0.57 0.09 0.17
of the lungs 11 2.28 2.47 1.43 0.43 1.09 0.43 0.66 0.38

15 1.71 4.63 0.15 0.24 0.28 0.65 0.09 0.12
21 2.23 5.18 0.33 0.16 0.34 0.12 0.30 0.13

Figure 4 shows the profile response of the lesions in the respiratory corrected images,
compared with the NCAT reference frame image. According to the profile in the Z-direction,
one can appreciate that the displacement of the lesions is well corrected in the Elastic Method
2 image in comparison to the NCAT gated Frame 1 and the uncorrected respiration average
image, resulting in a spatial location improvement of between 85% and 99%. It is worth
noting the drop in the voxel intensity in the corrected Elastic Method 1 image at the position
of the diaphragm that can be once more attributed to the large elastic deformations in this area
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Figure 4. Profile of the lung lesions and the liver along the Z-axis.

Table 6. Per cent relative difference analysis (equation (9)) of the FWHM of the different size
lung lesions along the Y- and Z-axes. Results are shown for both approaches of applying the
transformation in the raw data prior to the reconstruction process (LORs-Affine) as well as in
the images and subsequently summing them together (gated-Frames) or integrating the elastic
transformation parameters within the reconstruction process (Elastic Method 1).

Non- gated- LORs- Elastic
Lesion

Corrected Frames Affine Method 2
FWHM diameter

Y/Z (mm) Y Z Y Z Y Z Y Z

Upper lobes 7 4.28 7.14 1.89 0.56 0.89 0.36 0.84 0.28
of the lungs 11 22.89 9.35 2.29 0.65 1.46 2.26 0.64 0.27

15 4.84 2.46 0.45 1.89 0.50 1.22 0.29 0.38
21 12.48 7.69 4.31 1.34 3.99 1.47 2.26 1.00

Middle lobes 7 25.32 26.47 2.25 3.22 7.25 3.56 1.78 3.06
of the lungs 11 9.61 5.78 0.64 1.51 0.71 2.17 0.42 0.88

15 9.60 17.84 3.19 1.77 1.69 1.25 0.73 0.13
21 5.48 9.28 2.55 0.30 1.55 0.99 0.31 0.24

Lower lobes 7 23.48 48.61 2.49 4.91 2.69 4.81 1.11 5.06
of the lungs 11 10.51 12.77 0.45 0.83 1.02 1.48 0.34 0.61

15 3.05 15.79 0.80 2.12 1.09 1.64 0.30 1.23
21 6.72 5.48 0.54 1.74 0.75 1.02 0.49 0.40

in combination with the use of the interpolation in the reconstruction process. The z position
of the lesions in the gated-Frames or LORs-Affine images is less well corrected than in the
Elastic Method 2 image. The average improvement difference in the corrected images is over
10% and 20% for the LORs-Affine and gated-Frames image, respectively. Along the Y-axis,
the position improvement extends from 65 to 99% for the Elastic Method 2 image, while the
difference with the two other corrected images remains roughly the same.

Figures 5–8 contain the results on the FWHM along the y- and z-directions for the lung
lesions as a function of lesion size and location. The respiratory motion in the NCAT phantom is
very small along the X-axis, so the improvement results in this direction are not been presented.
Concerning the FWHM of the lesion profiles along the Z-axis, the maximum improvement
is ∼99%. For the three parts of the lung considered, the maximum improvement is obtained
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Figure 5. Percentage improvement of the position of the different sizes lung lesions along the
Y-axis.
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Figure 6. Percentage improvement of the FWHM of the different sizes lung lesions along the
Y-axis.

for the bigger lesions, considering that we are limited on our improvement estimation by the
relative size of the smaller lesions in comparison to our reconstructed pixel size.

Finally, the profiles in figure 9 serve to demonstrate the significant respiratory motion
correction obtained using the elastic-transformation-based approach relative to the limited
impact from the application of an affine transformation using lung parameters for the organs
below the diaphragm, such as the liver.

4. Discussion

The acquisition of gated frames for the correction of respiratory motion in whole body
PET/CT imaging results in some motion compensation. On the other hand, however, gated
images are suffering from reduced signal-to-noise ratio as they contain only part of the data
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Figure 7. Position improvement along the Z-axis due to the two respiratory motion correction
techniques.
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Figure 8. FWHM improvement along the Z-axis due to the two respiratory motion correction
techniques.

available throughout a respiratory motion average emission acquisition. A simulation study
has previously demonstrated that the overall time of a 4D acquisition needs to be increased
by at least a factor of 2–3 relative to a static acquisition before realizing any improvements
in terms of respiratory motion compensation from gated acquisitions (Visvikis et al 2004).
As a result, different approaches have been suggested for the correction of respiratory motion
differences between gated frames that may eventually allow their combination in a particular
position of the respiratory cycle. The vast majority of these approaches are based on the use
of image registration techniques for the realignment of individual gated frames. Although
subsequent summing of the registered gated frames has been suggested, a correction applied
either prior or during the reconstruction process should lead to superior results in terms of
contrast and signal-to-noise ratio (Lamare et al 2007), particularly considering the use of
iterative reconstruction algorithms which have become a standard in clinical whole body
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Figure 9. Profiles across the liver lesion (21 mm in diameter) along the Z-axis.

imaging. In such an implementation the transformation fields derived between individual
gated images are used to either shift the data prior to the reconstruction (rigid- or affine-
model-based transformation) or during the reconstruction (non-rigid-based transformation).
Such transformations can be derived using either reconstructed 4D PET (Dawood et al 2006,
Visvikis et al 2006) or 4D CT images (Visvikis et al 2006, McClelland et al 2006). Rigid or
affine transformations may account for respiratory motion effects in single organs or lesions
(Livieratos et al 2005, Lamare et al 2007, Bruyant et al 2003). However, accounting for
respiratory motion effects in the whole field of view may require a non-rigid registration
methodology. The purpose of this work has been to describe a couple of different approaches
for the incorporation of elastic transformations in the reconstruction of list mode data and
compare their performance relative to an affine-model-based transformation taking place prior
to the reconstruction process. Furthermore, the qualitative and quantitative accuracy in the
corrected images associated with using the non-rigid transformations during the reconstruction
process rather than applying it to reconstructed images that can be subsequently summed
together was also evaluated.

The NCAT phantom, describing a realistic motion model including non-rigid motion,
effects was used in this study. Lesions of variable size and location in the lung and liver fields
were introduced. Both affine and elastic transformation parameters were derived by using
the non-noisy high-resolution NCAT-phantom-based attenuation maps, in order to minimize
errors in the image-based-derived transformation parameters. Two different methodologies
for the modification of a list-mode-based image reconstruction algorithm in order to allow
the incorporation of elastic transformations during the reconstruction process of 4D acquired
datasets have been described. Dedicated attenuation and normalization corrections were also
developed to take into account the applied elastic transformations.

The main difference in the two implementations of the reconstruction algorithm presented
in this paper is based on the fashion of incorporating the transformation parameters in the
reconstruction system matrix. In the first approach, a trilinear interpolation is employed
(Qiao et al 2006) during the calculation of the sensitivity image coefficients following their
displacement in the reconstruction matrix based on the transformation fields for each of
the gated datasets. The second approach involves a direct calculation of these coefficients
based on their new position without the need for an interpolation step. Although the
introduction of an interpolation step allows the use of the Siddon algorithm, significantly
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reducing reconstruction times, it suffers by the assumption governing the interpolation step.
This interpolation is based on the overlapping volumes of the eight neighbouring voxels (see
section 2.2), the assumption being that the non-rigid transformation operations performed to
obtain the necessary displacement vectors do not significantly alter the shape of the voxels.
Such an assumption, although valid for small displacements, can be questioned for areas
where significant non-rigid body movements take place. In our investigation with the NCAT
phantom, the area of the diaphragm presents the largest non-rigid deformations induced by
the respiratory motion. As demonstrated in figure 1(e), white band artefacts appear in the
area of the diaphragm. The corresponding loss of voxel intensity is also shown in figure 4.
In addition, as far as quantitative results are concerned, the interpolation-based methodology
performed globally worse than the direct-calculation-based implementation by <13% as far
as lesion contrast and position recovery are concerned and up to 20% in the lesion size
improvements. These differences occurred in their large majority considering the lesions
closer to the diaphragm. At the same time, the direct-based method renders the reconstruction
process slower by over a factor of 10.

A comparison of the reconstructed images with and without transformation applied on
the raw list mode datasets revealed significant respiratory motion compensation in the lungs.
As figure 3 demonstrates an improvement of ∼85–99% in terms of contrast on lung lesions
in the corrected images was obtained. In terms of improvements on lesion location and size
there was a more non-uniform recovery depending on the placement of the lesion in the lung
field varying from 70% to 95% and from 80% to 97%, respectively.

The corrected images based on the use of elastic transformations in the reconstruction
process were compared to the results obtained through the use of a previously described affine-
based model, where the transformation of list mode data takes place prior to the reconstruction
(Lamare et al 2007). In terms of contrast improvements of up to 30% in comparison to the
affine-transformation-based correction were obtained. A larger improvement was generally
observed for the smaller lesions placed in the lower part of the lung fields, leading to an
overall more uniform correction throughout the lungs relative to the affine-transformation-
based approach, irrespective of the lesion size and location.

Finally, a superior contrast by on average between 20% and 30% was observed in the
recovered lesion contrast as a result of performing the correction prior to the reconstruction
process rather than using the spatial transformation parameters for adjusting individual gated
images and subsequently summing them together. On the other hand, differences obtained
between the recovered position and size of the lesions between the image-based and the
raw-data-based solution were on average less than 10%.

In summary, the developed methodology has demonstrated that the application of an elastic
spatio-temporal transformation during the reconstruction process of gated PET datasets leads
to significant improvements in overall image qualitative and quantitative accuracy, making
use of all available data throughout a respiratory gated acquisition. In addition, our results
demonstrate that the application of the spatial transformation in the raw data domain within
the reconstruction leads to superior contrast in comparison to simply adding together already
reconstructed and realigned images of the individual gated frames.

5. Conclusion

A list-mode-data-based respiratory motion correction using elastic transformations during
image reconstruction has been implemented and its performance evaluated. The developed
algorithm includes the implementation of modified normalization and attenuation corrections
taking into consideration the applied transformations. Our results with a digital phantom,
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including realistic non-rigid respiratory motion, demonstrate that the use of an interpolation
step in the calculation of the sensitivity matrix coefficients leads to artefacts and a reduced
quantitative improvement in the motion corrected reconstructed images.

A comparison of the reconstructed images with and without correction revealed significant
respiratory motion compensation in the lung lesions. In comparison to the use of an affine
model, the elastic-transformation-based solution leads to a more uniform improvement across
the lung fields for the different lesion sizes considered. In addition, the application of the
displacements in the image space followed by summing the realigned gated frames leads to
<30% contrast loss relative to the incorporation of the displacements in the reconstruction
process.
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