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Abstract 
This study proposes the ATTDeepPET model, a novel deep 
learning architecture crafted specifically for advancing positron 
emission tomography (PET) image reconstruction in PET/MR 
scanners. By incorporating magnetic resonance (MR) images 
into its learning process, ATTDeepPET addresses the persistent 
challenges associated with attenuation effects in PET/MR 
scanners, eliminating the need for simulated transmission scans.  
ATTDeepPET's performance is assessed alongside the deep 
learning model DeepPET, as well as established methods such 
as FBP, ML-EM, and ML-EMR for comparison. The findings 
reveal noteworthy achievements since ATTDeepPET 
accomplishes competitive image quality compared to FBP, ML-
EM, and ML-EMR when applied to brain phantoms while also 
demonstrating a reduction in reconstruction times. Nevertheless, 
when dealing with real PET images, ATTDeepPET does exhibit 
some performance variability, underscoring the increased 
complexity of real-set scenarios and the importance of 
employing diverse datasets to enhance its robustness. Moreover, 
ATTDeepPET, despite inherent limitations, including heightened 
memory requirements and sensitivity to dataset variations, 
presents a promising path forward for PET image 
reconstruction. Its hallmark traits include exceptional execution 
speed, liberation from the prerequisite of prior physics 
knowledge, and the prospect of obviating the need for an 
additional CT scan for attenuation correction. These attributes 
hold transformative potential in terms of enhancing diagnostic 
precision and curtailing patient radiation exposure. 

1. Introduction
Positron emission tomography (PET) is a valuable tool in 
medical imaging, providing insights into an organism's 
metabolic activity [1], particularly benefiting cancer 
diagnosis and treatment [2]. During PET image 
acquisition, data is recorded as sinograms, requiring 
reconstruction to produce interpretable images. However, 
solving the inverse problem for this imaging modality is 
complex, leading to reconstructed images that are highly 
susceptible to noise. 
Analytical methods, like Filtered Backprojection (FBP), 
lack noise and physics modelling [3]. Conversely, 
iterative methods, such as Maximum Likelihood 
Expectation Maximization (ML-EM), offer the capability 
to model the Poisson statistical noise present in the 
acquired data and incorporate more intricate physical 
models [3]. Furthermore, these iterative methods allow 

for the inclusion of regularization terms during the 
iterative process, considering prior knowledge.  
Nonetheless, it is essential to note that iterative methods 
come with significant computational demands, 
particularly as the complexity and accuracy of the 
employed physical model increase. Also, PET imaging 
suffers from attenuation artefacts, which are caused due to 
varying tissue photon absorption coefficients, leading to a 
distorted tracer distribution depiction.  
Current attenuation correction methods have limitations, 
such as the practical challenges and regulatory 
complexities associated with gamma sources [4]. 
Alternatively, using attenuation maps from X-ray 
computerized tomography (CT) scans exposes patients to 
additional ionizing radiation. 
As Deep Learning (DL) methodologies continue to 
expand, novel approaches have emerged within the field. 
These methods possess the capability to grasp the 
underlying physics of PET data generation, addressing 
noise and attenuation effects directly through the training 
data [5]. DL methods find applications in various aspects 
of image reconstruction, often replacing specific 
components, such as regularization, within conventional 
methods. However, this work focuses on DL architectures 
that aim for end-to-end mapping, involving direct 
reconstruction by deep networks from raw sinogram data 
to a reconstructed image. This approach requires 
assimilating all aspects of the image reconstruction 
process, including physics, imaging models, and statistics, 
demanding a substantial amount of training data. With 
this objective, encoders-decoders architectures are of 
relevance, capturing essential data features in the encoder 
stage and transforming them into high-quality images in 
the decoder stage [5]. 
Traditional practice involves the use of CT images for 
attenuation correction in PET scans. However, there is a 
growing interest in replacing CT with magnetic resonance 
(MR) images due to the advantages offered by PET/MR 
systems, such as improved soft tissue contrast and 
reduced ionizing radiation [6]. However, since MR 
images do not inherently provide attenuation information, 
generating attenuation maps from PET/MR scanners is 
challenging. Various methodologies, including machine 
learning, have been proposed to address this issue, such as 
creating synthetic CT (sCT) images from MR data [7]. 
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Figure 1. Network ATTDeepPET image reconstruction method. 

 

This study introduces an alternative approach within the 
DeepPET [8] architecture. Instead of creating 
intermediate sCT images, this proposed method directly 
learns from MR images to perform both attenuation 
correction and PET image reconstruction. This approach 
eliminates the need to convert MR images to sCT, 
simplifying the process by enabling the network to learn 
the complex relationship between attenuation correction 
and image reconstruction directly from MR inputs. 

2. Methodology 

2.1. Deep Learning methods 

A modified version of the DeepPET method [9], was 
implemented. Several improvements were made to the 
original architecture, including reducing the total number 
of layers from 31 to 22, which helped lower the memory 
requirements. Additionally, the optimizer was switched 
from Adam stochastic gradient descent to RMSProp from 
Keras1. The loss function remained as the mean squared 
error (MSE). The resulting architecture comprised an 
encoding phase where sinogram input is compressed into 
feature maps through convolution layers, and a decoding 
phase introducing up-sampling layers to produce the final 
reconstructed image. After each convolution in the 
encoding stage, a ReLU activation function and batch 
normalization are applied. 

Then, a second architecture was implemented, where a 
second encoder was added to incorporate co-registered 
MR images (Fig. 1), introducing anatomical details to the 
reconstruction and attenuation correction process. We 
named this architecture ATTDeepPET. For both 
networks, sinograms with attenuation effects were 
introduced to evaluate the ability of the networks to 
reconstruct and correct the attenuation effect. 

1 https://keras.io/ 

Furthermore, in order to reduce the memory demands of 
the method, a customized batch generator was employed. 
This batch generator dynamically loads GPU input data 
from the disk as required, operating in a volatile and 
adaptable manner. 

2.2. Traditional methods 

To evaluate the efficacy of the DL models in comparison 
to conventional approaches, a comparative analysis 
involving three key methodologies was implemented: 
FBP, ML-EM and its regularized variant (ML-EMR) were 
implemented in a code using the ASTRA Toolbox library. 

2.3. Datasets 

To test the performance of the network, the following 
datasets were used, all conformed by PET, CT, and MR 
co-registered images. The CT sinogram was used to 
generate the attenuation effect in the input PET 
sinograms, which were obtained using the ASTRA 
toolbox with 2D ideal geometry and parallel projectors. 
Lastly, random noise following a Poisson distribution was 
introduced into the sinograms to replicate the statistical 
characteristics of PET data acquisition. Importantly, this 
simulation does not incorporate attenuation or scattering 
effects: 
• Brain phantom dataset consisting of 64596 2D axial 

slice images extracted from 20 brain phantom 3D 
volumes. These volumes were originally designed for 
MRI simulation and were subsequently adapted for 
PET imaging. This dataset is publicly accessible [10]. 
To broaden the analysis, some of the images were 
induced with artificial lesions. 

• 15725 real PET images, including 2D axial, sagittal, 
and coronal slices, derived from the 3D volumes of 
37 healthy patients [11]. 

For all datasets, 80% of the images are destined for 
training, 10% for validation, and 10% for testing. 
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3. Results and discussion 
The two distinct architectures were trained and tested 
with the same datasets. The evaluation phase involved the 
reconstruction of the test image set through the three 
distinct methodologies: FBP, ML-EM, ML-EMR, 
DeepPET, and the ATTDeepPET model. The resultant 
reconstructed images were subsequently subjected to a 
comparative analysis against a reference ground truth 
image with the structural similarity metric (SSIM), peak 
signal-to-noise ratio (PSNR) and normalized root mean 
square error (NRMSE) [12]. 

3.1. Brain phantom dataset 

Initially, the DeepPET and ATTDeepPET networks were 
trained using the training set of brain phantoms of size 
172x172. The learning rate was set to 10-4, and the batch 
size to 32. The GPU used was PNY QUADRO RTX-
A6000 48GB GDDR6. 

The mean error of images in the test set reconstructed 
with the different methods can be seen in Table 1.  The 
results demonstrate that ATTDeepPET consistently 
outperforms other methods across all three metrics. 
DeepPET also exhibits strong performance, closely 
trailing behind ML-EMR and ML-EM, surpassing the 
performance of FBP, which consistently score lower 
across all metrics. 

Figure 2. Phantom reconstructed axial slices employing FBP, 

ML-EM, ML-EMR, DeepPET and ATTDeepPET 

A Tukey’s Honestly Significant Difference (HSD) test 
was conducted, a statistical analysis that provided a 
nuanced understanding of the performance dynamics. In 
the context of brain phantoms, ATTDeepPET emerges as 
the standout performer, showcasing significantly higher 
SSIM and PSNR values, with statistical significance 
supported by the rejection of the null hypothesis (p < 
0.05). Furthermore, ATTDeepPET demonstrates the 
lowest nRMSE, again with statistical significance 
compared to the other methods. Conversely, while 
DeepPET delivers commendable results, surpassing the 
performance of ML-EM and FBP methods, it's important 
to note that it does not exhibit a statistically significant 
improvement over the ML-EMR method. 

Method SSIM PSNR NRMSE 

FBP 0,5461 26,4315 0,2554 
ML-EM 
ML-EM regularized 
DeepPET 

0,9545 
0,9634 
0,9677 

29,0161 
29,5834 
30,2062 

0,2198 
0,2041 
0,2082 

ATTDeepPET 0,9753 31,5333 0,1811 
Table 1. Average error for brain phantom dataset reconstruction. 

3.2. Real brain images dataset 

Subsequently, DeepPET and ATTDeepPET architectures 
were trained using the real PET images dataset. The 
learning rate was set to 10-4, and the batch size to 32. The 
same GPU was used. Obtained quantitative metrics SSIM, 
PSNR, and NRMSE were computed between each of the 
reconstructed images and the ground truth. The ensuing 
averages of these metrics are compiled in Table 2. 

Both ATTDeepPET and DeepPET showed lower 
performance compared to ML-EMR and ML-EM when 
trained using real data. However, upon examining the 
reconstructed images (Fig. 3), it becomes apparent that 
the deep learning models produce smoother images with 
reduced noise compared to the ML-EMR and ML-EM 
approaches. This suggests that the reconstructions may 
bear a closer resemblance to the ground truth. However, 
there is a noticeable reduction in the definition of cerebral 
gyri in these reconstructions, which results in an overall 
decrease in image fidelity to the ground truth. 

Method SSIM PSNR NRMSE 
FBP 0,3966 25,1741 0,2213 
ML-EM 
ML-EM regularized 
DeepPET 

0,8939 
0,9078 
0,8030 

30,3253 
30,5839 
26,8114 

0,1358 
0,1211 
0,1707 

ATTDeepPET 0,8776 27,1281 0,1648 
Table 2. Average error for the brain phantom dataset 
containing lesion reconstruction.  

To further investigate this phenomenon, a region of 
interest (Fig. 4) was selected. It becomes apparent that 
ATTDeepPET struggles to precisely reconstruct the 
defining boundaries of the cerebral cortex. Measurements 

of SSIM, PSNR, and NRMSE were computed by 
comparing the encoder-decoder models with the ML-
EMR, which showed the best accuracy (Table 3). 

 
Figure 3. Real PET reconstructed axial slices employing FBP, 
ML-EM, ML-EMR, DeepPET and ATTDeepPET.  
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Figure 4.  Cerebral gyri comparison. 

Additionally, the analysis revealed the presence of 
notable outliers characterized by elevated nRMSE values. 
A closer examination of these outlier images uncovered a 
consistent pattern: they predominantly featured images 
with minimal brain content, particularly in the axial plane. 
These outlier images were primarily composed of slices 
located at the extremities of the head structure. 

Method SSIM PSNR NRMSE 

ML-EMR 0,7539 17,4505 0,1350 
DeepPET 0,5609 15,8724 0,1896 
ATTDeepPET 0,5002 15,6831 0,1797 
Table 3. ROI’s SSIM, PSNR and NRMSE averages. 

3.3. Reconstruction times 

The temporal efficiency of each reconstruction method 
was quantified by measuring and calculating the average 
execution times across all images. The encoder-decoder 
architectures, DeepPET and ATTDeepPET, demonstrated 
significant reductions in reconstruction time, highlighting 
their notable computational efficiency. DeepPET 
exhibited a remarkable processing speed. Compared to 
FBP, DeepPET achieved a substantial speed enhancement 
of approximately 1.72 times. In comparison to ML-EM 
and ML-EMR, DeepPET demonstrated acceleration rates 
of approximately 735.13 times and 1299.23 times, 
respectively. Similarly, ATTDeepPET presented 
acceleration rates of approximately 1.20 times compared 
to FBP, 511.47 times compared to ML-EM, and 906.73 
times compared to ML-EMR.  

4. Conclusions 
The results of this study emphasize the effectiveness of 
direct image reconstruction methods utilizing DL. These 
methods demonstrate the capability of performing 
attenuation correction directly from sinogram data, 
eliminating the need for synthetic CT images in favor of 
MRI. This transition is advantageous as it reduces patient 
exposure to ionizing radiation and significantly reduces 
reconstruction times, potentially enabling real-time 
studies. However, while these models perform well with 
simulated brain data, their performance diminishes when 
applied to real-world image datasets, highlighting the 
challenges posed by authentic data. Enhancing the 
robustness of these models for real-world scenarios 
should be a priority. On the downside, the computational 

complexity of CNNs requires substantial resources and 
time for network training. These models also rely heavily 
on extensive and diverse training datasets, limiting their 
applicability in scenarios with limited or suboptimal data. 
Traditional methods, grounded in established 
mathematical principles, offer stability and predictability 
across various contexts. However, the opacity of modern 
techniques using encoder-decoder raises interpretability 
concerns. Furthermore, there is a limitation in terms of 
model generalization. Models trained specifically with 
brain data may perform poorly when applied to other 
anatomical regions. A promising direction could involve 
hybrid approaches, merging deep learning with traditional 
methods. These hybrid methods, including unfolded 
techniques for iterative image reconstruction or adaptive 
learning of frequency filters, aim to balance the strengths 
of both paradigms and might serve to overcome the 
limitations inherent in singular methodologies.  
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