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Abstract

Performance evaluation of principal component analysis (PCA) of dynamic F-18-FDG-PET studies of patients with recurrent colorectal

cancer. Principal component images (PCI) of 17 iteratively reconstructed data sets were visually and quantitatively evaluated. The F-18-FDG

compartment model parameters were estimated using polynomial regression. All structures were present in PCI1. PCI2 was correlated with

the vascular component and PCI3 with the tumor. The vessel density in the tumor was estimated with a correlation coefficient equal to 0.834.

PCA supports the visual interpretation of dynamic F-18-FDG-PET studies, facilitates the application of compartment modeling and is a

promising quantification technique.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic 2-deoxy-2-[F-18]fluoro-D-glucose positron

emission tomography (F-18-FDG-PET) studies have found

use in the diagnosis, staging and therapy effects monitoring

of patients with colorectal cancer. They allow visualization

of colorectal cancer, detection of tumor recurrences and

metastases and evaluation of chemotherapy, radiation

therapy as well as gene therapy by quantification of

differences in the regional F-18-FDG metabolism [1].

Most of the F-18-FDG-PET studies are visually or

semiquantitatively (use of standardized uptake values, SUV

[2]) evaluated, while the implementation of Patlak analysis

[3,4] and compartment models [5,6] for quantification of

PET studies has also been investigated. SUV is relatively

robust and reproducible for the same system and compar-

able acquisition protocols [7]. The metabolic rate of glucose

calculated by the Patlak graphical model can differentiate

between benign and malignant lesions. However,

the determination of this parameter requires the use of an

input function, is complex and time-consuming and it is not

routinely performed [7]. Compartment models provide

precise information about radiopharmaceutical kinetics

only when a limited number of compartments and transport

rates are required, and could therefore be used in F-18-FDG-

PET since a two-tissue compartment model can adequately

describe F-18-FDG metabolism. However, the difficulty in

obtaining the input function in some cases has resulted in

the development of non-compartment approaches such as

the Fourier analysis [8] or the fractal dimension [6,9].

The purpose of this study was to evaluate principal

component analysis (PCA) as an alternative non-compart-

ment approach for the quantification of dynamic F-18-FDG-

PET studies of colorectal tumor recurrences and to assess its

accuracy for the anatomical localization of lesions and the

detectability of metastases. PCA is concerned with explain-

ing the variance–covariance structure of a set of variables

through a few linear combinations of these variables [10].

Its general objectives are data reduction and interpretation

[11]. PCA has several applications in nuclear medicine

imaging [10,12–18], computed tomography (CT) [19] and

magnetic resonance imaging (MRI) [20].
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2. Materials and methods

2.1. Principal component analysis

PCA is concerned with explaining the variance–

covariance structure of a set of variables through a few

linear combinations of these variables. Its general objectives

are data reduction and interpretation. Although p com-

ponents are required to reproduce the total system

variability, often much of this variability can be accounted

for by a small number k of the principal components. The k

principal components can then replace the initial p

variables, and the original data set, consisting of n

measurements on p variables, is reduced to a data set

consisting of n measurements on k principal components

[11].

Let X0 ¼ ðX1;X2;…;XpÞ have covariance matrix S, with

eigenvalue–eigenvector pairs ðl1; e1Þ; ðl2; e2Þ;…; ðlp; epÞ

where l1 $ l2 $ … $ lp $ 0: The ith principal com-

ponent is given by

Yi ¼ e0iX ¼ ei1X1 þ ei2X2 þ · · · þ eipXp ði ¼ 1; 2;…; pÞ ð1Þ

with VarðYiÞ ¼ e0iSei ¼ li and CovðYi;YkÞ ¼ e0iSek ¼ 0; i– k:

The total population variance is given by

Xp

i¼1

VarðXiÞ ¼
XP
i¼1

VarðYiÞ ¼
Xp

i¼1

li ð2Þ

Consequently, the proportion of total variance due to

(explained by) the jth principal component is

ljXp

i¼1
li

ðj ¼ 1; 2;…; pÞ ð3Þ

If most (for instance 80–90%) of the total variance can be

attributed to the first few components, then these com-

ponents can ‘replace’ the original p variables without much

loss of information.

PCA in PET images distinguishes different kinetic

components contributing to the same image pixel and

summarizes the weights of different components into

different principal component images (PCI) (parametric

images). Since it is a data driven technique, it cannot

separate signals from noise [10] and several data

transformation procedures have been proposed in order

to improve its performance [21]. The choice of data

preprocessing method strongly affects the nature of the

information acquired [20] and depends on the amount of

available prior knowledge (level of noise in individual

images, number of components), on the type of noise

distribution and on the purpose of analysis (data

compression, filtration, and feature extraction). Samal

et al. [21] have compared those methods using simulated

data sets. We have also studied the performance of

PCA after applying the following data transformation

procedures [21]:

(a) Data column-wise centered, CV

zij ¼ yij 2 �yj ð4Þ

where yij and zij are the original and the final value of

pixel i ði ¼ 1;…;mÞ of frame j ðj ¼ 1;…; nÞ and �yj is

the mean of the jth column of the original data

matrix Y,

(b) Data column-wise standardized, CR

zij ¼ ðyij 2 �yjÞ=sj ð5Þ

where sj is the standard deviation of the jth column

of the data matrix Y,

(c) Data transformed as for correspondence analysis

without threshold, CN

zij ¼ yij

ffiffiffiffiffiffiffiXm
i¼1

yij

vuut
ffiffiffiffiffiffiffiXn

j¼1

yij

vuut
0
@

1
A21

ð6Þ

(d) Data divided column-wise by the column sum, CS

zij ¼ yij

Xm
i¼1

yij

 !
21

ð7Þ

(e) Data divided column-wise by the column standard

deviation, CD

zij ¼ yij=sj ð8Þ

The row-wise transformation procedures provide excel-

lent results only when the background outside the dynamic

structures is carefully masked. Otherwise, the methods fail

because of artificial amplification of noise in the back-

ground. Since the mask represents unavailable or unaccep-

table amount of prior knowledge in practice, those

procedures were not evaluated [21].

Three criteria were used for the evaluation of the

performance of the transformation procedures:

index1 ¼
Xp

j¼kþ1

lj

.Xp

j¼1

lj ð9Þ

index2 ¼ lkþ1


lk ð10Þ

index3 ¼
Xk

j¼1

lj

.
ðp 2 kÞ21·

Xp

j¼kþ1

lj ð11Þ

where lj are the eigenvalues of the covariance matrix, p is

the total number of principal components and k is the

number of eigenvalues explaining most of the data variance.

index1 represents the part of total variance of the

transformed data remaining after extraction of the first k

principal components, equals 0 for noiseless data and

increases with increasing noise. index2 demonstrates the

quality of separation of the signal from noise and ranges

from 0 (for noiseless data) to 1 (for signal indistinguishable

from noise) [21]. index3 is an estimate of the signal-to-noise

ratio (SNR) improvement of PCI over the original ones [20].
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2.2. Patients

The study included 17 patients with colorectal tumor

recurrences who were referred on the basis of clinical

symptoms and radiologic examinations, either CT or MRI.

The final diagnosis was based on the histologic data obtained

from surgical specimens. None of the patients had received

chemotherapy or radiation therapy at least 3 months prior to

the PET study. Informed consent was obtained from each

patient. The study was performed in accordance with the

institutional review board requirements.

2.3. Data acquisition

Dynamic PET studies were performed after intravenous

injection of 300–370 MBq F-18-FDG for 60 min. A 23-

frame protocol was used (10 frames of 1 min, 5 frames of

2 min, and 8 frames of 5 min). F-18-FDG was prepared

according to the protocol described by Toorongian et al. [22].

A dedicated PET system (ECAT EXACT HR þ ;

Siemens, Erlangen, Germany) was used for the patient

studies. The system consists of four rings of 72 bismuth

germanate detector blocks. Each block detector is divided

into an 8 £ 8 matrix, while the crystal size of an individual

detector element is 4.39 £ 4.05 £ 30 mm. The system

allows the simultaneous acquisition of 63 transverse slices

with a theoretic slice thickness of 2.4 mm and has a

craniocaudal field of view of 15.3 cm. The system was

operated in two-dimensional mode (with septa extended).

Transmission scans for a total of 10 min were obtained with

three rotating germanium pin sources before the first

radionuclide application for the attenuation correction of

the acquired emission tomographic images.

The PET data were transferred by file transfer protocol to

a subnet server system. A web-based interface was used to

start and distribute the reconstruction tasks on different

computer systems, where the reconstruction programs were

running [23]. All PET images were scatter and attenuation

corrected [24]. An image matrix of 128 £ 128 pixels was

used. The images were reconstructed using an iterative

reconstruction algorithm (weighted least-square method,

ordered subsets, four subsets, six iterations) running on

Pentium platforms (Pentium III 600 MHz, double pro-

cessor; 512 MB random access memory) and MS Windows

2000 Professional (Microsoft, Redmond, WA).

2.4. Data analysis

The evaluation of the dynamic PET data was performed

using the software package Pmod provided in cooperation

with the University of Zurich, Switzerland [25,26]. The

analysis was based on the semiquantitative approach of

calculating the SUV, as introduced by Strauss and Conti [2]:

SUV ¼ tissue concentration ðMBq=gÞ=

ðinjected dose ðMBqÞ=body weight ðgÞÞ:

Visual analysis was performed by evaluating the hypermeta-

bolic areas on transaxial, coronal and sagital images. Time–

activity curves (TACs) were extracted using volumes of

interest (VOIs), that is several regions of interest (ROIs) in

different sequential slices over the target area. Irregular ROIs

were drawn manually and repositioned visually to compen-

sate for possible patient motion during the acquisition time.

A two-tissue compartmental model was used for the

quantification of the dynamic PET studies [5]. The usual

method of obtaining the input function is to catheterize an

artery and to take blood samples. However, since it is

possible to retrieve the input function from the image data

accurately [27], we have calculated the mean value of the

VOI data obtained from an arterial vessel clearly visualized

in the first image of the dynamic series. The recovery

coefficient is 0.85 for a diameter of 8 mm and the system

described above. Partial volume correction was used only

for small vessels with a diameter , 8 mm. A fit of the input

curve by a sum of up to three decaying exponentials was

implemented to reduce the effect of noise on the parameters

estimates. The vascular fraction (VB) was taken into

account for the calculation of the transport constant K1

and the rate constants k2, k3 and k4. Each model curve was

compared with the corresponding TAC. The criterion was to

minimize the summed squares (X 2) of the differences

between the measured and the model curve [26].

PCA code was developed in Cþþ (Microsoft Visual

Studio 6.0, enterprise edition) according to the formulas

presented above. The resulting PCI were initially visually

evaluated. Subsequently, VOIs were placed over the tumor

recurrences and the muscle in the first two PCI, and the

mean counts (pccounts) for each one were calculated.

Statistical analysis was performed to explore the possibility

of extracting the parameters VB, K1 and k3 of the two-

compartment model from those values, using the Statistica

software package (version 6.0; StatSoft, Hamburg,

Germany) on a personal computer (Pentium III 600 MHz,

double processor; 512 MB RAM) running under Windows

2000 Professional. Polynomial regression up to the second

order was used to establish a quantitative relationship

between the predictor variables Xi (pccounts) and the

response y (VB, K1 or k3):

y ¼ const þ
X

i

aiXi þ
X

i

biX
2
i ð12Þ

The unknown coefficients were computed using a least

squares fit, which minimized the sum of the squares of the

deviations of the data from the model.

3. Results

We have applied PCA to 17 dynamic F-18-FDG-PET

studies. The time required for the analysis of a complete

data set (23 frames, 32 slices per frame, 128 £ 128 pixels

per slice) was less than 1 min.
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In all 17 cases studied, the first principal component

image (PCI) looked like a high contrast summed SUV

image where all structures were visible, while the second

PCI was dedicated to the vascular component (Fig. 1). This

observation is in accordance with the fact that the first

principal component accounts for the maximum variance in

the dynamic data set, whereas subsequent components

account for decreasing amounts of variance. In 14 of the

cases, the third PCI was clearly correlated with the tumor

component and the vessels were slightly seen. In the other

studies, the tumor was not discriminated very well due to the

physiologic soft-tissue activity. The average amount of

variance explained by these components in all studies was

78.3 ^ 2.6, 3.7 ^ 1.0 and 1.8 ^ 0.2 correspondingly.

Subsequent PCIs were mainly related to noise.

The structures seen in the PCIs are shown in Table 1.

Plotting the first three principal components (PC1–PC3) (in

Fig. 2 for the same case as in Fig. 1) supported the visual

interpretation of the PCIs. The second and the third PCs

were similar to TACs of vessels and tumor correspondingly,

while all structures TACs contributed to the first PC.

Figs. 3 and 4 shows the resulting PCIs after the

application of the data transformation procedures described

by Eqs. (4)–(8) and the image quality criteria are shown in

Table 2. In accordance to the results for simulated data [21],

most of the preprocessing methods produced images

comparable to or slightly worse than those based on the

original data. Both visual (suppressed vessels) and quanti-

tative evaluation (better indices) demonstrated that the best

transformation procedure was CS, which unifies the sum

over all pixels for each frame.

The results of the polynomial regression indicated that

the tumor VB could be modeled as:

VB ¼ constant þ a1 £ pccounts1 þ a2 £ pccounts2

þ b1 £ pccounts2
1 þ b2 £ pccounts2

2:

The values of the coefficients are shown in Table 3. The

correlation coefficient equaled 0.834 and the plot of the

residuals (Fig. 5) confirmed the accuracy of the model.

Parameters K1 and k3 could not be estimated from PCI.

The correlation coefficients of the polynomial regression

were 0.666 and 0.734 correspondingly, but the residuals

analysis revealed outliers biasing the regression line and

leading to higher correlation coefficients than expected.

In order to test the validity of the previously described

analysis, we tried to model the muscle VB, but the

correlation coefficient was found equal to 0.452. Since the

muscle VB has a small approximately constant value that

‘falls into the noise region’, it cannot be correlated with

pccounts.

4. Discussion

This study was focused on the non-compartmental

analysis of dynamic F-18-FDG-PET studies of colorectal

Table 1

Structures present in the SUV and PCI. The numbers represent the fraction

of cases

SUV PCI1 PCI2 PCI3

Tumor Yes (17/17)

(frame 23)

Yes (17/17) No (17/17) Yes (14/17)

Vessel Yes (17/17)

(frame 1)

Yes (17/17) Yes (17/17) Slightly (5/17)

Fig. 2. Principal components PC1 to PC3 plots. PC2 is a typical blood time

activity curve (TAC), whereas PC3 is a tumor-wise TAC. All structures

TACs contribute to PC1.

Fig. 1. SUV image (upper left) and the corresponding principal component

images PCI1 (upper right), PCI2 (lower left) and PCI3 (lower right). PCI1

looks like a high contrast summed SUV image. PCI2 is dedicated to the

vascular component and PCI3 to the tumor component.
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tumor recurrences by addressing the problems of quantifi-

cation and of the enhanced localization of lesions and

metastases.

Several methods have been proposed for the quantifi-

cation of dynamic F-18-FDG-PET studies of colorectal

tumors in order to select the most appropriate treatment and

to evaluate its results. For their clinical application, these

methods should be not only accurate and reproducible, but

also easy to implement. SUV, which is a relative measure of

activity uptake in a tissue of interest in comparison to the

whole-body distribution, is a standard procedure to quantify

PET data [7]. However, factors such as the miscellaneous

acquisition protocols and different reconstruction methods,

lack of scatter correction and variable plasma glucose levels

affect the variability of SUV and cause reproducibility

problems among different PET institutions [28].

Although the high noise level of a dynamic PET study

allows only the application of coarse models, a two-tissue

compartment model is considered to be an accurate method

for the kinetic analysis of the F-18-FDG metabolism [5].

The retrieval of the input function may be a limitation of the

method. Arterial sampling is invasive and therefore not

suitable for routine clinical use. The retrieval of the input

function from the image data [26] requires the accurate

Fig. 3. Principal component image 2 based on the original values (RAW)

and after application of data preprocessing: data column-wise centered

(CV), data column-wise standardized (CR), data transformed as for

correspondence analysis without threshold (CN), data divided column-

wise by the column sum (CS) and data divided column-wise by the column

standard deviation (CD).

Fig. 4. Principal Component Image 3 based on the original values (RAW)

and after application of data preprocessing: data column-wise centered

(CV), data column-wise standardized (CR), data transformed as for

correspondence analysis without threshold (CN), data divided column-

wise by the column sum (CS) and data divided column-wise by the column

standard deviation (CD).

Table 2

Quality criteria of the principal component images based on the original

data set and after applying data preprocessing methods. CS (data divided

column-wise by the column sum) is the best approach

index1 index2 index3

RAW 0.153 0.726 111

CV 0.153 0.726 111

CR 0.154 0.680 110

CN 0.230 0.848 67

CS 0.148 0.672 115

CD 0.154 0.680 110
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placement of ROIs over the vessels and the resulting TAC of

small vessels is subject to errors due to partial volume

effects.

The calculation of the metabolic rate of glucose by the

Patlak graphical analysis [3,4] requires an input function

and a lumped constant that indicates the ratio of F-18-FDG

uptake to glucose uptake and is not known for the tumors.

As an alternative, the determination of the metabolic rate of

F-18-FDG is possible.

A non-compartment approach is the calculation of the

fractal dimension [6,9], a parameter based on chaos theory

and associated with tumor heterogeneity. It is reproducible

and fast and limits the subjectivity and the external factors

capable of influencing the diagnostic result. Another non-

compartmental approach, the Fourier analysis [8] provides a

detailed visualization of the radiopharmaceutical distri-

bution in the target area, avoiding the short-term artifacts

that may be present on conventional images, obtained

immediately after the tracer injection and revealing tissue

inhomogeneity.

PCA visualizes regions with different kinetics in a

dynamic sequence by explaining the variance–covariance

structure of the data set. It optimizes the signals by

simultaneously considering the complete set of images in

the dynamic sequence. It does not require the manual

selection of ROIs and does not include any model-based

restrictions, since it is independent of any kinetic model

[10,12]. PC images appear with decreasing SNR and

therefore only the first few need to be inspected. However,

PCA does not give the physiologic importance of each

component and side information is essential for interpret-

ation of the results, e.g. TAC or correlative anatomic

imaging [12]. PCA is also sensitive to patient motion and

image registration may be required in order to improve its

accuracy [12].

In medical image processing, PCA has been used for data

compression [15] (where it is also known as the Hotelling or

the Karhunen–Loève transform), filtration [16], feature

extraction [10,13,18], registration [14] and as an initial step

in factor analysis [17].

Our study indicated that the first principal component

image (PCI) is a high-contrast image that makes feature

identification easier. The second PCI is correlated with the

vascular component and the third one with the tumor.

Subsequent PCIs are related to noise. Therefore, PCA could

be used not only for the visual interpretation of the image set

by improving the detection of metastases not easily

discriminated due to lesions characteristics (size, location

etc.), but also as a preprocessing method to facilitate

the application of compartment analysis, by increasing the

accuracy of manual selection of ROIs [12].

The application of several data transformation pro-

cedures to the original data sets did not cause significant

improvement in the resulting PCIs in accordance to the

results based on simulated data [21]. However, the column-

wise division of the data by the column sum provided the

best images and justified the time required for the additional

preprocessing step (total time for PCA equaled 1 min).

PCA has been so far used only to qualitatively

evaluate dynamic data sets. Our study investigated the

relationship between PCIs and the kinetic parameters VB,

K1 and k3, which provide information about F-18-FDG

pharmacokinetics. Fractional blood volume VB modulates

the uptake of the tracer, while the transport constant K1

and the rate constant k3 are associated with the transport

capacity of F-18-FDG and the phosphorylation rate of the

radiopharmaceutical correspondingly. Statistical analysis

revealed that the tumor VB could be estimated using the

first two PCI, while the parameters K1 and k3 were not

related with the PCIs. So PCA consists an alternative

method for PET quantification, fast, independent of any

kinetic model and useful when the retrieval of the input

function is complicated. A comparison of the perform-

ance of PCA and other non-compartment methods such

as the Fourier analysis or the fractal dimension will help

define better its application field and clarify its

limitations.

Tumor fractional blood volume has been proposed as an

independent prognostic factor [29] and an important

parameter potentially capable of modifying treatment

planning [30]. Vessel density influences the drug and

oxygen access to tumor cells and therefore the response to

Table 3

Polynomial regression coefficients for the estimation of tumor fractional

blood volume VB. The correlation coefficient is equal to 0.834

Constant 0.7610273

a1 20.0000277

a2 0.000000000394

b1 20.0000399

b2 0.00000000235

Fig. 5. Polynomial regression line for the tumor fractional blood volume

VB estimation based on principal component images 1 and 2. The

correlation coefficient equals 0.834.
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chemotherapy or radiotherapy and the efficacy of using

hyperbaric oxygen, hypoxic sensitizers or combined

chemotherapy. Consequently, the additional information

obtained easily by applying PCA to the dynamic F-18-FDG-

PET studies could help choosing the appropriate therapy

and improve the outcome.

Another potential application of PCA as a quantification

technique could be related to angiogenesis. Angiogenesis is

the formation of new blood vessels from the existing

vascular bed. It is normally suppressed and is observed only

transiently during reproduction, development and wound

healing. Angiogenesis is also a key pathway required for

tumor invasion, growth and metastasis and research has

shown that vasculature provides an important target for

therapy. Retrospective studies suggest that intratumoral

vascularization is an independent prognostic factor and that

the presence of vascular endothelial growth factor VEGF in

high concentrations in primary cancers is associated with

poor prognosis. The development of drugs with suitable

pharmacokinetic and toxicity profiles requires new styles of

clinical trials, new surrogate biomarkers and dynamic

imaging methods (MRI and PET) to assess angiogenesis

blocking drugs [31,32]. Since PCA of dynamic F-18-FDG-

PET studies allows the estimation of tumor fractional blood

volume, it could be used to monitor the effects of both anti-

angiogenic treatment and chemotherapy, which work

synergistically.

5. Conclusions

PCA supports the visual interpretation of dynamic F-18-

FDG-PET studies and facilitates the application of

compartment modeling. Preprocessing of the dynamic

data set could improve the quality of the resulting images

and the accuracy of the method. PCA is also a promising

alternative technique for quantification, fast, independent

of any kinetic model and useful when the retrieval of the

input function is complicated. Treatment planning and

assessment of angiogenesis blocking drugs using PCA

could be investigated.

6. Summary

Purpose. Dynamic 2-deoxy-2-(F-18)fluoro-D-glucose

positron emission tomography (F-18-FDG-PET) studies

have found use in the diagnosis, staging and therapy

effects monitoring of patients with recurrent colorectal

cancer. The performance of PCA of such studies was

evaluated.

Procedures. Seventeen iteratively reconstructed dynamic

F-18-FDG-PET data sets were included in the study. None

of the randomly selected patients had received chemother-

apy or radiation therapy at least 3 months prior to the PET

study. As reference for the quantification 55–60 min

standardized uptake values and a two-compartment tissue

model were used. PCI were visually and quantitatively

evaluated after the application of several preprocessing

methods to the original data sets. Polynomial regression up

to the second order was performed to extract the parameters

of the F-18-FDG compartment model using the mean counts

of tumor VOIs (volume of interest) in the first two PCIs.

Results. The first PCI was a high-contrast image where

all structures were present. The second PCI was correlated

with the vascular component and the third one with the

tumor. Data preprocessing could improve PCI quality. VB,

the vessel density in the tumor, could be estimated with a

correlation coefficient equal to 0.834. On the contrary, the

transport constant K1 and the rate constant k3 were not

related with the PCIs.

Conclusions. PCA supports the visual interpretation of

dynamic F-18-FDG-PET studies and facilitates the appli-

cation of compartment modeling. Preprocessing of the

dynamic data set could improve the quality of the resulting

images and the accuracy of the method. PCA is also a

promising alternative technique for quantification, fast,

independent of any kinetic model and useful when the

retrieval of the input function is complicated. Treatment

planning and assessment of angiogenesis blocking drugs

using PCA could be investigated.
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