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Abstract. Motion-corrected fetal magnetic resonance imaging (MRI) is
widely employed in large-scale fetal brain studies. However, the current
processing pipelines and spatio-temporal atlases tend to omit craniofa-
cial structures, which are known to be linked to genetic syndromes. In
this work, we present the first spatio-temporal atlas of the fetal head
that includes craniofacial features and covers 21 to 36 weeks gestational
age range. Additionally, we propose a fully automated pipeline for fetal
ocular biometry based on a 3D convolutional neural network (CNN).
The extracted biometric indices are used for the growth trajectory anal-
ysis of changes in ocular metrics for 253 normal fetal subjects from the
developing human connectome project (dHCP).
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1 Introduction

Arguably, an MRI scan of the fetal brain is not complete without a structural
and dysmorphological assessment of the fetal craniofacial structures due to the
intricate link between brain anomalies and genetic syndromes that affect the
facial features [2,19]. More than 250 syndromes are associated with changes in
craniofacial growth and development and can therefore result in overt anomalies
or subtle changes in anatomical appearance and yet prenatal detection remains
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low [7,15]. Ultrasound is the primary imaging modality for fetal assessment and
has well recognised limitations. High risk fetal cases are increasingly referred for
MRI examinations for further characterisation and to assess for the presence of
additional anomalies.

Fetal motion during MRI acquisition leads to loss of structural continuity
between 2D slices and corruption of 3D information. The image degradation pre-
cludes the reliable use of MRI to assess craniofacial structures. During the past
decade this has been successfully addressed by slice-to-volume registration (SVR)
reconstruction tools [6,11] that can produce motion-corrected high-resolution 3D
fetal brain MRI images. SVR tools also have the potential to increase the clini-
cal reliability of extended craniofacial biometry and objective assessments of the
curved structures of the fetal head and face e.g. orbits, oral hard and soft palate,
and cranial shape. Formalisation of the normal trajectory of rapid development
of craniofacial structures occurring during gestation that can be observed in
MRI is essential for definition of the control reference. However, the existing
spatio-temporal fetal atlases include only the brain region [8].

Automated segmentation and volumetry methods lower the impact of inter-
and intra-observer variability and provide the means for processing large-scale
studies [14]. Recently, several reported works employed semi-automated seg-
mentation for analysis of fetal craniofacial features in MRI and ultrasound
[1,12,13,21] and, more recently, an automated method was proposed for 2D slice-
wise segmentation and biometry of orbits in low resolution stacks [3]. Incorpora-
tion of novel convolutional neural network (CNN) pipelines for motion-corrected
fetal MRI segmentation [9,10,16] has a potential to make the application of
automated biometry and volumetry of craniofacial structures feasible for large
datasets and motion-corrected MRI. Quality control for automated data anal-
ysis methods also remains one of the current challenges in terms of practical
application.

In this work, we propose to generate a first spatio-temporal atlas of the fetal
head that includes craniofacial features. This extends the already existing brain-
only fetal MRI templates for a wider application of analysis of normal craniofacial
feature development. In addition, we implemented an automated pipeline for 3D
CNN-based ocular biometry for motion-corrected fetal MRI with outlier detec-
tion. The biometry outputs were then used for the analysis of ocular growth
trajectories for 253 normal fetal subjects with acceptable biometry results.

2 Methods

2.1 Cohort, Datasets and Preprocessing

The data used in this study included T2w MRI datasets of 291 fetuses with-
out reported anomalies from 20 to 38 weeks gestational age (GA) acquired at
St.Thomas’ hospital, London as a part of the dHCP project1 (dHCP, REC:
14/Lo/1169). The acquisition was performed on a Philips Achieva 3T system

1 dHCP project: http://www.developingconnectome.org/project.

http://www.developingconnectome.org/project
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Fig. 1. Distribution of the gestational age and image quality in the investigated fetal
MRI cohort. The image quality scores are: fail, poor, average and good.

with a 32-channel cardiac coil using single shot turbo spin echo (ssTSE) sequence
with TE = 250 ms, TR = 2265 ms, acquisition resolution = 1.1 × 1.1 × 2.2 mm
(–1.1 mm gap) [18]. The datasets were reconstructed using a fully automated
SVR pipeline [5] to 0.5 × 0.5 × 0.5 mm resolution for the fetal head region of
interest (ROI). This was followed by reorientation to the standard planes using
a dedicated transformer CNN [22].

The quality of the 3D reconstructed images in terms of definition of the
anatomy features, noise and contrast was assessed by an experienced researcher
with the grades: good (4), average (3), poor (2) and failed (1). All available
datasets were included in the biometry study irrespective of the reconstruction
image quality for the purpose of testing of the proposed automated detection of
outliers approach. The histograms of the cases GA and quality scores is given in
Fig. 1 with the majority of scans within ≥ 3 quality window. For generation of
the atlas we used only a subset of cases from 21 to 36 GA weeks.

2.2 Spatio-Temporal Atlas

For atlas generation, we selected 190 datasets with the best image quality and
optimal coverage of the fetal head. The 4D spatio-temporal atlas of the fetal
head was constructed using the MIRTK2 atlas generation pipeline [20] at 16
discrete timepoints in 21 to 36 weeks GA range. We used local normalised
cross-correlation similarity metric with 5 voxel window, 3 atlas generation itera-
tions, temporal Gaussian kernel with constant 1 week sigma, and 0.7 mm output
isotropic resolution settings.

2 MIRTK library: https://github.com/BioMedIA/MIRTK.

https://github.com/BioMedIA/MIRTK
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2.3 Automated Ocular Biometry

The proposed pipeline for fetal ocular biometry is summarised in Fig. 2. We
first localise the orbit using 3D U-Net [4], then we fit a 3D line through the
orbit centroids and calculate the standard ocular measurements [21]. Further-
more, the step for automated detection of outliers provides quality control of the
segmentations and measurements.

For the orbit segmentation module, the 3D U-Net [4] architecture consists of
5 encoding-decoding levels with 32, 64, 128, 256 and 512 channels, respectively.
Each encoder block consists of 2 repeated blocks of 3 × 3 × 3 convolutions (with
a stride of 1), instance normalisation and LeakyReLU activations. The first two
down-sampling blocks contains a 2×2×2 average pooling layers, while the others
use 2× 2× 2 max pooling layers. The decoder blocks have a similar architecture
as the encoder blocks, followed by upsampling layers. The model outputs an N-
channel 3D image, corresponding to our 2 classes: background and fetal orbits.
The network is implementated in PyTorch3.

The orbit masks were created manually by a trained clinician for 20 cases.
The network was trained on 19 3D reconstructed images and 1 case was used
for validation. The training was performed for 100 epochs with TorchIO aug-
mentation [17] including affine transformations (±180◦ rotations and 0.9 − 1.1
scaling), bias field and motion artifacts (< 5◦ rotations and < 2.0 translations).

Fig. 2. Proposed pipeline for automated ocular biometry.

Next, the output 3D segmentations are post-processed using morphologi-
cal filtering. The two largest components with ±35% difference in volume are
selected as the orbits (to account for a potential intensity variability due to the
presence of a bias field). The calculation of ocular biometry is performed by
fitting a line through the orbit centroids followed by detection of intersection
points, calculation of line segment length and extraction of the standard 2D
metrics: ocular diameter (OD), binocular distance (BOD), interocular distance
(IOD), see Fig. 7.f. In addition, we also calculate volumes of the orbits (OV).
Similarly to [21], the mean OD and OV values are computed as an average
between the left and right orbits.

Outlier detection is based on three inclusion conditions: (i) the number of
detected components should not exceed 5, which is an indicator of not well
defined ocular features due to low image quality; (ii) the sizes of the right and
left (R/L) orbits should be comparable within ±15% difference in terms of both
volumes and OD values; (iii) the extracted metrics should be within ±30% win-
dow of the GA-specific curve values [21].
3 PyTorch: https://pytorch.org.

https://pytorch.org
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In order to confirm the correlation between the intracranial and ocular vol-
umetry, we trained a 3D U-Net with the same architecture for brain extrac-
tion. The training was performed for 400 epochs with augmentation in 3 steps
using semi-supervised approach. At the first stage we used 60 fetal brain SVR
images with manual segmentations of the intracranial volume available from
other research projects. Next, the results of testing on the entire cohort (291)
were examined and successful brain masks that included the entire intracranial
volume were used in the next stage of training. All output intracranial brain
masks for good quality reconstruction cases were visually inspected by a trained
researcher and manually refined in 32 cases due to the presence of errors.

Fig. 3. The generated spatio-temporal atlas of the fetal craniofacial feature develop-
ment at 21, 26, 31 and 36 weeks GA along with the corresponding face masks.
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3 Results and Discussion

3.1 Spatio-Temporal Atlas of Fetal Craniofacial Feature
Development

The generated spatio-temporal atlas of the head ROI at 21, 26, 31 and 36 weeks
GA is shown in Fig. 3. The corresponding presented face masks were created
semi-manually using combination of thresholding, manual refinement and label
propagation from one to the rest of the GA timepoints. The atlas was inspected
by two clinicians trained in fetal MRI who confirmed that all craniofacial features
are correct, well defined and have high contrast. The atlas will be available online
at the SVRTK data repository4.

Fig. 4. Examples of a successful biometry output (a), a case detected as an outlier
due to R/L OD and OV differences (b) and a completely failed case (c). The illus-
trations show the original 3D SVR reconstructions with orbit mask overlay and the
corresponding 3D model with the fitted 3D line.

4 SVRTK fetal and neonatal MRI data repository: https://gin.g-node.org/SVRTK.

https://gin.g-node.org/SVRTK
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3.2 Eye Biometry

Figure 4 shows an example of a successful (Fig. 4a) and failed (Fig. 4c) biometry
output as well as a case that was automatically identified as an outlier (Fig. 4b)
due to the difference between right and left OD and OV values. The completely
failed case (Fig. 4c) was also automatically detected since there were > 5 com-
ponents in the 3D U-Net output. This was caused by the low image quality due
to the insufficient number of input stacks and the extreme motion that could
not be resolved by SVR reconstruction [5].

Fig. 5. Comparison between automated and manual measurements for mean OD (a),
IOD (b), BOD (c) and mean OV (d) on 10 randomly selected cases.

The performance of the proposed pipeline of ocular biometry (Sect. 2.3) was
evaluated on 10 randomly selected cases (quality grade group 3 to 4) from dif-
ferent GA groups, with automated biometry outputs compared to manual mea-
surements. The corresponding results, presented in Fig. 5, show reasonably low
absolute and relative differences (0.60±0.56 mm and 3.99±3.49% for mean OD,
1.03 ± 0.67 mm and 6.06 ± 3.96% for IOD and 0.88 ± 0.57 mm and 1.88 ± 1.10%
for BOD, see Fig. 5) and high correlation (R2 > 0.91) between the automated
and manual measurements for all metrics. The slightly higher IOD and lower OV
values in the automated output are primarily caused by more conservative auto-
mated segmentations that exclude the boundary around the orbits. It should be
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Fig. 6. Absolute (a) and relative (b) differences in right/left OD measurements. The
cases in yellow and red are outliers with significant differences in either R/L OD or
OV or both, respectively, while the cases in blue can be considered to be reliable for
interpretation. (Color figure online)

noted that both manual and automated mean OD and OV measurements were
characterised by R/L orbit differences.

The outlier detection step identified 4 cases where the reconstruction com-
pletely failed and 34 cases with high differences in right/left orbit metrics. An
illustration of the absolute and relative R/L orbit OD differences for all cases
is given in Fig. 6 with the outliers highlighted in yellow and red depending on
whether there is a difference between either OD or OV or both these measure-
ment. The discrete appearance of the difference values is related to the voxel
size of the input images since the 2D distances are computed as voxels between
intersection points along the fitted lines. The average quality scores (the manual
grading in Fig. 1) in failed (4 cases), outlier (34 cases) and normal (253 cases)
groups are 1.0± 0.0, 3.1± 0.9 and 3.6± 0.5, respectively. Notably, in addition to
motion artefacts, the primary cause of the R/L differences was the presence of a
strong bias field which was not taken into account during image quality grading.

3.3 Growth Charts

Prior to the analysis of growth trajectories, all automated eye segmentations
and biometry results were also inspected manually which confirmed the similar
size of the detected orbits in 253 cases. The automatically detected failed and
outlier cases (Sect. 3.2) were excluded. The growth trajectories constructed from
the selected 253 cases, shown in Fig. 7, include ocular biometry (mean OD, IOD,
BOD), mean OV and total intracranial volume. The trajectories of all indices
show high agreement with the existing formulas for ocular indices [21].
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Fig. 7. Growth charts for 253 subjects from [20; 38] week GA range for mean OD (a),
IOD (b), BOD (c), mean OV (d) and total intracranial volume (e) extracted from the
automated measurements. The illustration of the measurements is given in (f).

4 Conclusions

In summary, we have presented the first spatio-temporal atlas of fetal cranio-
facial feature development from 21 to 36 weeks GA which extends the existing
brain-only fetal MRI atlases. The atlas will be available online at the SVRTK
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data repository5. We also showed that fully automated 3D CNN-based ocular
biometry can be used for processing large cohort datasets as an alternative to
manual measurements. In addition, the proposed solution for detection of out-
liers provides the means to control interpretation of the outputs of automated
processing by highlighting potentially unreliable results that require manual edit-
ing. The outlier cases with significant deviations that can occur due to either low
image quality, failed segmentation or anomalies should be manually inspected,
if required. The growth charts from the automatically derived ocular indices
showed high correlation to the previously reported trends [21]. Our future work
will focus on further automation of parcellation and biometry of craniofacial
structures as well as analysis of abnormal cases.
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