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Summary 

Lung cancer is the leading cause of cancer-related deaths in 
Europe. Immunotherapy treatments have been proved as the new 
standard of care for stage III-IV non-small cell lung cancer 
patients. However, the treatments vary in success, and there is not 
a reliable biomarker. This retrospective project aimed to develop a 
predictive model based on radiomics through machine learning or 

deep learning techniques to assess the response to the treatment, 
understood as the progression (or not) of the disease. Then, the 
study was complemented with an analysis of the progression-free 
survival time and an attempt of association with biological data. 
We used the basal computed tomography images of the primary 
tumour lesions from a cohort with 84 patients with IV stage non-
small-cell lung cancer. The best performance model reached an 
AUC of 0.80 – 90 % CI [0.62, 0.99]. Our results suggest that the 

radiomics models may be useful for patient classification. 

1. Introduction 

Lung cancer is the leading cause of cancer-related deaths in 

Europe. In 2016, 239 000 people died from lung cancer, 

more than one fifth (20.5 %) of all deaths from cancer [1]. In 

most patients, lung cancer is diagnosed once it has reached 

an advanced stage, with more than 60 % of patients 

presenting advanced or metastatic stage, with a typical 

survival time of less than a year [2]. At this point, new 
treatments, such as immunotherapy and targeted therapies 

have emerged as new standard of care treatments for non-

small-cell lung cancer (NSCLC) patients, the most common 

subtype.  

Despite their success, clinical benefits are only observed in a 

subset of patients. Hence, there is an important need of 

development of predictive markers to assess which treatment 

is more likely to be appropriate for each patient and to allow 

the tumour surveillance during the treatment, since 

immunotherapy may present important side effects and is 

expensive. Different biomarkers have been studied with 

limited success for patient stratification according to their 
potential benefit before the treatment, such as gene 

alterations or the expression of immune checkpoints 

proteins, like the PD-L1 [3]. The current standard to 

determine the treatment response is based mainly on tumour 

size evolution according to the RECIST and iRECIST 

criteria. Unfortunately, targeted treatments can cause 

morphological changes without changing size, so it seems 

insufficient. 

The solution to this challenge could be found in radiomics. 

Radiomics is the high-throughput extraction and analysis of 

quantitative features from medical imaging to transform 

images into mineable high-dimensional data. This process is 

motivated by the idea that images reflect the underlying 

pathophysiology, and the quantitative features offer 

information on the tumour phenotype and its 

microenvironment. 

In this study, we hypothesize that the basal computed 

tomography images and the radiomic features of the main 
tumour can be used to develop predictive biomarkers with 

prognostic value about the progression of the disease. 

2. Methods 

2.1. Patients cohort 

Patients with confirmed stage IV NSCLC receiving 

immunotherapy treatment from January 2013 to December 

2019 at Hospital Universitario Fundación Jiménez Diaz 
(FJD) and Clínica Universidad de Navarra (CUN) were 

analysed retrospectively after the approval of the 

corresponding institutional review boards. Immunotherapy 

treatment could be monotherapy, a combination of immune-

based treatments or immunotherapy combined with 

chemotherapy or radiotherapy. A patient was excluded from 

the study if the clinical data were not available, primary 

tumour boundaries were not clear or there was not basal CT. 

Finally, 84 patients were included in the study, 60 with 

progression and 24 with not progression. Our models aimed 

to predict the progression of the disease (labelled as 1), or the 
non-progression (labelled as 0). The progression was defined 

by an oncologist based on radiological or clinical evidence 

on patient status. The whole dataset was divided into a 

training set with 58 patients (70 %) and a validation set with 
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26 patients (30 %), they were balanced to get a similar 

proportion of progression/non-progression response to the 

treatment. From the whole dataset we had information of the 

PD-L1 expression levels in 34 patients. 

2.2. Imaging and tumour segmentation process 

In this project, the basal computed tomography lung images 

were employed. The acquisition and reconstruction 

parameters are summarized in Table 1. 

The segmentation of the main lesions was performed using 

syngo®.via software. This tool provides a semiautomatic 

seed-based method for tumour segmentation, although 

manual correction was commonly required. After 

segmentation, images were exported to DICOM format and 

transformed into Nearly Raw Raster Data (NRRD) [4] 

format through a MATLAB script to work with them in other 

environments.  

Acquisition 

Tube voltage 

80 KVP 1 image 

100 KVP 22 images 

120 KVP 58 images 

140 KVP 3 images 

Tube current 

< 300 mA 34 images 

300 – 500 mA 21 images 

> 500 mA 28 images 

Exposure time 

285 ms 1 image 

426 – 493 ms 12 images 

500 – 562 ms 71 images 

Image reconstruction 

Slice 

Thickness 

1 mm 38 images 

1.5 mm 22 images 

2 mm 21 images 

3 mm 2 images 

Convolutional 

kernel 

B, B26f, B30f, B31f 59 images 

C 16 images 

FC01 9 images 

Table 1: Image acquisition and reconstruction parameters. 

2.3. Radiomic features extraction and test-retest 

The feature extraction was performed through PyRadiomics, 

an open-source Python package [5]. The radiomic features 
were extracted from both intranodular and perinodular 

regions, as well as from both regions merged. The 

perinodular region mask was generated through a 

morphological dilation of the tumour mask. It was used a 4 

mm, 5 mm, or 6 mm radius 3-D spherical structural element 

for tumours with major axis length (2D) <25 mm, ≥ 25 mm 

and 50 mm, respectively. After dilation, the tumour mask 

was subtracted from the dilated area which produced the 

border mask. 

In this project, first order features, shape-based features and 

texture features (obtained from the Gray Level Cooccurrence 
Matrix, GLCM; Gray Level Run Length Matrix, GLRLM; 

Gray Level Size Zone Matrix, GLSZM; Neighbouring Gray 

Tone Difference Matrix, NGTDM; and Gray Level 

Dependence Matrix, GLDM) were extracted from original 

images as well as from different filtered images: the 

Laplacian of gaussian, wavelet decomposition, square root, 

and local 3D binary pattern. Shape features were not 

extracted for the perinodular mask. Moreover, we performed 

the feature extraction with four different pairs of 

hyperparameters associated with the resampling resolution 

and bin width discretization to choose the best performance 

radiomic features subset. 

Then, non-reproducible features were discarded using 

test/re-test scans from the Reference Image Database to 

Evaluate Therapy Response (RIDER) dataset [6]. This data 

set is composed of 31 NSCLC patients who underwent two 

chest CT scanners by using the same imaging protocol and 

the same scanner with a difference of 15 minutes. All those 

features whose Lin’s concordance correlation coefficient 

value was lower than 0.9 were discarded. 

2.4. Machine learning model building 

We developed four types of models attending to the different 

feature extraction regions of interest: a model for the 

intranodular region, the perinodular region, the model which 
merged the regions and a model which uses both intranodular 

and perinodular features (Figure 1). For the feature selection 

and training strategy, we used the Python open-source 

package Scikit-learn [7]. 

 

Figure 1: a) Original CT slide, b) In orange, perinodular mask. In 
white, intranodular mask. The union of both masks composes the 

merged mask.  

To avoid the curse of dimensionality several steps for 

dimensionality reduction were performed. Firstly, Pearson’s 

correlation coefficient was used to remove one feature from 

each pair of highly correlated features. Afterwards, we used 
two additional methods for feature selection based on a 

logistic regression algorithm: recursive feature selection (a 

wrapper method) and LASSO feature selection (an 

embedded method). Then, each subset of selected features 

was used to train three different types of machine learning 

classical algorithms: logistic regression, support vector 

machines (SVM) and random forest, and their performance 

was evaluated on the validation test. 

For both feature selection and training stages, each classifier 

was trained on the training set using 3-fold cross-validation. 

Moreover, we used Bayesian sequential model-based 
optimization (SMBO) for hyperparameter tuning with the 

Python package Scikit-optimize [8]. In all the steps, the 

classifier which achieved the highest AUC score was 

selected as the candidate solution. 
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2.5. Deep learning model building 

Due to the limited number of available samples, we opted to 

develop a convolutional neural network (CNN) model 

through transfer learning on an already developed CNN 

model for prediction of lung nodule malignancy [9], whose 

architecture followed the one published by Causey et al. [10], 

NoduleX. This task was done with Keras software package 

(a Python deep learning API) [11]. 

The input of the CNN was a small 3D volume of dimensions 

5x47x47 pixels. These volumes have been extracted 

selecting the centroid of the tumour and getting the above 

and below slices through a Python implementation. The pixel 

values were rescaled by dividing by the maximum pixel 

intensity in the cropped volume. To deal with overfitting, 

real-time data augmentation has been performed. Since the 

model is developed through transfer learning, the weights of 

the first layers are exported from the previous model, while 

only the three top layers are trained to adjust the output to the 

new task during 200 epochs. Moreover, we tested the effect 

of early stopping on the models. In this case, we use the 20 

% of samples of the training set for validation (i.e., 46 

samples for training, 12 for validation, 26 for testing). After, 

we also tested to unfreeze all layers and adjust their weights 

with a small learning rate and during just 30 epochs. 

2.6. Model selection and statistical analysis 

We considered various metrics to choose the candidate 

solutions for each region of interest. Firstly, all classifiers 

whose AUC differed more than 0.05 between training and 

validation were discarded, and when there were two similar 

performance models, the one with the lowest standard 

deviation during training was preferred. We computed the 90 
% confidence interval (CI) of the validation AUC using the 

Delong method.  To check whether the classifier achieved a 

significant stratification for each kind of patient (i.e., if the 

classifier probability scores are significantly different 

between the patients in which the disease progresses or not), 

we calculated the p-value using the Mann-Whitney U test. 

We used the Youden Index to select the optimal cut-off point 

of the classifiers. Then, we compute other metrics such as the 

accuracy, balanced accuracy, sensitivity, and specificity to 

get a better insight into the behaviour of the models. All 

metrics were compared with a baseline classifier which 

always classified the most common class. 

To correlate the classifier behaviour with biological 

meaning, we used the spearman rank-order correlation to 

analyse the relevance between the PD-L1 expression levels 

and the selected features of the best performance classifier. 

Finally, we evaluated the progression-free survival (PFS) 

(i.e., the time between the first immunotherapy cycle and the 

progression/death date) with the Kaplan-Meier method for 

each one of the stratified groups by the selected classifier. 

Endpoints were the progression of the disease, death from 

any cause or any recurrence. The log-rank test was used to 

compare the survival distributions of the two groups. 
Moreover, we used Cox’s proportional hazard model to 

evaluate how the different features (covariates) of each 

sample affect the survival time of the subject. The Kaplan-

Meier curves and Cox’s models have been developed 

through the Python open-source package lifelines [12]. 

3. Results 

The main issue of most of the developed models was their 

high variance between the training and validation 

performance. Indeed, no perinodular model achieved the 

requirements to be considered. Anyway, some models of the 

other regions of interest reached acceptable stability (Figure 

2). In the intranodular region of the tumour, an SVM model 

achieved an AUC of 0.70 – 90 % CI [0.52, 0.88], however, 

its accuracy was worse than the baseline classifier, so it had 

no practical purpose. For the features in the merged region, 

the best classifier reached an AUC of 0.76 – 90 % CI [0.58, 

0.93]. Anyway, the best performance was achieved by a 

logistic regression method which uses 20 selected features 
by recursive feature elimination among the intra- and 

perinodular features, AUC of 0.80 – 90 % CI [0.62, 0.99]. 

 

Figure 2: Performance of the best classifiers in the training and 
validation set. The validation set shows the 90 % CI.  

The 20 selected features were extracted with a voxel 

resampling of 3 mm isotropic resolution and 25 bin width 

discretization. Five of them correspond to the intranodular 

region, and 15 to the perinodular region. Moreover, just one 

was computed from the original image, and the other 19 were 

computed from filtered images. The spearman rank-order 

correlation revealed three significant correlations between 

the features and the PD-L1 expression: the intranodular 

wavelet-HHH GLSZM Small Area Emphasis, perinodular 
wavelet-LHH first order Root Mean Squared and the 

perinodular square root NGTDM Busyness (p-value < 0.05). 

Nonetheless, the correlation coefficient value of these 

features is below 0.5, which means soft correlation.  

Regarding the CNN models, all of them obtained similar 

results with AUCs between 0.643 and 0.703 in the validation 

phase. The model with slightly better performance was the 

one with early stopping after 153 epochs and only the 

training of the three last layers. This model reached an AUC 

of 0.703 - 90% CI [0.48, 0.92]. To compare the machine 

learning and the deep learning model, we used additional 

metrics which are presented in Table 2 and the ROC curves 

(Figure 3) 

  p-value AUC [90% CI] Acc. Sens. Spec. 

ML 0.01 0.80 [0.62, 0.99] 0.85 0.84 0.86 

DL 0.06 0.70 [0.48, 0.92] 0.81 0.84 0.71 

Table 2: Different metrics for the ML and DL performance.  
Acc: Accuracy, Sens: Sensitivity, Spec: Specificity 

183

XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. 25 – 27 Nov, 2020



 

We have used the selected machine learning method for the 

PFS analysis. There is not a significant difference between 

the Kaplan-Meier curves for each of the classified groups by 

the machine learning algorithm, log-rank test p-value = 0.55.  

 

Figure 3: ROC curve of the ML model (in yellow) and the DL 

model (green). The blue cross represents the optimum threshold.  

We used the Cox’s models to analyse the effect of the 20 
features in the PFS time of the patients. Two of them 

obtained significant results (p-value < 0.05): the perinodular 

wavelet-HHL NGTDM Strength (the higher the value, the 

shorter PFS) and perinodular wavelet-LLL NGTDM 

Contrast (the higher the value, the longer PFS). However, 

there was no significant association between the classifier 

scores and the PFS time of the validation patients (p-value = 

0.26). But if we only consider the group of the progression 

patients, results were borderline significant (p-value = 0.05). 

4. Discussion 

This project aimed to analyse the suitability of basal CT 

images of advanced NSCLC to build radiomic biomarkers.  

The development of different models considering different 

regions of interest allowed us to confirm the relevance of the 

surrounding peritumoral area. By its own, the perinodular 

regions did not obtain stable results but combined with the 

intranodular features the model achieved good 

classifications results with high sensitivity and specificity 
despite the imbalance of our dataset. These results support 

the current studies which assert the biological relevance of 

the surrounding regions due to different reasons such as the 

tumour vascularization or the lymphocyte infiltrations. We 

attempted to integrate biological evidence into our model 

with the PD-L1 correlation since it is a key step to be able to 

develop clinically applicable models. Three features showed 

significant results, although the limited number of patients 

with this information does not allow us to consider them 

definitive findings.  

One of the main limitations of our work is the limited number 

of patients in the study. Hence, we were not able to develop 
a complete deep learning model with our data. Nonetheless, 

this first transfer learning approach obtained comparable 

results with respect to the machine learning model in most of 

the metrics (despite that the CNN classification was not 

significant, p-value = 0.06).  

The PFS time analysis also suffered the lack of non-

progression patients, not showing significant difference in 

the Kaplan-Meier curves. This analysis was deepened 

through the Cox’s models, in which we observed the same 

effect since we can associate the classifier scoring to the PFS 

in only progression patients, but not in non-progression 

patients. Besides, two radiomic features revealed some 

association between our radiomic biomarker and the PFS. 

5. Conclusion 

Despite the limitations of this work,  mainly associated to the 

limited number of patients, this analysis succeeds to 

demonstrate the predictive value of the intranodular and 

perinodular radiomic features as a feasible way to develop 

cheap, non-invasive and easy-obtainable biomarkers for 

immunotherapy effectiveness prediction at a patient-level. 

The current use of CT images in the follow-up of NSCLC 

patients motivates to continue in this direction, increasing the 

number of available patients and associate the model's 

behaviour to biological tumour biomarkers to be able to 
develop a clinically applicable radiomics model to support 

the oncological decision-making process.  
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