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Abstract 
Positron emission tomography (PET) is a functional imaging 
modality that, by its nature, is very prone to noise. Most current 
image reconstruction methods in PET have dealt with noise, but 
not always satisfactorily. Recently, novel approaches have been 
proposed, using the properties of Deep Learning (DL) 

methodologies to address this problem. We have designed and 
implemented a DL-based image reconstruction method, directly 
obtaining images from sinograms using an encoder-decoder 
architecture. The proposed method was tested in geometric 

phantoms, brain phantoms, as well as real brain scans, and its 
performance was compared with the one obtained by analytical 
and iterative methods. Our results suggest that DL methodologies 
might constitute a valid alternative approach for PET image 

reconstruction, reducing the influence of noise compared to 
traditional methods and potentially achieving a more accurate 
image interpretation for diagnosis and treatment, in addition to 
a potential reduction of the injected radioactive dose.  

1. Introduction 
Positron emission tomography (PET) [1] is a nuclear 
medicine imaging modality that provides functional 
information about the metabolic activity of the living 
organism. It has been proven especially useful in diseases, 
such as cancer, where it has important role for both 
diagnosis and treatment [2]. Data collected during image 
acquisition are stored in the form of sinograms that cannot 
be interpreted directly by an observer and must be first 
reconstructed into images. However, a solution to the 
inverse problem is not straightforward due to the nature of 
this imaging modality, and thus, the reconstructed images 
are very prone to noise.  

Image reconstruction methods that have been used over 
the years are analytical techniques, such as filtered 
backprojection (FBP) [3], which uses projection operators 
that do not model the physics and noise of a PET scanner, 
or iterative methods, such as Maximum Likelihood 
Expectation Maximization (ML-EM) [3], which can 
model the Poisson nature of the data and include a more 
complex physical model of the acquisition process. In 
addition, regularization terms can be added in the iterative 
process to consider a priori information. However, 
iterative methods have high computational demands, 
which increases the more elaborate and accurate the 
physical model of the system used is. Moreover, the 
arbitrariness in selecting the proper number of iterations 

or in defining the most appropriate parameters involved in 
the specific  algorithms used do not always contribute to 
obtaining the most accurate image as a final result. Hence, 
with the current growth of Deep Learning (DL) [4], very 
innovative methods have been recently proposed, that can 
learn the physical process of PET data generation and the 
noise model from the data provided for training, based on 
learning mappings from noisy data to high-quality 
images. Depending on the number, form, and type of 
these mappings, different architectures can be achieved. 
Of particular importance are the encoders and decoders 
that can represent abstract maps of the essential features 
of the data introduced in the encoder stage to be later 
transformed into images of outstanding quality in the 
decoder stage. Since noise is not a relevant feature in data, 
it is not included in the feature maps and, thus, not 
represented in the final image.  

Currently, the main approaches to the use of DL in PET 
image reconstruction are: synthesis, analysis, unfolded, 
and direct methods [5]. The first three maintain the 
mechanisms of traditional iterative reconstruction methods, 
except for the use of DL for learning the elements that 
need prior image knowledge, avoiding any analytic, 
intuitive, or handcrafted component of the reconstruction 
process. Synthesis and analysis approaches learn the 
regularization step, and the unfolded methods extend the 
iterative methods in a succession of reconstruction 
operators, partially or completely interleaving them in 
repeated blocks with deep denoising operators. 

The fourth approach leaves behind everything done so far 
with iterative methods and learns the direct mapping 
between sinogram and reconstructed image. These 
methods have the advantage not to require any prior 
information from the image, but demand a large amount 
of training data. Among these methods are: AUTOMAP 
[5], initially developed for magnetic resonance imaging 
(MRI), which learns to perform the image reconstruction 
in a way analogue to an inverse Radon transform, with 
fully connected layers before an autoencoder; DeepPET 
[6], which learns entirely on an encoder-decoder 
architecture; DirectPET [7], which again uses an encoder-
decoder but incorporates at the end of the encoder phase 
the idea of the inverse Radon transform with fully 
connected layers. We study here the viability of direct 
methods by implementing a modified version of DeepPET.  
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Figure 1. Network architecture for our version of the DeepPET image reconstruction method. 

2. Methodology 
2.1. Deep Learning method 

We implemented a modified version of DeepPET, where 
another image format is given and thus the abstraction 
level that the feature maps reach differs from the original, 
resulting in a reduction of the total number of layers from 
31 to 22, which was found to produce betters results and 
also reduces the memory requirements. We also changed 
the optimizer from Adam stochastic gradient descent to 
RMSProp from Keras, the Python DL Application 
Programming Interface (API), that we also found to 
produce better results. The mean squared error (MSE) was 

maintained as the loss function.  

Fig. 1 depicts the resulting architecture, which consists of 
an encoding phase, where the sinogram input is 

compressed into feature maps through convolution layers, 
and a decoding phase, in which additional up-sampling 
layers are introduced to reach the final reconstructed 

image. After each convolution at encoding, a ReLU 

activation function and a batch normalization are used.  

To further alleviate the massive memory requirements of 
this method, the network has been fed with a custom 
batch generator that loads GPU input data from the disk 
in a volatile and dynamic manner when needed. 

2.2. Traditional methods 

For comparison, the FBP with a Hamming filter and the 
ML-EM and its regularized version with a median filter, 
have been implemented using the ASTRA Toolbox 
library [8], as the most representative current image 
reconstruction methods in PET. 

2.3. Datasets 

To test the performance of the network the following 
datasets are used: 

 Geometric phantom dataset: 100000 unique images, 
each of them with 20 ellipses of varying intensity, 
orientation and size simulated in MATLAB.  

 Brain phantom dataset, containing the 4120 images (2D 
slices) from the 20 brain phantoms 3D volumes initially 
simulated for MRI and adapted to the PET domain, 
publicly available [9][10]. 

 Brain phantom lesions dataset: same as before, with hot 
and cold lesions introduced, publicly available [9][10]. 

 Real brain images dataset: 5230 PET images (2D slices) 
from 37 healthy patients 3D volumes, publicly available 
for research purposes [11]. 

For all datasets, 80% of the images are destined for 
training, 10% for validation, and 10% for testing, except 
for the geometric phantom, where only 100 images were 
kept for the tests.  

For the brain datasets, data augmentation (50) was 
performed  to increase the variability during the training. 
Sinograms were simulated using the ASTRA Toolbox 
library, with 2D ideal geometry and parallel projectors. 
Finally, random noise with 160 mean Poisson distribution 
is added to the sinograms to mimic the statistics of the 
PET acquisition. Neither attenuation nor scattering effects 
were included. An example is shown in Fig. 2. 

 
Figure 2.  (a) Sample from the brain phantom dataset, (b) 

ideal sinogram simulated, (c) Sinogram with Poisson noise. 

3. Results and discussion 
The experiments have been divided into three phases 
according to the dataset used and whose results have been 
evaluated with the structural similarity metric (SSIM), 
peak signal-to-noise ratio (PSNR) and normalized root 
mean square error (NRMSE) [12]. Besides, the working 
environment implemented (traditional methods, network 
model and training, inference module) has been uploaded 
to a GitHub repository to allow the community to perform 
their own experiments and explore this field, given that 
such code was not available before, available at: 
https://github.com/NuriaRufo/DeepPET. 

3.1. Geometric phantom dataset 

Initially, a training of the network was conducted using 
the training set of geometric phantoms of 90000 images 
with size 128×128. The learning rate was set to 10-4 and 
the batch size to 32. The GPU used was PNY QUADRO 
RTX-A6000 48GB GDDR6. 

The mean error of images in the test set reconstructed 
with the different methods can be seen in Table 1. The 
DL method outperforms the traditional methods, which 
can be also qualitatively verified in Fig. 3. 
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Method SSIM PSNR NRMSE 

FBP 0,4769 21,6767 0,5606 
ML-EM 
ML-EM regularized 
DL method 

0,8002 
0,8875 
0,9228 

28,1906 
31,1608 
32,0470 

0,2664 
0,1892 
0,1710 

Table 1. Average error for geometric phantom dataset 

reconstruction. 

 
Figure 3. Reconstructed images with traditional methods 

and the direct DL method. 

3.2. Brain phantom dataset 

The first training was performed excluding lesions and 
considering only axial slices, to delimit the problem. The 
same hyperparameters and GPU of the previous 
experiment were maintained. Once the network was 
trained, the results showed that the DL method was able 
to reconstruct structures as delicate as the brain, although 
it did not surpass the quality of traditional methods. 
To test the generalizability of the method, the model 
trained with the phantom without lesions and axial slices 
was confronted with the phantom test dataset with lesions. 
It was observed that the model could recognize lesions, 
although not with sufficiently high quality. Therefore, a 
new training was performed with the phantom training set 
with lesions, but still considering just the axial slices and 
where hyperparameters were maintained. The introduction 
of random lesions in the training set improved network 
performance by 4%, although it still did not outperform 
traditional methods. 
In search of a more considerable amount of training data, 
sagittal and coronal slices were added to the axial ones for 
a new training with the same hyperparameters. However, 
the model trained with all slices was confronted with only 
axial slices from the test dataset to ensure homogeneity 
between brain phantom results. Fig. 4 shows how the 
qualitative results are finally favourable for the direct DL 
method. It is worth mentioning that the reconstruction 
times for this method are remarkably fast, as all images 
were reconstructed in approximately one second, 
compared to traditional reconstruction times that were 
800 seconds using CPU and 20 seconds using GPU.  
Despite the satisfactory results in single samples, the 
mean error yields a better reconstruction by the traditional 

 
Figure 4. Three slices of a brain phantom test set 

reconstructed using the DL method (lower row), 

compared with the ground truth (upper row).  

Method SSIM PSNR NRMSE 

FBP 0,3900 20,8424 0,6425 
ML-EM 
ML-EM regularized 
DL method  
DL method (lesions) 
DL method, all cuts 

0,9223 
0,9335 
0,8889 
0,9041 
0,9260 

27,6359 
28,2540 
26,0090 
26,7298 
27,5362 

0,2934 
0,2733 
0,4892 
0,4344 
0,3329 

Table 2. Average error for the brain phantom test dataset 

containing lesion reconstruction and only axial slices.  

ML-EM methods and its regularized version. However, a 
study of the distribution of these errors reveals that this is 
due to a few outliers with poor DL reconstructions, 
caused by the presence of structures adjacent to the brain, 
which are underrepresented in the training and, 
consequently, not learned well enough. Nevertheless, 
regarding the median in the error distribution, the DL 
method is placed ahead of the traditional methods. In 
addition, 74,4% of the cases were better reconstructed 
with the network than with the traditional methods.  
A set of 5 random lesions was analysed in detail (Fig. 5). 
The DL method resulted in a better qualitative and 

quantitative reconstruction with average relative error at 
0,2928, whereas this was 0,3443 for regularized ML-EM. 

Figure 5. Reconstructed lesions using FBP, ML-EM, 

regularized ML-EM and the DL method. 

3.3.  Real brain images dataset 

Regarding real brain PET images, the first experiment 
with the test dataset (all slices) was first performed with 
the best model trained with the brain phantom (trained 
with all slices). We observed that it tends to over-define 
the structures of the cerebellum, as it occurs normally in 
the brain phantom. 
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Figure 6. Reconstruction results for a sample of the real PET brain images dataset using the DL method, compared with 

the ground truth. 

 

Method SSIM PSNR NRMSE 

FBP 0,4435 20,4825 0,5579 
ML-EM 
ML-EM regularized 
DL method, All Cuts 
DL met. Fine Tune 

0,9241 
0,9464 
0,8788 
0,9411 

30,1782 
31,9411 
32,8847 
32,8847 

0,1900 
0,1530 
0,2276 
0,1489 

Table 3. Average error for real PET dataset image 

reconstruction.  

Therefore, a new training was performed for fine-tuning, 
taking advantage of the prior knowledge of an already 
trained network to adapt it to the new problem. Based on 
the model trained with the phantom, training was 
performed with the real brain datasets to adapt the 
network to the domain of these images. The learning rate 
was lowered to 0,00005 and the number of epochs was set 
to only 8. In the training of one hour, the results of the 
tests yield that it both qualitatively (Figure 6) and 
quantitatively (Table 3) overcomes traditional methods, 
although the SSIM is again worsened by outliers 
containing structures other than the brain. 

4. Conclusions 
The current study focused on the case of brain image 
reconstruction for PET. In view of the results, we 
conclude that direct DL image reconstruction methods 
constitute a powerful tool for PET image reconstruction 
from sinograms. It has been confirmed that the modified 
version of DeepPET is able to produce real PET image 
reconstructions with very satisfactory quality in terms of 
noise characteristics from noisy sinograms. Moreover, it 
is much faster and overcomes in image quality traditional 
FBP, ML-EM and regularised ML-EM algorithms in 
100%, 90,3% and 85,4 % of the cases, respectively. 

However, we have also confirmed the method's 
robustness, and therefore, the outperformance of the 
traditional methods is due to the homogeneity and size of 
the training dataset used. This, in turn, highlights the 
major disadvantage of direct methods, which is the vast 
memory requirements to hold and handle the minimum 
250000 image pairs necessary to learn the whole mapping 
from sinogram to image and thus to obtain a functional 
and competitive model. Consequently, the balance may 

tip towards the use of synthesis or unfolded methods that 
take the basis of iterative image reconstruction, which, as 
we have seen, has not always been trivial to overcome in 
terms of image quality, therefore combining Deep Learning 
with traditional methods may be a promising approach. 

This work implies, however, the validation of direct 
reconstruction and shows the potential that DL can have 
in the field of medical image reconstruction, providing us 
with higher quality images compared with traditional 
methods that can result both in better diagnosis and 
treatment for cancer patients as well as in opening the 
possibility that less doses of radioactive material may be 
needed to perform the image acquisition.  
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