
Fig. 1 Examples of lung lesions and control CT image regions

Conventional methods. Conventional methods of image classification

were based on a typical procedure which includes calculation of

image descriptors, reducing feature space by Principal Component

Analysis (PCA) method and supplying the relevant principal com-

ponents into a Linear model and Random Forest (RF) classifier. The

commonly known histograms of Local Binary Patterns (LBP) as well

as 2D version of extended multi-sort, six-dimensional co-occurrence

matrices [1] which fuse the intensity, gradient magnitude, and ani-

sotropy image properties were used as image descriptors. In addition,

we calculated also the commonly known Histograms of Oriented

Gradients and Banks of Filters suggested in [2].

Deep learning methods. The GoogLeNet CNN was trained using

Nvidia Deep Learning GPU Training System (DIGITS) interface.

DIGITS integrates the popular Caffe deep learning framework which

supports GPU acceleration using cuDNN to massively reduce training

time. The training was performed on a personal computer equipped

with Intel i7-6700 K CPU and dedicated GPU of Nvidia TITAN X

type with 3072 CUDA Cores and 12 Gb of GDDR5 onboard memory.

The network training parameters were set to the following values:

Number of epochs = 120, Activation function = ReLu, Batch size

(minimum size to place network in GPU memory) = 64, Number of

iterations = 220,000, Solver type = SGD Caffe solver. No image

data augmentation procedures applied to extend the training set.

Results
ROC curves presenting the results of classification of CT image ROIs

using both conventional and deep learning methods are presented in

Fig. 2. As it can be seen from the figure, conventional methods

provide relatively low classification performance with Area Under

Curves (AUC) values of 0.811 for Histograms of Oriented Gradients,

0.834 for Filter Banks, 0.849 for LBP features, and finally 0.874 for

extended co-occurrence matrices.

Fig. 2 ROC curves for classification of image ROIs using conven-

tional and deep learning methods

Combining all above image descriptors into one table, entering

it into PCA and performing classification using the relevant output

principal components provides even better classification quality

(see brown ROC curve labeled by ‘‘All Descriptors’’ in Fig. 2)

with AUC = 0.895. Nevertheless, the deep learning approach

employing the GoogLeNet provides substantially better results

(dark blue curve) with AUC value as high as 0.969. For instance,

such a high AUC value can provide the following particular result:

if we have decided to keep the sensitivity on a practically

acceptable level of 0.7 (vertical axis), the corresponding rate of

false positive categorizations of ROIs (horizontal axis) would be as

low as 0.0079 which corresponds to only about 8 wrong catego-

rizations per 1000 predictions.

Conclusion
Deep learning methods and convolutional neural networks appear to

be a powerful tool for detecting lesions in lung CT images. On a

dataset containing 149,273 ROIs sampled from CT images of 338

tuberculosis patients it outperforms conventional technique based on

feature extraction and classification with area under ROC-curve of

0.969 against 0.895 respectively.
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Purpose
Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading

cause of death worldwide and leads to two main phenotypes: chronic

bronchitis and emphysema. Densitometric analysis in CT is widely

accepted measurement of emphysema, however it may not be able to

classify it into subtypes. Others methods based on texture information

have been proposed to carry out an emphysema classification. Texture

patterns lead to six distinct types of emphysematous tissue: normal

tissue (NT), paraseptal (PS), panlobular (PL) and mild, moderate and

severe centrilobular (CL1, CL2, CL3) emphysema. In this article we

propose and validate an emphysema pattern classification tool in CT

images based on a Multi-scale Convolutional Neural Network (M-

CNN).

Methods
The proposed methodology is based on labeling two-dimensional

ROIs sliding through all the segmented parenchyma in the corre-

sponding axial slices. The definition of the physical extent of these

ROIs is critical to achieve a successful classification. After car-

rying out different experiments, it has been corroborated the

optimal ROI size proposed previously by other authors [1]—

24.18 9 24.18 mm2.

Benchmark classification method

We will benchmark our proposed methodology against state-of-the-

art work that is based on emphysema classification using local

intensity distributions functions, estimated by Kernel Density Esti-

mation (KDE), and subsequently classified by KNN classifier [2]. The

authors showed that emphysema discrimination can be performed

using intensity distributions, obtaining always even better results than

when using more complex features.

Multi-scale Convolutional Neural Network

Architecture

In this work we propose a Multi-scale Convolutional Neural Network

(M-CNN) that may be able to learn the optimal features of the input

data not only at the single original image scale level but also at other

levels. In this way the input of the proposed methodology is com-

posed of a multi-scale representation at different scale levels of the

image to be classified. The scaled versions correspond to Gaussian

filtered versions according to the following equation: Ir = I * Gr,

r = {0, 0.3, 0.8}.

The proposed M-CNN architecture is shown in Fig. 1, and it is

composed of 4 convolutional and 3 max-pooling layers. The input of

the network is a 31 9 31 9 3 image patch, where reflects the three

different scale representations, which is firstly convolved with a bank

of 32 filters with a kernel size of 3 9 3 to capture local information.

The first layers learn low-level features of the input. After applying

the ReLU transformation, f(x) = max(0, x), to this first layer, we

apply a max-pooling layer with a receptive filed size of 2 9 2 where

we will half the feature dimensionality. These layers are followed by

a succession of convolutional and max-pooling layers, where features

will be distributed from lowest to highest abstraction level hierarchy.

The resulting extracted features are introduced into a 3 dense fully-

connected layers composed of 64, 112 and 6 neurons respectively,

since 6 is the number of considered classes.

Fig. 1 Proposed M-CNN architecture for emphysema classification

with 4 convolutional (red), 3 pooling (green) and 3 fully connected

(purple) layers

Training is done through Stochastic Gradient Descent method

updated with Nesternov momentum to minimize the categorical

cross-entropy.

Overfitting prevention

In this work we apply 4 different techniques to reduce the overfitting:

L2 regularization of the loss function, data augmentation using dif-

ferent spatial transformations over the training data set, early stopping

where the training is stopped before overfitting begins and finally

dropout by randomly dropping units with a given probability

(p = 0.5) during training.

Results
The training and validation dataset for the proposed algorithm has

been selected from a subset of 267 CT scans from the COPDGene

study, where experienced pulmonologist have manually selected

regions providing a total of 1337 tissue samples, corresponding to 6

tissue classes: NT (370 samples), PS (184), PL (148), CL1 (170), CL2

(287) and CL3 (178). We perform data augmentation on all samples

by rotating (90�, -90� and 180�), flipping (along X and Y axes) and

combining both transformations during training.

Evaluation

Architecture’s hyperparameters selection and evaluation of the pro-

posed and reference classification methods are based on a train-

validation-test scheme jointly with a tenfold cross validation scheme.

Multi-scale convolutional network

An evaluation has been made to prove that introducing a multi-scale

representation of the image can improve the performance. As shown

in Table 1, Multi-scale CNN (M-CNN) obtained a greater global

classification accuracy when compared to the mono-scale version of

the architecture.

Table 1 Differences in the classification accuracy between the

mono-scale and multi-scale versions of the proposed method

Architecture Accuracy [mean (SD)]

Mono-scale CNN 0.819 (0.027)

Multi-scale CNN 0.891 (0.035)
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Analysis of the method’s performance

Table 2 provides a comparison of the proposed M-CNN with the

benchmark method (KDE-KNN) in the same emphysema classifica-

tion problem. All methods were implemented by the authors and the

same dataset and evaluation methodology were used. The results

prove the superior performance of the proposed M-CNN that out-

performs by 21% with respect to KDE-KNN the global accuracy.

Table 2 Comparison of the proposed method (M-CNN) with the

reference methodology (KDE-KNN)

Method Accuracy 95% CI [LL, UL]

[mean (SD)]

KDE-KNN 0.679 (0.035) [0.656, 0.702]

M-CNN 0.891 (0.035) [0.866, 0.913]

Full lung classification

We also performed full-lung classification of CT scans with different

stage of disease severity. The classification was carried out at a fixed

sampling grid with spacing 5 9 5 pixels in each axial image slice.

The rest of the voxels were classified using nearest-neighbor inter-

polation. The results obtained for the methods in a full lung CT image

are shown in Fig. 2. It has been visually confirmed by experts that the

proposed M-CNN method yields a better performance in full-lung

classification.

Fig. 2 Full lung classification results for a severe disease case. From

left-to-right: original image, classification results for M-CNN and

KDE-KNN

Conclusion
In this work we propose a Multi-scale Convolutional Neural Network

for emphysema classification in CT images considering 6 different

classes, including normal tissue and 5 emphysema subtypes. A new

architecture has been designed to capture local texture features of the

lung tissue in different scales. The classification accuracy of the

proposed approach is 89.1% and it has been evaluated in a large

dataset composed by 1337 tissue samples and through visual clinical

validation in complete lungs.
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Purpose
The use of machine learning has recently attracted the attention of

researchers in the medical imaging field. In particular, deep learning

has shown remarkable ability to derive radiomic features automati-

cally from medical images.

Rheumatoid arthritis (RA) is the most common connective-tissue

disease that develops inflammatory synovitis. The RA affects

approximately 1% of the population of the United States [1]. One of

the major extra-articular manifestations of RA is the interstitial lung

disease (ILD). Approximately 5–10% of patients with RA also suffer

from clinically significant ILD.

The purpose of this study was to investigate the effect of image-

based features derived by deep learning, called deep radiomic fea-

tures, for the prediction of the overall survival of patients with the

RA-ILD. The deep radiomic features are extracted from CT images

by use of a deep convolutional neural network (DCNN). To the best

of our knowledge, this is the first study that used DCNN-extracted

regions of ILD of RA-ILD patients for deriving radiomic biomarkers

to predict survival after a diagnosis of RA-ILD.

Methods
In this study, we first trained a DCNN with manually extracted

regions of interest (ROIs) that had been labeled with five types of ILD

disease patterns. The trained DCNN was applied to a test set for

classifying each point of the lung tissue in terms of the six disease

patterns. We extracted deep radiomic features as the feature vector

from the last convolutional layer. We then assessed the performance

of these deep radiomic features in the prediction of survival of the

patients with RA-ILD.

Subjects
A total of 104 patients with a diagnosis of RA and ILD and who

underwent chest CT were identified retrospectively as potential

candidates for this study. After reviewing their medical records,

patients who had been diagnosed with RA-ILD based on clinical

and radiological findings or through surgical lung biopsy were

included in this study. Patients with history of any cancers

involving the lungs, and patients with a history of lung resection

except surgical biopsy, were excluded. An experienced observer

(C.W., an internist with 15 years of experience in pulmonary

disease diagnosis and treatment) extracted 7329 ROIs from the CT

images of all patients, and labeled them as having one of the

following five ILD patterns: normal, consolidated, ground-glass

opacity, reticular, or honeycombing patterns (Fig. 1a).
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