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Abstract

Multiple sclerosis (MS) is a prevalent neurodegener-
ative disease with significant visual pathway-related
symptoms. Optical coherence tomography (OCT) has
emerged as a valuable tool, and machine learning (ML)
techniques hold promise for MS diagnosis. However, ex-
isting studies often lack comprehensive feature exploita-
tion and require interpretable model analysis to improve
clinical insights and diagnostic criteria. This study
evaluates machine learning models for classification of
healthy controls and MS patients using a comprehensive
set of macular and optic-disc parameters from OCT
imaging. The study included a dataset of 77 MS eyes
and 54 control eyes, obtained by ophthalmic examination
and OCT measurements from Optic Disc and Macular
Cube scan protocols of a Cirrus HD-OCT 5000 (Carl
Zeiss, Meditec, Dublin, CA, USA). Our results identi-
fied 19 features, validated by p-values (p < 0.001), as
effective discriminators between MS patients and healthy
controls. Patient-wise cross-validation is used to eval-
uate the performance of five ML algorithms. Gaussian
Naive Bayes achieved the best AUC (87.9% ± 7.7%),
while SHAP analysis reinforced the alignment with clin-
ical observations of MS-related visual pathway changes
and ganglion cell layer degeneration, with minimum
ganglion cell thickness being the feature with the highest
impact on classification. These findings underscore the
potential of OCT-ML for early diagnosis and personal-
ized treatment of MS.

1. Introduction
Multiple sclerosis (MS) is an autoimmune and neurode-
generative disease in which the myelin sheath surround-
ing nerve cells in the brain and spinal cord is dam-
aged. This condition causes the improper transmission
of nerve impulses, leading to various potential disabil-
ities, with partial or total blindness, sensory loss, and
motor disorders being the most common [1]. It is esti-
mated that 2.8 million people worldwide are living with
MS, with a higher prevalence of 140 cases per 100,000
population in Europe and the Americas [2].

Diagnosis and monitoring of MS rely on the integration
of clinical, imaging and laboratory evidence, which may
involve invasive procedures such as contrast-enhanced
magnetic resonance imaging (MRI) and lumbar punc-

ture [3]. Several important symptoms of MS are re-
lated to visual pathway disorders, such as: optic neu-
ritis, diplopia and oscillopsia. The assessment of oph-
thalmic patients has been revolutionized by optical co-
herence tomography (OCT), a rapid and reproducible
imaging technique that employs low-coherence interfer-
ometry to generate cross-sectional images of the retina
and optic nerve head (ONH) [4]. In recent years, several
studies have revealed the presence of biomarkers associ-
ated with MS as well as other neurodegenerative diseases
such as Parkinson’s and Alzheimer’s in the retina and
optic disc. These biomarkers include specific structures
like the ganglion cell layer (GCL), the retinal nerve fiber
layer (RNFL) of the optic disc, and the optic nerve head
(ONH). [5, 6, 7]. Furthermore, with the increasing pop-
ularity of artificial intelligence (AI) techniques, several
studies have employed parameters from OCT to train
machine learning (ML) algorithms for the diagnosis of
MS [8, 9, 10]. However, most studies do not use a wide
range of features extracted from both the macular and
optic-disc regions. Furthermore, an analysis of the inter-
pretability of the resulting models is crucial to properly
understand the importance of each feature. In addition,
this type of in-depth analysis can help clinicians to gain
insights into the disease and improve diagnostic crite-
ria [11].

This study focuses on the evaluation of a set of ML
models for the classification of healthy controls and pa-
tients with MS based on a comprehensive collection of
macular and optic-disc parameters obtained through an
OCT imaging device. The study is composed of sev-
eral key steps. First, a feature selection process is per-
formed using a ML approach to identify the most crucial
features for discerning between the two groups. This
feature selection process is further supported by a sta-
tistical analysis to ensure the selection of relevant at-
tributes. Next, a set of ML models is trained using the
selected features and their performances are compared.
This step aims to determine the most effective model for
accurately classifying healthy controls and MS patients
based on the OCT data. Finally, to improve the in-
terpretability of the models’ predictions, an explainable
AI technique known as Shapely Additive Explanations
(SHAP) is used, which allows for a detailed analysis of
the importance of each individual feature during the in-
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ference process. This step provides a rich breakdown of
the models’ decision criteria, which might be of great
interest in clinical practice.

2. Materials
2.1. Dataset

This study included 40 patients with MS and 27 healthy
controls recruited from the Neuro-ophthalmology de-
partment from Gregorio Marañón University Hospital
in Madrid, Spain. The protocol was approved by the
Ethics Committee of the hospital and all subjects were
informed of the purpose and procedures of the study,
and provided written consent to be included. The fol-
lowing inclusion criteria were applied: a refractive error
within ± 5.00 dioptres for the equivalent sphere, and
± 2.00 dioptres for astigmatism. Exclusion criteria in-
cluded prior intraocular surgery or any other conditions
that could impact the visual field or nervous system, and
the presence of pharmacological treatment that could
affect visual function.

The participants received a complete ophthalmological
examination and OCT measurements were obtained.
The dataset included OCT volumes acquired using a
Cirrus HD-OCT 5000 (Carl Zeiss, Meditec, Dublin,
CA, USA), employing the Optic Disc Cube 200x200
and Macular Cube 512x128 scan protocols (6x6 mm).
Only images with a signal-to-noise ratio of 7 or higher
were included to ensure adequate acquisition quality,
resulting in a final dataset comprising 77 MS eyes and
54 control eyes.

2.2. OCT Protocols

The Cirrus HD-OCT 5000 device provides a compre-
hensive evaluation of both retinal and optic-disc regions
through a combination of quantitative and qualitative
analyses. This study employs three distinct categories
of analysis: Ganglion Cell Analysis (GCA), which as-
sesses the condition of the GCL and the Inner Plexi-
form Layer (IPL); Macular Thickness Analysis (MTA),
which measures the thickness of the macular region; and
Optic-disc RNFL and ONH analyses. Figure 1 shows all
the layers considered in this study. GCL and IPL are
combined (GCIPL) in the GCA report of the device.

Figure 1: Macular OCT image example of a healthy
control indicating the most important retinal layers, ac-
cording to the feature selection process: RNFL and
GCIPL, which combines GCL and IPL.

For GCA, the grid relies on six sector maps (Figure 2a),
positioned at the fovea. The MTA analysis employs the
early treatment diabetic retinopathy study (ETDRS)
grid, automatically placed at the center of the fovea, ef-
fectively partitioning the macular area into nine distinct
regions (Figure 2b). Lastly, the optic-disc analysis em-
ploys a clock-based grid (Figure 2c), dividing the area
into twelve sectors and four regions corresponding to
the anatomical locations (superior, temporal, inferior,
nasal).

3. Methods
3.1. Feature selection
A feature selection process was performed to filter out
the most relevant parameters and reduce overfitting.
The aforementioned analyses (GCA, MTA, optic disc
RNFL, and ONH) provided a total of 67 features. A
tree-based method was used to remove the least rele-
vant parameters, based on the feature importance values
provided by the estimator [12]. More precisely, features
that were assigned an importance value below the global
mean feature importance were discarded. Significance
analyses were performed using Student’s t-tests to com-
pare healthy controls and MS patients and validate the
selected features.

3.2. Machine learning models and performance
metrics
A comprehensive performance comparison of five dif-
ferent ML classifiers was conducted for this study.
The selected models included Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), Bagging Classi-
fier, Random Forest, and Gaussian Naive Bayes (NB),
similarly to other reference studies [8, 9, 10]. For
each model, the default combination of hyperparameters
given by [12] was employed. The most relevant ones are
summarized below:

• SVM: C = 1, kernel = RBF, γ = 1/(Nfeat · σ2
X)

• k-NN: num. neighbours = 5.

• Random Forest: num. trees = 100, max. fea-
tures =

√
Nfeat.

• Bagging Classifier: estimator = Decision Tree
Classifier, num. estimators = 10.

Several metrics were calculated to evaluate their effec-
tiveness, including accuracy, F1 score, and area under
the curve (AUC) [13]. We divided the dataset into a
70/30 percent split, ensuring that both eyes from the
same patient were grouped together within each split to
maintain inter-eye correlations during model training.
To assess the model’s performance, we employed 5-fold
cross-validation.

3.3. SHAP analysis
We used the SHAP method [14] to improve our under-
standing of the impact of each feature on the model.
SHAP values, which are rooted in cooperative game
theory, provide insight into the contribution of each
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Figure 2: Sectors employed in the analysis of the Cirrus HD-OCT 5000 protocols.

feature to the model’s predictions. For the validation
set of each cross-validation iteration, we computed the
SHAP values for all features in the best model, and then
averaged the results from the five iterations to derive
an estimate of feature importance.

4. Results and discussion

Macula features

GCA analysis

Ganglion cells Nasal Superior thickness

Ganglion cells Nasal Inferior thickness

Ganglion cells Superior thickness

Ganglion cells Temporal Superior thickness

Ganglion cells Temporal Inferior thickness

Ganglion cells minimum thickness

Ganglion cells average thickness

Macular RNFL Nasal Inferior thickness

Macular RNFL Nasal Superior thickness

Macular RNFL Inferior thickness

Macular RNFL Superior thickness

Macular RNFL average thickness

MTA analysis

Macular cube average thickness - ILM to RPE

Table 1: Selected macular features from GCA and
MTA analysis. Ganglion cells refer to the combined lay-
ers GCL and IPL. All the presented features exhibit a
high level of significance p < 0.001 in differentiating be-
tween MS patients and healthy controls.

The feature selection step resulted in a final set of 19
features, which are presented in Tables 1 and 2. No-
tably, all of the p-values obtained from Student’s t-tests
of the selected features were below the standard signifi-
cance threshold (p < 0.05), confirming that all of them
are effective discriminators between the MS patients and
healthy controls. In addition, previous studies [5, 6,
9] have consistently identified most of the selected pa-

rameters as important MS biomarkers, specifically the
measurements related to the nasal, superior and infe-
rior sectors of the macula and the temporal, superior
and inferior sectors of the optic-disc.

Optic-disc features

ONH analysis

ONH RNFL Inferior Temporal thickness (Clockhour-7)

ONH RNFL Temporal central thickness (Clockhour-9)

ONH RNFL Temporal Superior thickness (Clockhour-10)

ONH RNFL Superior Temporal thickness (Clockhour-11)

ONH RNFL Temporal Quadrant thickness

ONH RNFL average thickness

Table 2: Selected optic-disc features from RNFL and
ONH analysis. All features have p < 0.001 significance
between MS patients and healthy controls.

The results corresponding to the performance metrics
comparison of the ML models are shown in Table 3.
The mean and the standard deviation for each met-
ric are presented and the best metric is highlighted in
bold. The Gaussian NB obtained the best AUC with
87.9% ± 7.7%, and SVM obtained the best accuracy
with 87.3% ± 10.5% and F1 score with 87.3% ± 10.5%.

Classifier Accuracy % F1 score % AUC %

SVM 87.3 ± 10.5 87.3 ± 10.5 87.6 ± 10.2

k-NN 83.4 ± 9.4 83.4 ± 9.4 84.3 ± 9.7

Gaussian NB 87.2 ± 8.1 87.2 ± 8.0 87.9 ± 7.7

Random Forest 86.5 ± 10.2 86.5 ± 10.2 86.4 ± 10.4

Bagging Classifier 84.9 ± 5.8 84.8 ± 5.7 84.3 ± 5.4

Table 3: Computed metrics for the ML classifiers after
training using 5-fold cross validation. Mean and stan-
dard deviation are shown.

Figure 3 illustrates the results of the SHAP analysis ap-
plied to the Gaussian NB model. The SHAP values con-
firm their correspondence with clinically observed varia-
tions in the visual pathway in individuals with MS. This

XLI Congreso Anual de la Sociedad Española de Ingeniería Biomédica 22–24 Noviembre 2023

ISBN: 978-84-17853-76-1 358



alignment is particularly pronounced in the nasal sector
of the macular region and the temporal sector of the
optic disc, consistent with previous studies[5, 15].

In addition, our results are consistent with previous re-
search showing progressive degeneration of the GCIPL
in MS[15]. This progressive thinning of the GCIPL is
underscored by the classifier’s emphasis on five specific
features closely associated with the nasal sectors of the
GCIPL. Notably, the model places primary importance
on the feature indicating minimum GCIPL thickness.

Figure 3: Average SHAP values calculated across the
5-fold validation set for the Gaussian NB model.

5. Conclusions

This study highlights OCT and ML’s potential for en-
hancing MS diagnosis by evaluating comprehensive fea-
tures from routine ophthalmologic exams. Our results
reveal key features from GCA, MTA, and ONH analyses
that significantly contribute to the highest-performing
classification model (Gaussian NB) with an AUC of
87.9%. However, limitations include a single-center
dataset with one OCT device, potentially affecting re-
sult generalizability. Future research should explore lon-
gitudinal studies to demonstrate OCT’s value in patient
follow-up and its potential integration into standard
MS care criteria. Additionally, expanding the dataset
to multiple centers and considering alternative modal-
ities, such as OCT angiography images, are promising
avenues for future investigation.
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