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We  present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based

on  the mixture of multivariate normal distributions model. MBIS supports multichannel

bias field correction based on a B-spline model. A second methodological novelty is the

inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random

field model. Along with MBIS, we release an evaluation framework that contains three dif-

ferent experiments on multi-site data. We  first validate the accuracy of segmentation and

the  estimated bias field for each channel. MBIS outperforms a widely used segmentation

tool in a cross-comparison evaluation. The second experiment demonstrates the robust-

ness  of results on atlas-free segmentation of two image sets from scan–rescan protocols

on  21 healthy subjects. Multivariate segmentation is more replicable than the monospec-

tral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate
Image segmentation

Graph-cuts

ITK

how MBIS can be used in a large-scale study of tissue volume change with increasing age in

584  healthy subjects. This last result is meaningful as multivariate segmentation performs

robustly without the need for prior knowledge.

© 2014 Elsevier Ireland Ltd. All rights reserved.

studies concerning brain morphology, such as quantitative
1.  Introduction

Brain tissue segmentation from magnetic resonance imag-

ing (MRI) has been one of the most challenging problems
in computer vision applied to biomedical image  analysis
[43]. It is intended to provide precise delineations of white
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matter (WM), gray matter (GM) and cerebrospinal fluid (CSF)
from acquired data. Brain tissue segmentation is the stand-
point of processing schemes in an endless number of research
se 30, E-28040 Madrid, Spain. Tel.: +34 915 495 700x4234.
ar.esteban@upm.es (O. Esteban).

analyses of tissue volumes [1,55,66], studies of cortical thick-
ness [27,42,52], and voxel-based morphometry [79,57,31,29].
In a clinical context, numerous studies have demonstrated
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he potential use of brain tissue segmentation. The spa-
ial location of the above key anatomical structures within
he brain is a requirement for clinical intervention [44] (e.g.
adiotherapy planning, surgical planning, and image-guided
ntervention). Early applications addressed global conditions;
or example [67] used semiautomated segmentation of MRI
o assess the decrease in total brain tissue and cortical GM,
nd ventricle enlargement in Alzheimer’s Disease patients.
nother study [34] presented an automated methodology to

dentify abnormal increase of the GM volume in individuals
ith autism. Focal conditions have also been studied, includ-

ng extra classes in clustering and some other adaptations
f methods to pathologies, such as automated tumor delin-
ation [59], lesion detection and volume analyses in multiple
clerosis [17,83,84,73,74], and white matter lesions associated
ith age and several conditions like clinically silent stroke,

nd higher systolic blood pressure [4]. The accurate and auto-
ated segmentation of tumor and edema in multivariate

rain images is an active field of interest in medical image
nalysis, as illustrated by the Challenge on Multimodal Brain
umor Segmentation [54] that has been held in conjunction with
he last three sessions of the Medical Image  Computing and
omputer Assisted Intervention (MICCAI) International Con-

erence.
A survey on brain tissue segmentation techniques is

eported elsewhere [51]. Currently popular methodologies can
e grouped into three main families. Deformable model fitting
pproaches [65,81,61,24,21] are designed to evolve a number
f initial contours towards the intensity steps that occur at tis-
ue interfaces. Atlas-based methods [33] use image  registration
o perform a spatial mapping between the actual data and an
natomical reference called an atlas. The atlas is prior knowl-
dge on the morphology of data, and it generally comprehends

 partition previously extracted by any other means (i.e. man-
al delineation, averaging large populations, etc.). Clustering
r classification algorithms [72,2,77,41] search for a pixel-wise
artition of the image  data into a certain number of categories
r clusters (i.e. WM,  GM,  and CSF). The partition can be hard
hen each pixel belongs to a single cluster or fuzzy, assigning

 probability of membership to each category, which yields a
o-called tissue probability map  (TPM) per class. These three
amilies of segmentation strategies have often been combined
o obtain enhanced results. For instance, deformable models
an be initialized using contours already located close to the
olution sought using atlases. In clustering methods, priors
sually take the form of precomputed TPMs derived from the
tlas. These prior probability maps can be used just to initial-
ze the model, or be integrated throughout the model fitting
rocess [6], simultaneously improving the atlas registration at
ach iteration. The use of priors presents two particular proper-
ies. On one hand, it generally aids the segmentation process
roviding great stability and robustness. However, it is also
uspected to bias results, driving the solution somewhat close
o the population features that underlie the atlas [22]. One fur-
her concern about the use of priors is posed by the need for

 spatial mapping of the atlas information to the actual data

11,5], typically performed through a registration process that

ay not be trivial or flawless [18]. The unpredictable morphol-
gy found in pathologic brains discourages the use of atlases
xtracted from healthy populations. Conversely, monospectral
b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94 77

and strictly data-driven approaches are usually very unreli-
able for pathologic subjects. For instance, a previous study
[59] updated a standard atlas with an approximation of tumor
locations for automated clustering-based segmentation. On
the other hand, multivariate approaches with outlier detec-
tion [73] have been proposed in the case of multiple sclerosis
derived lesions.

The tool proposed in this work, named MBIS (Multivariate
Bayesian Image  Segmentation tool), belongs to the sub-group
of Bayesian classification methods, which have been success-
fully applied to brain tissue segmentation for the last 20 years
[72]. Therefore, we will restrict the scope of this paper to
this sub-group of clustering methods. Given the maturity of
the field, numerous evaluation studies have been reported
[20,23,60], along with further refinements or extensions to
the original methodologies [82,74,6,28]. Existing applications
of brain tissue segmentation generally use MRI  as input data
as a safe, noninvasive, and highly precise modality. Early
applications typically selected T1-weighted (T1w) MPRAGE
sequences, mainly for their particularly appropriate contrast
between soft tissues, and for their wide availability. The
current clinical setup provides a large number of different
sequences that can be used to characterize each voxel of the
brain with a vector of intensities from each different MRI
scheme. In the last decade, we have witnessed an explosion
of the number of MRI  sequences widely available, enabling
the exploration of new observed features and requiring pow-
erful multivariate processing and analysis. Moreover, the vast
amount of multi-site data that research and clinical routines
produce daily, necessitates accurate and robust methods to
perform fully automated segmentation on heterogeneous (in
the sense of multi-centric and/or multi-scanner) data reliably.

In this paper, we contribute to the field with MBIS, an
open-source software suite to perform multivariate segmenta-
tion on heterogeneous data. We also present a comprehensive
evaluation framework, containing several validation experi-
ments on data from three publicly-available resources. The
first experiment demonstrates the accuracy of MBIS seg-
menting one synthetic dataset, in comparison to FAST (Fast
Automated Segmentation Tool [82]), a widely-used tool. The
second experiment demonstrates the repeatability of results,
reporting the disagreement between segmentations of two
multivariate images of the same subject. These images
correspond to 21 subjects who underwent a scan-rescan
session with the same MRI protocol acquired twice. The third
experiment proves the suitability of MBIS on large-scale seg-
mentation studies. We demonstrate the successful application
of MBIS on a multi-site resource of 584 subjects and observe
the aging effects over tissue volumes.

The manuscript is structured as follows: In Section 2,
after introducing the theoretical background, we  describe the
particular features of the method implemented by MBIS, high-
lighting its methodological novelties. In Section 3, we review
the existing software that can be used to perform brain tis-
sue segmentation, and compare it to MBIS. We also present
the design considerations that underlie this work, and we

describe the evaluation framework. In Section 4, we  describe
the specific details of each experiment, illustrating the useful-
ness of MBIS and reporting the results of evaluation. Finally,
we discuss in Section 5 the three experiments, and envision
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the unique opportunity that multivariate segmentation of the
latest MRI  sequences provides.

2.  Computational  methods  and  theory

2.1.  Background

Mixture models allow the expression of relatively complex
marginal distributions fitting the observed variables in terms
of more  tractable joint distributions over the expanded space
of observed and latent variables [10]. The latent variables
behave as simpler components used for building the inferred
distribution from the observed data. This general statistical
framework provides not only the possibility of modeling com-
plex distributions, but also enables data to be clustered, using
Bayes’ theorem. Given the generation and reconstruction pro-
cesses involved in brain MRI, it is accepted that these latent
variables (the tissue classes) are reasonably well modeled with
normal distributions [72]. Nonetheless, the existence of other
minor sources of tissue contrast and the non-normality of
several tissues under some conditions is widely accepted. For
instance, the CSF is usually modeled with more  than one nor-
mal  distribution [72,6] to overcome these drawbacks.

A second relevant assumption is that the multivariate
distributions associated with each expected cluster do not
significantly overlap. In the case of MRI  data, there are two
principal sources of overlap in the observed tissue distribu-
tion: the partial volume(PV) effect and the bias field. On one
hand, the so-called PV effect is remarkably related to tomo-
graphic biomedical imaging. Given that the images are defined
on a grid of volume elements (voxels), they enclose a finite
region. This region may contain a mixture of signals from sev-
eral tissues, producing an overlap between the tails of their
distributions that can make the problem intractable by means
of a mixture of multivariate Gaussian distributions (MMG). The
number of voxels affected by the PV effect within a typical MRI
volume is usually significant, and worse when the resolution is
low [14]. Previous studies have dealt with PV using non-normal
intensity distribution models for each tissue [62,56,68], model-
ing each cluster with more  than one normal distribution [6,20],
modeling the MRI  relaxation times at PV-affected voxels [25],
or using models with continuous latent variables [50].

On the other hand, most imaging datasets are affected
to some degree by a spatially smooth offset field (called bias
field). In MRI, this illumination artifact derives from the spa-
tial inhomogeneity of the magnetic field inside the scanner
during acquisition. Some retrospective techniques for tackling
the bias field have been proposed, either embedded within the
model [71] or as a preliminary process [70].

Finally, as MMGs  are very sensitive to noise. It is possible
to introduce piecewise smoothness including spatial informa-
tion in the described model, often implemented as a hidden
Markov random field (MRF).

2.2.  Distribution  model
2.2.1.  Mixture  of  multivariate  Gaussian  distributions
Let Y = {yi ∈ R

C} be a random variable that represents the
observed data. Therefore, the image  Y is a stack of C different
 b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94

MRI sequences, and i ∈ [1, . . .,  N] is the index of each voxel
in this image  of N voxels. Accordingly, segmentation aims
to obtain a certain realization of the latent random variable
X = {xi}. Thus, Y is segmented after finding the class identified
by lk in the set of K different clusters L = {l1, l2, . . .,  lK} that best
matches yi given the model. Finally, the MMG  model is defined
by two probabilities. The first is the estimated normal distribu-
tion of each cluster, N(yi | �k), with �k = {�k, ˙k} the parameters
(means vector and covariance matrix) corresponding to the
tissue identified by label lk. The second is the prior probability
of every voxel i belonging to cluster lk, represented by �k,i.

Using Bayes’ theorem and the multivariate normal distri-
bution as starting points, segmentation relies on iteratively
improving the fitness of the model to the data. To this end, pos-
terior density or responsibility maps can be computed to evaluate
the fitness [10] using the following expression:

�k,i = P(xi = lk|yi) = �k,i N(yi|�k)∑
j∈K

�j,i N(yi|�j)
, (1)

where �k,i is the posterior density of tissue class k at voxel i.
Equivalently, �k,i is the probability of detecting the class lk at i,
given that yi was observed and the current model defined by
{�k,i, �k}.

Once a stopping criterion has been met, the fuzzy segmen-
tation outcome is the set of TPMs corresponding to the last
�k,i estimated, and the hard segmentation X is obtained after
applying the MAP  rule:

x̃i = argmax
L
{�k,i} (2)

2.2.2.  Correction  for  bias  field
Let B = {bi ∈ R

C} be the unknown bias field, with C indepen-
dent components (one per input MRI sequence). It is a widely
accepted assumption to consider B a multiplicative smooth
function of the pixel position [76]. Thus, we  introduce this
new random variable on the definition of the observation
yi = ŷi · bT

i , where ŷi is the bias-free feature vector in i.
In order to extract ŷi, the observed variables yi are logarithm

transformed, so that B becomes an additive field. Thus, B can
be estimated by fitting a smooth function that minimizes the
error field E = {ei}:

ei = log ŷi − log
∑
k∈K

�k,i �k. (3)

In Section 2.3, we  shall discuss how to introduce the mini-
mization of E into the optimization routine for the estimation
of B.

2.2.3.  Regularization
Finally, spatial constraints are included within the model in
order to obtain a piece-wise smooth and plausible segmen-
tation. Typically, MMG methods are combined with the MRF
model to introduce such regularization. The origin of MRFs

theory is the Gibbs distribution [30], which has been compre-
hensively covered in the literature [49]. The spatial constraints
are induced in the model throughout the proportion factors
�k,i (1). Therefore, assuming an MRF model, �k,i now varies

dx.doi.org/10.1016/j.cmpb.2014.03.003


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94 79

Fig. 1 – Segmentation flowchart. EM-GC segmentation takes as inputs the blocks depicted in white background and
produces the blocks in brown background as outputs. Typically, the initialization can be performed supplying a file with the
p al in

d
t

�

w
i
V
a
d

V

2

T
m
a
p
E
m
p
t
(

2
E
t
t
s
r
t
b
p
t
e

arameters of the model, or prior TPMs from an atlas (option

epending on the tissues located at the neighboring sites of i,
he so-called clique Ni, with i /∈ Ni and i ∈ Nj ↔ j ∈ Ni

k,i ∝ e

(
Vi(xi=lk)+ �N

2

∑
j∈Ni

Vij(xi=lk,xj)

)
, (4)

here Vi(xi) is an external field that weights the relative
mportance of the different classes present in the image  and

ij(xi, xj) models the interactions between neighbors. Gener-
lly, Vi(xi) = 0 is set in order to use a simplified model. A typical
efinition of Vij(xi, xj) follows Pott’s model [82]:

ij(xi, xj) = ı(xi, xj) =
{

1, if xi = xj

0, otherwise.
(5)

.3.  Optimization

ypically, the most common optimization of the described
odel has been solved by the expectation–maximization (EM)

lgorithm. With the inclusion of the MRFs into the model, the
roblem turns out to be a combinational one, intractable with
M.  Therefore, a second solver is usually required for opti-
ization of the full model. A number of algorithms have been

roposed for this application [10], for instance iterative condi-
ional models (ICM), Monte-Carlo (MC) sampling, or graph-cuts
GC).

.3.1.  Expectation–maximization  algorithm
M iteratively seeks local solutions that are constantly closer
o the global one. For further details, we  refer the reader to a
heory book [10]. In Algorithm B.2, we  describe a modified ver-
ion including the bias model estimation. The EM algorithm
equires a good initialization of {�k,i, �k}, as it is likely to get
rapped in local minima. Typical initialization strategies can

e automated, as the k-means algorithm, or the application of
rior knowledge using TPMs from an atlas to estimate the ini-
ial parameters. In addition, manual initialization is possible,
xplicitly specifying the model parameters.
puts are represented with a dashed line connector).

2.3.2.  Graph-cuts  optimization
The standard optimization procedure is to approximate the
solution with the EM algorithm and then impose the MRF
implicit regularization, as depicted in Fig. 1. The problem is
stated so that we seek the labeling X that minimizes the fol-
lowing energy functional [13]:

�(X, Y) = �smooth(X) + �data(X, Y) (6)

where �smooth reflects the extent to which X is not piecewise
smooth, while �data measures the disagreement between X
and the observed data Y.

GC algorithms approximately minimize the energy �(X, Y)
for the arbitrary finite set of labels L under two fairly gen-
eral classes of interaction penalty Vij: metric and semi-metric
[13]. In the case of n = 2 this solution is exact, as opposed to
greedy algorithms like the widely used ICM. Weighted graphs
encoding all possible energy configurations are built as fol-
lows. The nodes of the graph are the two possible labels and
each voxel of the image  grid. All nodes corresponding to image
voxels are linked to the nodes of the labels, encoding on the
edge weight the membership likelihood. Edges between voxel
nodes encode the pair-wise interactions of the MRF system.
The minimum of the energy functional (6) concurs on the min-
imum cut of the graph. In graph theory, a cut is a partition of
the vertices of the graph in disjoint subsets. The size of a cut
depends on the number and weights of the edges removed.
Therefore, the minimum cut is that not larger than the size of
any other cut.

The binary case is extended to n-cluster classification with
iterative algorithms of very large binary moves  (a simultaneous
and large change of assigned labels in X). The basic underlying
concept is to find local minima sequentially at each iteration,

based on the allowed moves. Boycov et al. [13,46] proposed
two different algorithms to implement GC, called ˛-expansion
and ˛ˇ-swap. In Algorithm B.2 (Appendix B), we  describe ˛ˇ-
swap to illustrate how the iterative minimization works. Both

dx.doi.org/10.1016/j.cmpb.2014.03.003


m s i n
80  c o m p u t e r m e t h o d s a n d p r o g r a 

algorithms have been proven to be highly accurate and effi-
cient approximations of the global minimum for n-cluster
classification [12].

2.4.  Implemented  methods  and  contributions

MBIS implements the general MMG  model as described in Sec-
tion 2.2. We specify in this section the main contributions and
features implemented in MBIS. An overview of the principal
elements of the tool and the optimization strategy is presented
in Fig. 1.

2.4.1.  Initialization
Once the model has been fully defined (number of expected
pure tissues, number of normal distributions per tissue, num-
ber of special PV classes, and bias correction), MBIS allows for
several standard initialization approaches. One common and
fully-automated strategy is the use of the k-means algorithm,
which is the default option in MBIS when no other initializa-
tion is required. A second extended initialization strategy is
manually setting {�k}, assuming a uniform distribution for �k,i.
Finally, it is also common to use atlas priors when the spatial
mapping between the actual case and the atlas is known. Atlas
priors can be supplied to MBIS as a set of TPMs, one per nor-
mal  distribution. It is important to note that these priors are
no longer applied after initialization.

2.4.2.  Bias  correction
When bias correction is required, a new definition of likeli-
hood derived from (1) is applied. We estimate the bias field B
approximating the error measurement map  E obtained after
(3) with uniform B-splines. This solution is dual to N4ITK, the
non-parametric algorithm presented elsewhere [70]. Tustison
et al. analyzed the best B-spline parametrization for bias cor-
rection, and concluded that it is preferable to other models
based on linear combinations of polynomial or smooth basis
functions. Before the next iteration of the E-step (see Algo-
rithm B.1), data are corrected with the field vector bi at i before
the distribution parameters are calculated.

2.4.3.  Partial  volume  model
On the basis of previous findings [20], MBIS tackles the PV
effect by modeling pure tissues with in-class mixtures of nor-
mal  distributions, and by adding specific PV classes [56].
Appropriate transition penalties can be set consistently for
these classes, as in [20]. Instead of estimating the tissue con-
tributions to the PV classes within the model, we provide
a simplified procedure to achieve this aim a posteriori. The
methodology computes the Mahalanobis distance (7) of the
PV samples to the tentative pure tissues. Interpreting the pos-
terior probability as a volume fraction of the tissue within
the voxel, this volume is divided between the pure tissues
inversely proportional to the distance Dk (7) to the tissues. This
PV solving is applied to the experimental results presented in
Section 4
Dk(yi) =
√

(yi − �k)T˙−1
k

(yi − �k). (7)
 b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94

2.4.4.  Graph-cuts  optimization
MBIS implements GC optimization as in [13], wrapping
the maxflow library (http://vision.csd.uwo.ca/code/) in
ITK(the Insight Registration & Segmentation Toolkit,
http://www.itk.org) to solve the graphs. The weighting
parameter �N (4) must be adequately determined for sensible
regularization. In Section 4.1, we  describe the experiment con-
ducted to set �N empirically. The special PV classes are taken
into account specifying an appropriate transition model.
The transition model is a matrix where the interactions
between individual normal distributions are defined. These
energy interactions are defined by the Vij(xi, xj) presented
in Section 2.2. Generally, in an MRF  model including several
normals distributions per tissue (to account for PV effects),
transitions within pure tissue have lower penalties (inner
transitions) than transitions between pure tissues (outer
transitions). MBIS supports complex neighboring systems
(beyond the simplest Pott’s model (5)), distance weighted
energy interactions, and non-metric tissue transition models.

3.  Software  description

3.1.  Existing  software

Many fully automated brain tissue segmentation tools, based
on Bayesian classifiers, are readily available and widely used.
In Table 1, we  present a comparison among representative
existing tools, along with a brief summary of the unique fea-
tures of each. All the tools make use of the MMG  model with
MRF regularization. The tools listed in the table are FAST
[82], SPM (Statistical Parametric Mapping, The Wellcome Dept.
of Imaging Neuroscience, London, UK [6]) EMS  Expectation-
Maximization Segmentation [74], ATROPOS [9], NiftySeg [15],
Freesurfer [26], and the software proposed in the present study
(MBIS). The presented tools generally share a base design that
follows the flowchart in Fig. 1. It is important to note that
Freesurfer and SPM are not just segmentation utilities, but
fully automated pipelines for brain MRI processing and anal-
ysis that include brain tissue segmentation. SPM provides an
isolated interface (called segment) for the problem at hand, the
methodology of which is described elsewhere [6]. Conversely,
Freesurfer provides precise hard segmentations of the brain
in a large number of individual neuroanatomical regions [28],
which can be appropriately fused to the three-tissue problem.
The features presented in Table 1 regarding Freesurfer and
SPM refer only to their whole-brain segmentation processes.

The first feature to be compared is multivariate imple-
mentation. EMS, ATROPOS and NiftySeg fully support the
MMG model. SPM is currently integrating support for multi-
variate data, while FAST provides multichannel segmentation
that importantly differs from the univariate segmentation
methodology. Freesurfer only supports T1-weighted (T1w) MRI
as input for segmentation.

The model estimation is always performed with the EM
algorithm, possibly with some improvements. For instance,

EMS implements a robust estimator and PV constraints.
Therefore, this property has been omitted in Table 1. The main
differences are found in the MRF  energy minimization prob-
lem, ICM being the most used methodology. EMS  implements

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Table 1 – Brain tissue segmentation tools.

FAST SPM EMS ATROPOS NiftySeg Freesurfer MBIS

Multivariate Partial Partiala Full Full Full No Full
Optimization ICM ICM MC ICM Unknown ICM GC
Bias model Polynomial DCT Polynomial Noc Unknown Noc B-spline
Atlas usage Available Intensive Available Available Intensive Intensive Available
License GPL GPL BSD-like BSD BSD Freeware GPL
Platform Unix Matlab SPM8 Anyb Anyb Unix Anyb

Reference [82] [6] [74] [9] [15] [28]

a Work in progress.
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b Any platform supported by the CMake building system.
c The tool does not integrate a bias model, but it is released along wi

onte-Carlo (MC) sampling, which is more  reliable than ICM
ut computationally expensive. MBIS is the first tool among
he surveyed software packages to include GC optimization,
or which a great trade-off between efficiency and correctness
as been proven.

Another important feature is the bias field correction,
enerally solved by approximation of linear combinations of
mooth basis functions. FAST and EMS  use polynomial least-
quares fitting, SPM uses the discrete cosine transform (DCT)
ith Levenberg-Marquardt (LM) optimization, and MBIS uses
-splines basis. Unfortunately, there was no information avail-
ble about the bias model implemented in NiftySeg at the time
f writing. Two of the surveyed tools do not internally inte-
rate a bias model: Freesurfer provides a pipeline including a
revious correction utility, and ATROPOS advises the prior use
4ITK [70].

The next point of comparison is the use of atlases to ini-
ialize the algorithm and/or to aid the estimation of model
arameters. All the tools can initialize segmentation using
rior atlas information. Those tools that also use priors
hroughout the model fitting are denoted with “intensive”
tlas use in Table 1.

In terms of software availability, for all the tools the source
ode is publicly released and the software is distributed under
pen-source licenses. With respect to their installation, a
umber of them (FAST, SPM and EMS) are platform-dependent,
hereas the others are multi-platform using the CMake build-

ng tool (http://www.cmake.org).

.2.  Design  considerations

iven the described context of existing software, we aimed to
esign a multivariate segmentation tool, which is flexible, easy
o use, comprehensive, and would also include a GC solver and

 B-spline bias field model. As a result we designed MBIS, an
pen-source and cross-platform software that supports mul-
ivariate data by design and that integrates all the methods
escribed in Section 2.4. Segmentation provided with MBIS is
eneral purpose. In this study, MBIS is specifically adapted to
he 3D brain tissue segmentation problem. In order to facili-
ate contributions by third-party developers, the code follows
he standards of ITK, and some interfaces have been defined

o integrate new code, preserving the software modularity.

We also promote reproducible research, a concept that is
rawing increasing interest in parallel to the proliferation
f computational solutions for image  processing problems.
 external tool for correction.

Following the definition of Vandewalle et al. [75], we  release
here an open-source bundle with evaluation experiments
based on open data to help the community replicate and test
our work [80,39].

In order to evaluate MBIS comprehensively, we define three
validation targets. Consistently with the design consider-
ations mentioned above, we  test the performance of MBIS with
three different open data resources containing multivariate
and multi-site data. Full details of these databases are pro-
vided in Table A.1 (Appendix (A), describing the MRI  sequences
involved and their specific parameters. Finally, we  address
these targets in three different experiments (the results are
presented in Section 4).

The first experiment evaluates the accuracy of segmenta-
tion, with comparison to FAST, using one simulated dataset.
The evaluation framework includes tests to calibrate the best
parameters for the tool, benchmarks of the bias field estima-
tion, and studies the impact of spatial misalignment between
channels. The second experiment evaluates the reproducibil-
ity of results, in similar settings to a recent validation study
[23]. Unfortunately, the database used by De Boer et al. is not
publicly available. Hence, the resulting figures are not directly
comparable to their work as we used different data. On one
hand, we  studied the repeatability of the segmentation by ana-
lyzing the differences in tissue volumes. On the other hand,
the overlap indices described in Section 3.3 were evaluated.
The third section of the evaluation framework is an exemplary
pipeline of tissue volume analysis in large-scale databases.
We illustrated the use of MBIS on such applications, segment-
ing multivariate MRI datasets from 584 healthy subjects, and
correlating tissue volumes with age.

3.3.  Evaluation  framework

The evaluation framework is built using nipype (Neuroimaging
in Python, Pipelines, and Interfaces [32]), in order to facilitate
the fulfillment of the requirements of reproducible research.
The evaluation includes a nipype Interface to MBIS, three
nipype Workflows to implement the experiments described in
Section 3.2 and a set of scripts in Python to automate the exe-
cution of the workflows and presentation of results (figures

and tables included in this paper). To assess and compare
results appropriately in terms of accuracy and robustness [3],
we evaluate two families of indicators: volume agreements
and overlap indices.

dx.doi.org/10.1016/j.cmpb.2014.03.003
http://www.cmake.org


m s i n
82  c o m p u t e r m e t h o d s a n d p r o g r a 

3.3.1.  Volume  agreement
Volume agreement between the segmentation found and the
ground-truth, or between segmentations of corresponding
time points, is a commonly used benchmark. Volumes of the
identified tissues are directly related to the total size of the
brain. Therefore, we  provide here the “intra-cranial volume
ICV fraction” of each tissue as the ratio of the measured vol-
ume  over the total volume of the whole-brain.

3.3.2.  Overlap  indices
Overlap is a widely used indicator to assess segmentation
results with respect to a ground-truth [19]. We  use a fuzzy
similarity index (fSI) derived from the fuzzy Jaccard’s index
(JI) [19], as in Eq. (8). This fuzzy index definition takes the
resulting TPMs as inputs, and naturally extends the binary
definition. We  refer to the binary index as the similarity index
(SI), when computed on hard segmentations. Generally, the
definition of JI tends to favor classes with greater volume
when computing the average overlap of several classes. Thus,
results reporting averages of overlap indices are compensated
for tissue volume in this paper. Additional indices are also
provided: true-positive fraction (TPF) that acts as a measure
of sensitivity (9); extra fraction (EF)  that expresses the over-
segmentation (10); and overlap conformity measurement (OC),
which is reported as an alternative to the SI (11).

fSI, SI = 2 JI

1 + JI
, (8)

TPF = TP

TP + FN
, (9)

EF = FP

TP + FN
, (10)

OC = 1 − FP + FN

TP
, (11)
where TP stands for true positives, FP for false positives, and
FN for false negatives. We did not extend these measures to the
probabilistic results, so they are only used for the assessment
of the hard segmentations.

Bias 0% Bias 20

Fig. 2 – Parameter calibration. Fine tuning of the parameter �N (4
estimation and filled lines correspond to the evaluation with bia
�N ranges [0.55–0.65].
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4.  Evaluation  experiments  and  results

4.1.  Accuracy  assessment  and  bias  field  correction

4.1.1.  Data
The first experiment demonstrated the accuracy of MBIS, and
it was conducted over the only multivariate dataset included
in the BrainWeb Simulated Brain Database [16]. The details of this
dataset can found in Table A.1. It provides T1w, T2-weighted
(T2w) and proton-density-weighted (PDw) realistic MRI, sim-
ulated for only one “normal” model presenting a healthy
anatomy. We  generated the ground-truth taking the TPMs cor-
responding to soft tissues from the BrainWeb (i.e. CSF, GM,  glial
matter, and WM). As glial matter and GM are almost indistin-
guishable (in terms of intensity) for the three MRI  (T1w, T2w
and PDw), we merged their corresponding TPMs in order to
produce a three-class (CSF, GM,  and WM)  distribution model.
The resulting three TPMs were normalized to sum up to 1.0
at every voxel. Using the MAP criterion (2), we  generated the
ground-truth labeling (presented in the first row of Fig. 3). As
it is shown in the same figure, the combination of the three
TPMs yields a brain mask that was used for brain extraction.

4.1.2.  Parameter  �N setting
We characterized the parameter �N (4), to set an appropriate
default value. We  used the BrainWeb dataset with a noise fac-
tor of 5% and the three available inhomogeneity fields (called
0%, 20% and 40% with increasing strength of intensity non-
uniformity field).

From the results shown in Fig. 2, two conclusions can
be drawn. First, �N = [0.55–0.65] is consistently the optimum
value; and second, the bias estimation does not effectively
improve the segmentation results. As the channels have inde-
pendent inhomogeneity patterns, the model is less prone to
this confounding effect, allowing more  flexible MMG  models

without losing sensitivity. This conclusion is confirmed later,
on the visual assessment of the estimated bias field maps.
Once �N was set, we explored different PV models to segment
the dataset.

% Bias 40%

). Dashed lines represent the evaluation without bias
s estimation. The figure shows that the optimum value for

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Table 2 – Quantitative results of the accuracy
assessment. Overlap measured using the different
indices proposed in Section 3.3. Boldface font highlights
the best score for both tools at each overlap index. Row
labeled as “Brain” represents the volume-corrected
average of the three detected clusters (CSF, GM,  WM).
Columns contain the different indices evaluated (see
Section 3.3): fuzzy similarity index (fSI), similarity index
(SI), true-positive fraction (TPF), extra fraction (EF), and
overlap conformity measurement (OC).

fSI SI TPF EF OC

Brain
FAST 0.846 0.874 0.907 0.163 0.710
MBIS 0.912 0.940 0.955 0.079 0.871

CSF
FAST 0.863 0.889 0.993 0.241 0.750
MBIS 0.900 0.923 0.997 0.163 0.834
FAST 0.807 0.845 0.741 0.014 0.632

F
a
h
r
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.1.3.  Results
he performance test on the synthetic ground-truth was
arried out on the three available relaxation-time-weighted
equences (T1w, T2w, and PDw), with 5% noise and 20% bias
eld. We  configured MBIS for fully automatic initialization

k-means) and �N = 0.6. Additionally, FAST was also used to
erform the segmentation using its multichannel mode and
efault settings. After evaluating numerous configurations,
e achieved acceptable results from FAST with a four-class
odel as suggested elsewhere [35]. We  merged the TPM of the

ourth class into the one corresponding to CSF. This ad hoc
ecision was taken after ensuring that the accuracy figures
ere the best we  could reach using FAST. The quantitative

esults shown in Table 2 indicate a better overall performance
row labeled as “Brain”) of MBIS for all the evaluated indices.
Qualitative evaluation using visual assessment and error
aps is also reported. Fig. 3 presents representative views

f the error maps obtained with the tools under comparison,
ighlighting regions with remarkable differences.

GM
MBIS 0.904 0.939 0.923 0.043 0.871

WM
FAST 0.868 0.888 0.987 0.236 0.749
MBIS 0.931 0.956 0.945 0.032 0.908

ig. 3 – Visual assessment of the hard-segmentation results. The ground-truth is presented on the left column. Error maps
re presented for MBIS and FAST (red color represents misclassified pixels). Rather than the obvious differences, we
ighlighted some more  subtle examples. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Fig. 4 – Visual assessment of the fuzzy-segmentation results. First row shows the TPMs of the ground-truth (from left to
right: CSF, GM,  WM).  Second and third rows present the corresponding TPMs obtained with MBIS and FAST, respectively.

TPM
end
The extra column represents the mean squared error of the 

(For interpretation of the references to color in this figure leg

Regarding the fuzzy outcome, Fig. 4 presents the TPMs
obtained with MBIS and FAST, compared with the original
ones. An error map  for each tool under testing is also pre-
sented, computed as the voxel-wise mean squared difference
between the three original maps and the three maps obtained
after segmentation.

4.1.4.  Bias  field  estimation
We  conclude the accuracy assessment by studying the per-
formance on estimating the bias field. Fig. 5 presents a
comparison of the results. The first row shows the bias field
contained by the simulated data from BrainWeb, for the T1w
MRI. The corresponding realizations of bias field for the T2w
and PDw images are also available. The second and third rows
present the corresponding estimations obtained with MBIS
and FAST. Visual assessment is straightforward, as FAST did
not perform a valid estimation of the bias field. Similar results

were obtained for the bias field that affected the T2w and
PDw images. Even though FAST obtained inadequate estima-
tions, segmentation did not lose sensitivity dramatically (see
Table 2), confirming that multivariate data are very robust
s, normalized by the maximum squared error of both maps.
, the reader is referred to the web version of this article.)

against the different realizations of bias field on each channel,
as they are independent.

4.1.5.  Intra-scan  registration
The misregistration between the different contrasts stacked
as a multivariate image  is a prominent drawback that hinders
multivariate segmentation. We  present in Fig. 6 the character-
ization of the impact of small misalignments between image
channels. More precisely, we translated T2w and PDw images
from their ground-truth location and conducted multivariate
segmentation with MBIS. Segmentation results were assessed
using the fSI index, and they were proven to be quite sensitive
to the registration error introduced artificially. Given that we
restricted the analysis only to 3D translations along the Y-axis,
a very important impact should be expected from other mis-
alignments (as rotations, linear transforms of a higher degree,
or nonlinear deformations).

4.2.  Reproducibility  evaluation
4.2.1.  Data
The Multi-modal MRI Reproducibility Resource (also called the
Kirby21 database) [48] consists of scan-rescan imaging sessions

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Fig. 5 – Comparison of bias estimation. Normalized magnitudes of the reference (first row) and estimated field maps are
presented (second row is MBIS, third is FAST), for the T1w channel.
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n 21 healthy volunteers with no history of neurological dis-
ase. The database includes a wide range of MRI sequences,
rom which we  selected T1w, T2w and magnetization trans-
er imaging (MT) for segmentation. The complete database is
ublicly available online, and details of the MRI sequences and
ther information can be found in Table A.1.

.2.2.  Image  preprocessing
irst, all datasets were corrected for inhomogeneity artifacts

sing N4ITK [70] as it was necessary to obtain acceptable
rain extraction using BET(Brain Extraction Tool [64]). More-
ver, the use of corrected images as input enabled testing the
ully automated initialization included in MBIS, avoiding the
use of atlas information. T1w images were then enhanced,
replacing intensity values above the 85th percentile with the
local median value. This filtering removed the typical tail
present in the intensity distribution of brain-extracted T1w
images, corresponding to spurious regions remaining after
skull-stripping. The second step, after this initial preparation,
consisted of correctly aligning the different modalities with
respect to the reference T1w image.  We used ANTS (Advanced
Normalization Tools [8]) to register rigidly the T2w and MT

images to the space of the T1w. We visually validated the intra-
scan registration of each dataset, as it was proven to be an
important source of error hindering repeatability in a previous
experiment (Section 4.1).

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Fig. 6 – Intra-subject registration error. Influence of different
combinations of translations between the channels. The
figure represents the fuzzy similarity index (fSI) (defined in

the Kirby21 database presented rather low quality, especially
Section 3.3) versus the absolute displacement.

4.2.3.  Segmentation
We  then used MBIS and FAST to segment the available datasets
(a total of 42 datasets from 21 subjects scanned twice), using as
input several variations of the three available MRI sequences
(i.e. T1w, T2w, and MT). We do not present a comparison of the
repeatability with FAST as most of the resulting segmentations

from it were not visually acceptable. Even when the results
were visually acceptable, they were not repeatable because
of the well-known identifiability problem [10]. This problem

Table 3 – Quantitative results for overlap repeatability experime
results presented in Fig. 7(b), and they are computed with the h
tissue evaluated, labeling as “Brain” the weighted average of th
sequences that were  stacked as multivariate input (e.g. “T1w-M
drawn from the T1w image as first component and from the M
different indices evaluated (see Section 3.3): similarity index (S
overlap conformity measurement (OC).

SI 

Brain

T1w 0.834 ± 0.011 

T1w-T2w 0.851 ± 0.031 

T1w-MT 0.840 ± 0.034 

T1w-T2w-MT 0.847 ± 0.036 

CSF

T1w 0.800 ± 0.016 

T1w-T2w 0.754 ± 0.042 

T1w-MT 0.746 ± 0.047 

T1w-T2w-MT 0.739 ± 0.064 

GM

T1w 0.771 ± 0.018 

T1w-T2w 0.861 ± 0.051 

T1w-MT 0.835 ± 0.057 

T1w-T2w-MT 0.856 ± 0.055 

WM

T1w 0.932 ± 0.006 

T1w-T2w 0.937 ± 0.010 

T1w-MT 0.939 ± 0.011 

T1w-T2w-MT 0.946 ± 0.007 
 b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94

occurs when a class is correctly detected, but assigned to a
different class-identifier, which makes the automatic com-
putation of the evaluation indices impossible. We  performed
segmentation using MBIS with four different combinations of
sequences: T1w alone, T1w-T2w, T1w-MT, and T1w-T2w-MT.
The first evaluation considering only the T1w channel is the
standard methodology and reference. All segmentation trials
used a five-class model, where four represented pure tissues
(two for CSF and one each for GM and WM).  The remaining
class fitted the partial volume existing between CSF and GM.
We post-processed the MBIS results to obtain the probability
maps corresponding to three-class clustering, as described in
Section 2.4.

4.2.4.  Results
The first experiment consisted of measuring the volume
change of each tissue (�VCSF,�VGM,�VWM) between the two
time points available for each subject (Fig. 7(a)). Bivariate
approaches (T1w-T2w and T1w-MT) decreased the volume
agreement variance, thus providing a more  robust outcome
than using T1w alone. For the segmentation with three MRI
components, results were in the same range as for T1w
alone, but presented greater variance. However, median tis-
sue increments were closer to zero than the monospectral
segmentation medians. The increased variance of results and
the appearance of some additional outliers when segmenting
in multichannel mode may be explained by two factors: (a)
the low quality of some datasets, where motion and gradient
amplifier failure artifacts were present and (b) the misregistra-
tion of data between channels. On one hand, some datasets on
some of the T2w images. On the other hand, even though we
visually validated intra-scan registration performance, some
datasets were imperfectly aligned.

nt. All these measurements are complementary to the
ard segmentation results. First column indicates the
e other three. Second column specifies the MRI
T” means that the input feature vector contains samples

T  image for the second). Remaining columns contain the
I), true-positive fraction (TPF), extra fraction (EF), and

TPF FE OC

0.852 ± 0.010 0.192 ± 0.016 0.586 ± 0.036
0.883 ± 0.029 0.207 ± 0.051 0.624 ± 0.102
0.873 ± 0.032 0.221 ± 0.061 0.590 ± 0.115
0.877 ± 0.037 0.203 ± 0.044 0.602 ± 0.134

0.851 ± 0.016 0.277 ± 0.040 0.499 ± 0.052
0.863 ± 0.050 0.434 ± 0.168 0.339 ± 0.161
0.858 ± 0.075 0.452 ± 0.207 0.307 ± 0.183
0.814 ± 0.091 0.388 ± 0.117 0.269 ± 0.279

0.773 ± 0.024 0.233 ± 0.033 0.404 ± 0.062
0.853 ± 0.070 0.128 ± 0.064 0.668 ± 0.150
0.830 ± 0.080 0.159 ± 0.105 0.593 ± 0.168
0.867 ± 0.052 0.161 ± 0.087 0.652 ± 0.159

0.931 ± 0.012 0.066 ± 0.012 0.854 ± 0.014
0.932 ± 0.024 0.058 ± 0.017 0.865 ± 0.024
0.932 ± 0.030 0.053 ± 0.017 0.869 ± 0.025
0.952 ± 0.014 0.061 ± 0.025 0.885 ± 0.016

dx.doi.org/10.1016/j.cmpb.2014.03.003
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(a) Volume agreement.

(b) Fuzzy Similarity Index.

Fig. 7 – Repeatability experiment. Above each subplot, the MRI  sequences that were  stacked to conduct each segmentation
are indicated in the title. For instance, “T1” stands for T1w alone, “T1-T2” stands for T1w and T2w, and so forth. Inside the
plots, the median value of each box is on top in the color of the corresponding tissue.
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The second evaluation consisted of estimating the indices
escribed in Section 3.3, after performing the segmentation

ndependently over all of the two scan sessions and the four
ariations of multivariate inputs. In order to measure the
verlap between segmentations of the two scan sessions, an
inter-scan” alignment was performed by registering the T1w
mage of the second scan to the first one with FLIRT (FMRIB’s
inear Image  Registration Tool [40]). The transform was used
o resample the segmentation of the second scan input set in
he space of the corresponding first scan.
A summary of the indices evaluated over the hard segmen-
ations is shown in Table 3. For the fSI (8) counterpart, visual
lots are presented in Fig. 7(b). The results are consistent with
he conclusion drawn from the previous experiment, that is, a
slight advantage of two-channel segmentation over classical
monospectral and three-channel segmentations. Specifically,
the combination of T1w with MT showed better results than
the remaining choices (despite a few outliers). This con-
clusion is supported by recent work studying how MT can
improve brain tissue segmentation with respect to using T1w
alone [36].

4.3.  Suitability  for  large-scale  studies
4.3.1.  Data
The IXI dataset [37] is a publicly available database contain-
ing nearly 600 MRI scans of healthy subjects. The acquisition
protocol for each subject includes T1w, T2w and PDw  images

dx.doi.org/10.1016/j.cmpb.2014.03.003
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and some other modalities, which we  did not consider in our
current study. Additional information about this database can
be found in Table A.1. From this resource, we  discarded those
subjects for whom information on their age was not available
in the demographic spreadsheet distributed along with the IXI
dataset. After this reduction, a total cohort of 585 was selected
for the experiment, which consisted of measurements of tis-
sue volumes for all individuals to illustrate volume change
with respect to the subjects’ age (see Fig. 8).

4.3.2.  Image  preprocessing
We  focused again on providing a standard processing pipeline,
reusing part of the workflow defined for the previous experi-
ment. Firstly, we  corrected for bias with the same procedure.
We accomplished the skull-stripping task on the T1w image
combining the results obtained with BET and Freesurfer
(mri watershed) for better precision. T1w images were also
enhanced as in the previous experiment. Finally, intra-subject
registrations of T2w and PDw to the reference (T1w) were per-
formed using FLIRT.

4.3.3.  Results
We  computed the ICV fraction as defined in Section 3.3 from
segmented data and present results in scatter plots with
respect to the subjects’ age corresponding to each dataset (see
Fig. 8). Among the 585 subjects, segmentation failed in one
case, and thus it was removed from the computation of the lin-
ear regression. Our results were perfectly aligned with those
published previously [66,1,55,31,29]. In summary, we  captured
the linear increase of CSF volume and the natural loss of GM
through aging. In addition, we  perceive a more  “quadratic”
behavior of the WM fraction: slightly increasing until an age of
approximately 45 years and decreasing thereafter. As we  stud-
ied relative ICV fractions, this late decrease effect on WM does
not imply necessarily a reduction of its absolute tissue volume.
In this regard, we  recall that the aim of this third study was not
to show the proven relationship between tissue volume and
subject age. We instead demonstrated the aptness of exploi-
ting all of the available data with the multivariate approach as
a useful improvement of the existing methodologies. There-
fore, we propose MBIS as an appropriate tool for this kind of
study among others.

5.  Discussion

We  here present MBIS, a segmentation tool particularly
designed for multivariate data, and based on the Bayesian
framework. MBIS includes as main methodological novelties
a new approach to bias correction and the MRF model opti-
mization using GC. After reviewing the theoretical background
and implementation details, we reported an study evaluating
the accuracy, with comparison to a widely used similar tool
(FAST). Finally, we  demonstrated the robustness of MBIS on
two publicly available multivariate databases.
5.1.  Accuracy  performance

Both visual (Figs. 3 and 4) and quantitative (Table 2) results
showed the accuracy of the tool. We recall that this claim
 b i o m e d i c i n e 1 1 5 ( 2 0 1 4 ) 76–94

was restricted to only one model from a synthetic brain
database. Many studies [20,23,6,45] that evaluated the accu-
racy of monospectral segmentation methods on T1w MRI  have
been reported. In general, these studies used the 20 nor-
mal  models from the BrainWeb [7], evaluation tools [63], or
a number of manually segmented studies as ground-truth.
Nonetheless, the BrainWeb database only provides multivari-
ate datasets for one single model, manual segmentation is
unaffordable in multivariate data, and to our knowledge, there
are no other evaluation resources of multivariate images.
Thus, there is an important lack of realistic ground-truth
data to test multivariate segmentation of the brain. Addition-
ally, quantitative assessment of accuracy can be discredited
in two ways. First, synthetic models may not capture the
unpredictable complexity of the real data supplied by a
healthy or diseased human brain (i.e. foldings, MRI  con-
trast properties). Second, manual segmentation of real data
taken as gold-standard is unaffordable, or at least, prone
to inaccuracy and inconsistency that are intrinsic to the
methodology itself and the effort-demanding nature of man-
ual segmentation. Therefore, evaluation experiments based
on this scheme are illustrative but not definitive. As an infor-
mal  corollary, we claim that once the segmentation accuracy
has been assessed, it is equally or even more  important
to explore the challenging issue of repeatability of results.
The reproducibility problem has become a main focus of
interest [47,23] in every medical imaging study because its
absence has more  negative consequences than inaccuracy
itself.

Besides the segmentation results, we presented a new
application of a B-spline model for the bias estimation. Built
upon two existing methods, we  combined the original bias
estimation methodology described previously [71] with the
bias field model proposed in another study [70]. The B-spline
model of Tustison et al. has been proven to behave accurately
without a heavy computational cost, and it was naturally
embedded within the EM algorithm, as described in Sec-
tion 2.3. Visual assessment of results was documented. Our
methodology improved the bias estimated with respect to
FAST for all the channels. Moreover, multivariate segmenta-
tion performed robustly against the bias field. This is justified
because the image  channels share a unique distribution model
that is used to estimate the bias more  effectively, regardless
of the modality of the channel. Even though we  observed that
the bias correction can have a slightly negative impact on final
segmentation, we  concluded that the explicit modeling of the
bias field is interesting as a multichannel bias field estimation
technique itself. Most of bias correction methodologies (e.g.
[70]) have been well tested on T1w images, but their behav-
ior has not been studied in depth with other MRI  sequences.
In addition, they do not exploit the advantages of the under-
lying distribution model shared among pulse sequences. The
fine tuning of the bias estimation strategy included in MBIS,
and the demonstration of its expedience for the bias correc-
tion of multivariate images is a promising line for forthcoming
research.
The robustness against bias field inhomogeneity exhibited
by the multivariate segmentation technique was an illustra-
tive example for promoting the use of multivariate approaches
in neuroimaging.

dx.doi.org/10.1016/j.cmpb.2014.03.003
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Fig. 8 – Volumetry study upon IXI dataset. Results for 584 of 585 subjects are presented, along with the correspondent
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egression lines. intra-cranial volume ICV fraction quantifies
efined in Section 3.3.

.2.  Repeatability  analysis

e  tested the robustness of the presented tool against the
ariabilities that are intrinsic, mainly, to the acquisition. We
sed the Kirby21 database, consisting of 21 scan-rescan ses-
ions on 21 healthy subjects with a multivariate protocol. We
ttempted a number of combinations of the most suitable
odalities (T1w, T2w and MT)  for our experiment. The results

ighlighted three important limitations in the experiments:
1) the quality of the image  channels affects the sensitivity
nd robustness achieved in the experiment. (2) Registration
etween observed variables ideally needs to be perfect. We
riefly studied this drawback within the first experiment and
resent the impact in Fig. 6. Despite this deteriorating event,
he results remained satisfactory. (3) The measured incre-

ents of intra-cranial volume (ICV) fractions strongly relied
n the brain mask obtained with the brain extraction tool.
mportant differences in the volume of this mask biased the
uantitative results. Less impact should be expected in the
omparison between modality combinations.

The intention was to replicate the robustness analyses
roposed elsewhere [23]. However, one of our design consid-
rations was to present results on publicly available data. As
e use a different database, the results presented in this work
re not directly comparable to this previous study.

.3.  Aptness  of  MBIS  in  large-scale  studies

e  performed a large-scale study with 585 cases, from a freely
vailable database. This experiment showed the expedience of
BIS for the robust segmentation of large volumes of data,

roducing sound results. Of note, our experiment was not
ntended to contribute to the field of study of brain aging,
ut we proved that MBIS can be used for this purpose in a

arge-scale study with multivariate data (i.e. [38]). Further work
ay prove that this multivariate approach is better than tradi-

ional T1w-based analysis, but in this case, we were restricted
y the public availability of datasets. As addressed in Sec-
ion 5.4 below, this paper is intended to open the discussion
f the potential benefits of multivariate analysis. By select-
ng the appropriate MR  contrasts, and developing new models
or the selected multivariate distributions, the results of this
ast experiment should significantly outperform the classical

onospectral approach.
ue volume with respect to the whole-brain volume, as

5.4.  Potential  of  multivariate  segmentation

Besides the free availability of the presented tool and its evalu-
ation, the most interesting result was the potential robustness
suggested by multivariate segmentation. There are still some
challenging issues in brain tissue segmentation, for exam-
ple the need for precise delineation of deep GM structures.
Some efforts have been devoted to deep brain nuclei segmen-
tation [58,69], but this application was beyond the scope of this
work, given that, in general, brain tissue segmentation is not
aimed at identifying the nuclei. Some studies more  aligned
with MBIS foundations proposed new acquisition sequences
[53,78] or the use of some other existing ones [36] to overcome
this issue. Many of these sequences are acquired implicitly
registered with other modalities, while some are inherently
multichannel, which necessitates fully supportive multivari-
ate segmentation. Consequently, the results presented in this
paper using well-established modalities could be improved by
those obtained with the aforementioned emerging modalities
and multivariate sequences.

The robustness issued by priors in atlas-based methods can
be achieved with multivariate segmentation without atlases,
overcoming the drawbacks of monospectral data-driven
methods. As mentioned in Section 1, atlas-free Bayesian
segmentation methods can be directly applied in the clin-
ical assessment of several global pathologies (e.g. atrophy,
degeneration, enlarged ventricles) without modifications. In
focal conditions (e.g. tumors, multiple sclerosis, white matter
lesions), the main requirement is the adaptation of the model
used in normal subjects to the pathology, or including out-
lier rejection schemes [73]. In this context, MBIS is certainly a
potentially useful tool, given its availability and its flexibility
for the necessary adaptations.

6.  Conclusion

This work presented new and flexible segmentation software
that is intended as the basis for a large statistical clustering
suite for biomedical imaging. To this end, a first version of the
MBIS tool has been made publicly available, providing clini-

cal researchers with a complete and functional software tool
and a complementary testing framework which includes the
presented experiments. We  also presented MBIS to encour-
age multivariate analysis of data, as an emerging set of

dx.doi.org/10.1016/j.cmpb.2014.03.003
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methodologies that should eventually improve the repeat-
ability of segmentation procedures. Complexity sources on
multivariate statistical clustering are plentiful, with numer-
ous alternatives, such as the mixture model selection, the MRF
model optimization, the bias field estimation and correction,
and the use of atlases. The presented first release of MBIS
supports n-class segmentation using the EM algorithm, with
a novel bias modeling approach, and MRF  model regulariza-
tion solved with GC optimization. We evaluated the accuracy
and robustness of MBIS to demonstrate its usefulness. Finally,
we understand that MBIS will be useful for both computer
vision as well as clinical communities; we  also hope that it
will eventually encourage investigators to enhance further the
capabilities of this publicly available research tool.

Information  sharing  statement

Mode  of  availability

MBIS source code is publicly available at
https://github.com/oesteban/MBIS. Data used in this work are
found in the mentioned databases.

Requirements  and  specifications

The software uses the CMake build system
(http://www.cmake.org), enabling compilation for all the
platforms supported. MBIS requires the following libraries:
C++ and C++ Standard Library, Boost Program Options,
Filesystem and System Libraries http://www.boost.org
ITK-4.2 http://www.itk.org/Wiki/ITK/Git/Download,
maxflow-3.0.2 (only for research pur-
poses, http://pub.ist.ac.at/∼vnk/software.
html), or maxflow-2.2.1 (GPL license, http://pub.ist.ac.at/∼vnk/
software/maxflow-v2.21.src.tar.gz). The evaluation frame-
work has the following dependencies: Python 2.7 (http://www.
python.org/), nibabel (http://nipy.sourceforge.net/nibabel/),
numpy (http://numpy.scipy.org/), nipype (http://nipy.
sourceforge.net/nipype/index.html), matplotlib (http://
matplotlib.sourceforge.net/), and PyPR (http://pypr.
sourceforge.net/).

License

This software is released under the GNU General Public
License (GPL) version 3 (http://www.gnu.org/licenses/). A copy
of the GPL is distributed along with MBIS.
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Appendix  A.  Data  employed  in  this  study  are
summarized  in  Table  2

Appendix  B.  Optimization  algorithms

Algorithm B.1. The EM algorithm

Initialization.  Choose the best initialization for the model,{
�k,i, �k

}(t=0)
.

1.Expectation step. Compute the posterior densities �
(t)
k,i

(1).

2.Bias correction.  Estimate E as in (3) and perform the
approximation of the smooth function, obtaining B.
Finally, set y(t)

i
= y(t−1)

i
− b(t)

i
, to correct data for the last

estimation of bias.
3.Maximization step. Estimate new parameters for the

model, using the following update equations:
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k
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Nk

∑
∀i

�
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k,i

yi ,

˙
(t)
k
= 1
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) (yi − �
(t)
k

)
T

with Nk =
∑
∀i∈S

�
(t−1)
k,i

.

Repeat steps 1–3 until convergence.

Algorithm B.2. ˛ˇ-Swap algorithm, as proposed by [13]

Require: Arbitrary initial labeling X
1: success ← false
2: while success /= true do
3: for all pair of labels {˛, ˇ}do
4: Find X̂ = argmin

{
E(X′)

}
among X′ within one

 ̨−  ̌ swap of X
5: if E(X̂) < E(X) then
6: X ← X̂

7:  else
8: success ← true
9: end if
10: end for
11: end while
12: return f
Given a label ˛, an ˛-expansion move is a change of a number of image
pixels from any original label to ˛. Equivalently, given a pair of labels ˛,
ˇ, an ˛ˇ-swap is a move where a number of pixels with label  ̨ change
to  ̌ and a number of pixels previously labeled  ̌ change to ˛.
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Table A.1 – Datasets. Data resources used in this work.

Database Cohort Seq. MR parameters

Brainweba 1 dataset

T1w  Spoiled FLASH sequence,
TR/TE=22/9.2 ms, FA (flip
angle) = 30◦, 181 × 217 × 181 matrix
size, 1 mm isotropic voxel size.

T2w Dual echo spin echo (DSE), late
echo sequence, TR = 3300 ms,
TEs = 35, 120 ms, FA = 90◦,
181 × 217 × 181 matrix size, 1mm
isotropic voxel size.

PDw Dual echo spin echo (DSE), early
echo sequence, TR = 3300 ms,
TEs = 35, 120 ms, FA = 90◦,
181 × 217 × 181 matrix size, 1mm
isotropic voxel size.

Kirby 21b 21 healthy volunteers
(11M/10F, 22–61 yr.)

T1w MPRAGE TR/TE/TI = 6.7/3.1/842 ms,
FA = 8◦, 170 × 256 × 256 matrix size,
1.0 × 1.0 × 1.2 mm3 voxel size.

T2w Multi-shot turbo spin echo (TSE),
TR/TE = 2500/287 ms, TSE/SENSE
factors = 100/2, fat suppression
with SPIR, 180 × 256 × 256 matrix
size, 1.0 × 0.9375 × 0.9375 mm3

voxel size.
MT Spoiled 3D gradient echo,

TR/TE = 64/15 ms, FA = 9◦,
256 × 256 × 95 matrix size,
1.5 × 1.5 × 1.5 mm3 voxel size.
Philips Medical Systems Intera 3T, MPRAGE TR/TE = 9.6/4.6 ms,
FA = 8◦.
Philips Medical Systems Gyroscan Intera 1.5T, MPRAGE
TR/TE = 9.81/4.6 ms, FA = 8◦.

IXIc 465 healthy subjects
T1w GE 1.5T System, information

undisclosed by the time of
accessing.
Philips Medical Systems Intera 3T, TR/TE = 5725/100.0 ms,
FA = 90◦.
Philips Medical Systems Gyroscan Intera 1.5T, 5725/100.0 ms,
FA = 90◦.

T2w GE 1.5T System, information undisclosed by the time of accessing.
Philips Medical Systems Intera 3T, TR/TE = 5725/8.0 ms, FA = 90◦.
Philips Medical Systems Gyroscan Intera 1.5T,
TR/TE = 8178/8.0 ms, FA = 90◦.

PDw Philips Medical Systems Gyroscan Intera 1.5T, 5725/100.0 ms,
FA = 90◦.
GE 1.5T System, information undisclosed by the time of accessing.

a http://www.bic.mni.mcgill.ca/brainweb/, simulated dataset.
b http://www.nitrc.org/projects/multimodal, Achieva 3T Scanner (Philips Healthcare, Best, The Netherlands).
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