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Abstract 

Dynamic Positron Emission Tomography (PET) offers 
differential diagnostic information and has increasingly 
been used for diagnosis, therapy management and 
evaluation. We have applied Principal Component 
Analysis (PCA) on dynamic PET studies. Its general 
objectives are data reduction and interpretation. PCA in 
PET images reduces the dimensionality of dynamic data 
sets and can be used to identify the structures with 
different kinetic patterns prior to other types of analysis 
(e.g. ROI analysis). 

 

1. Introduction 

PET stands in the forefront of molecular imaging and 
allows the quantitative evaluation of the distribution of 
several pharmaceuticals in a target area in vivo. PET is a 
non-invasive, diagnostic imaging technique for 
measuring the metabolic activity of cells in the human 
body. It provides valuable information on the 
biochemical and biological activity inside a living 
subject in a non-invasive way, combining techniques 
applied in nuclear medicine with the precise localisation 
achieved by computerised image reconstruction. PET is 
therefore a powerful diagnostic test that is having a 
major impact on the diagnosis and treatment of disease, 
as it can detect and stage tumors, often before they are 
visible through other conventional exams. Furthermore, 
PET can provide medical doctors with important early 
information about heart disease or several neurological 
disorders (Alzheimer’s, Parkinson’s, epilepsy, dementia). 

Dynamic PET studies (sequence of images during the 
whole radioactivity period) offer differential diagnostic 
information and are becoming an increasingly important 
component of PET methodology for disease diagnosis, 
therapy management and evaluation.  

Several methods have been proposed for the analysis 
of dynamic studies: compartmental models, graphical 
evaluation, Fourier analysis, multivariate analysis, fractal 
analysis etc. Principal Component Analysis in PET is 
optimizing the signals by simultaneously considering the 
complete set of images in the dynamic sequence and 
does not include any model-based restrictions since it is 
independent of any kinetic model [1]. PCA images 

appear with decreasing signal-to-noise ratio (SNR) and 
only the first few need to be inspected. However, PCA 
does not give the physiologic importance of each 
component and therefore, side information is essential 
for interpretation of the results, e.g., time activity curves 
(TAC) or correlative anatomic imaging [2]. 
Consequently, PCA is a relatively simple method of 
generating high-contrast images that make feature 
identification easier [3]. In this work, PCA has been 
applied to dynamic PET studies as a tool for better 
understanding of the disease mechanisms in oncology. 

2. Materials and Methods 

Principal Component Analysis, also known as the 
Hotelling or the Karhunen-Loève transform, has several 
applications in nuclear medical imaging [1,2], [4], X-ray 
Computed Tomography (CT) [3] and other X-ray fields 
[5,6], Magnetic Resonance Imaging (MRI) [7,8] etc.  

PCA is a data driven technique that cannot separate 
signals from noise. In the presence of large background 
noise, the resulting PCA images are similar to the 
original ones [1]. There are several approaches to this 
problem [4]. Since the background noise has several 
components and is also locally dependent (e.g., high/low 
localised tracer accumulation), we have used a global 
normalisation according to the total number of counts, a 
general measure that should meet the majority of 
situations.  

Let X´=[X1, X2, …, Xp] have covariance matrix , 
with eigenvalue-eigenvector pairs ( 1, e1), ( 2, e2), …, 
( p, ep) where 1 ≥ 2 ≥…≥ p ≥ 0. The kth principal 
component is given by: 

Yk = e´k X = ek1X1+ek2X2+…+ ekpXp,   k=1,2,…,p    

with:          

Var(Yk) = e´k ek � � k         
 

Cov(Yk, Yi) = e´k ei = 0,    i≠k                 

The total population variance is given by: 
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Consequently, the proportion of total variance due to 
(explained by) the kth principal component is:     
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If most (for instance 80 to 90%) of the total variance 
can be attributed to the first few components, then these 
components can “replace” the original p variables 
without much loss of information. 

An ECAT EXACT HR+ (CTI/Siemens, Knoxville, 
TN, USA) tomograph was used for the patient studies at 
the German Cancer Research Center. The tomograph 
delivers images in 63 planes (32 direct and 31 cross-
planes) and has an axial field-of-view of 15.5 cm. It is 
constructed using 4 rings of 72 8×8 BGO detector 
blocks. Each of its 32 rings consists of 576 individual 
detector crystals, each of dimensions 4.39×4.05×30 mm3 
and images a transaxial FOV of 56.2 cm. During a 
typical dynamic study at the Medical PET Group in 
DKFZ, 23 frames are acquired for 60 min following 
intravenous injection of F-18-deoxyglucose (FDG): 10 
frames of 60 sec, 5 frames of 120 sec and 8 frames of 
300 sec. All emission acquisitions are preceded by 
transmission scans (10 min for the dynamic scan, 5-min 
post-injection for the static scans) for the attenuation 
correction.  

A software tool has been developed for the PCA of 
dynamic PET images, based on algorithms presented at 
[9, 10]. The implementation is performed using C/C++ 
on Pentium (Intel Corp., CA, USA) systems under 
Windows NT/2000 (Microsoft Corp., WA, USA). The 
program checks the directory for analysis requests and 
opens the parameters file. Input parameters are the 
filename of the dynamic study, the data set 
characteristics (i.e., number of bytes/pixel, number of 
pixels/slice, number of slices/frame), as well as the 
number of slices and frames to be analyzed. After the 
analysis, the results are stored and the parameters file is 
moved to the directory with the successfully terminated 
analysis requests or to the directory with the failed 
requests. 

3. Results 

The program was tested on simulated data sets as well 
as on clinical patient data. Here, Images from a dynamic 
PET study (F-18 FDG, image size 256×256) of a liver 
metastasis were used. Results for a central slice are 
shown in the following figures. 

 
Figure 1. Standardized Uptake Value (SUV) image of 
slice 10 

 
Principal Component Image (PCI) #13 reflects the 

FDG metabolism: The metastasis  (green/red area in the 
middle) can be clearly distinguished, while the normal 
liver parenchyma is nearly black (large area beneath the 
metastasis, on the left image side). PCI #14 is related to 
blood volume. Normal liver parenchyma is visible (left 
in the image), the aorta (circular area in the middle), and 
the spleen (right in the image), while the metastasis is 
shown as a black area (middle). PCIs #1-12 contribute to 
the noise fraction. The injection site (left in the images) 
is shown in #13-14, due to both blood flow and FDG 
uptake. 

 
Figure 2. Principal Component Image #13  

PCA was also applied to a dynamic FDG study on 5 
Parkinson patients and 3 control persons. The study 
started 3 minutes postinjection and ran for 25 frames of 
60 sec. PCA images provide a good visualization of the 
brain features by removing the noise seen in the slices of 
each frame. The image quality was not only visually 
evaluated but also measured: the SNR ratio was 
calculated and found higher than the SNR of the original 
images. 
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Figure 3. Principal Component Image #14 

 
These preliminary results show that PCA can 

separately identify different functional fractions of the 
radiotracer metabolism. 

4. Conclusions 

Principal Component Analysis in dynamic PET 
studies is able to separate structures with different 
kinetic patterns and to generate parametric images with 
improved signal-to-noise ratio helping both visual 
interpretation and further analysis. Although generally 
only the first few PCA images need to be inspected, 
sometimes, principal component images with small but 
nonzero variances enhance the subtle contrast between 
two extremely similar components and help separate 
them. PCA main limitation stems from the fact that it is a 
data driven technique and cannot separate signals from 
noise. Therefore, data normalization prior to PCA 
improves the quality of the produced images. 
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