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Abstract. Soil-transmitted helminths (STH), including hookworm, Ascaris lum-
bricoides, and Trichuris trichiura, impose significant health burdens in low- and
middle-income tropical and subtropical regions, infecting over 1.5 billion peo-
ple globally. Traditional diagnostic methods like the Kato-Katz technique are
time consuming. This study introduces an innovative AI-driven system utilizing
affordable 3D-printed adapters and smartphones to digitizeKato-Katzmicroscopy
samples, capturing high-resolution images for subsequent analysis. These digi-
tized images can be uploaded to a telemedicine platform for remote diagnosis and
expert consultation.

Central to our system is the development of a foundational AI model for
parasite detection and classification. The model operates in two stages: First, an
object detection algorithm identifies all parasites in the image, achieving a mean
average precision (mAP) of 97.90% on the validation set using the YOLOv8
architecture. Second, a classification algorithm categorizes each detected parasite
by species. The classification model is initially trained on a large, unannotated
dataset of parasite images using a self-supervised learning (SSL) approach to learn
domain-specific visual features, which are often missed while using generic pre-
training datasets. Subsequently, it is fine-tuned on a labeled dataset, significantly
improving performance. The model initialized with SSL on STH images achieved
an F1 score of 91.70%, outperforming those initialized with random weights (F1
score of 55%) and those trained on DINO-Imagenet weights (F1 score of 53%).

By integrating AI with low-cost digital imaging, our approach aims to revolu-
tionize STH diagnosis in resource-constrained settings, aligning with the WHO’s
2030 Roadmap for the elimination of neglected tropical diseases.
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1 Introduction

Soil-transmitted helminths (STH), including hookworm, Ascaris lumbricoides, and
Trichuris trichiura, are common in low- and middle-income tropical and subtropical
countries. Over 1.5 billion people are infected, suffering from anemia, gastrointestinal
distress, and chronic fatigue [1]. TheWorld Health Organization (WHO) estimates STH
infections cause over 3 million disability-adjusted life years (DALYs) lost annually. The
WHO 2030 Roadmap for NTDs aims to eliminate these parasites through mass drug
administration (MDA) with albendazole and mebendazole [2, 3].

The Kato-Katz technique, used to diagnose STH infections, involves preparing stool
samples on microscope slides for visual inspection [4]. While simple and cost-effective,
its sensitivity drops if samples are not examined within 30 to 60 min due to egg degra-
dation or hatching, especially with hookworms. Subjective visual assessment also leads
to variability and errors in diagnosis.

AI integration in medical imaging has transformed fields like radiology and cardi-
ology in high-income countries. However, its use in low- and middle-income countries
(LMICs) is limited. Developing accessible and reliable AI solutions for these regions is
vital for global healthcare. AI can enhance the diagnosis and management of diseases
like STH infections, common in LMICs [5–8].

AI algorithms for medical imaging need abundant labeled data for training. Self-
supervised learning (SSL) has emerged as an alternative, learning features from large
unlabeled datasets to reduce the need for labeled data [9].

This work proposes a system that digitizes Kato-Katz samples using a 3D-printed
adapter and smartphones. This method captures and stores high-resolution images of
stool samples shortly after preparation, preserving their quality for later analysis. These
images can be uploaded to a telemedicine platform for remote diagnosis and expert opin-
ions. We also developed a foundation model for stool parasites using a SSL approach,
allowing visual representation acquisition without labeled images. This promising foun-
dation AI algorithm is capable of analyzing a single stool sample to detect and classify
multiple types of parasites simultaneously.

2 Material and Methods

2.1 Dataset

We collected an extensive dataset composed of 1,380 stool samples from children aged
between 5–15 years in Kwale, Kenya. Each stool sample was prepared using the Kato-
Katz thick smear method and visually analyzed by conventional microscopy. In parallel,
each stool sample was digitized by taking pictures of the field of view (FoV) and the
images were transferred to a telemedicine platform. Both processes were made at 100x
magnification (~0.08 µm/pixel).

The proposed digitization system is based on a 3D-printed adapter that allows cou-
pling a smartphone to a conventional microscope by aligning the smartphone camera
with the objective of the microscope to acquire the images. This adapter can convert
any conventional microscope into a digital one and enables the digitization of micro-
scope samples without the need for expensive scanners. Additionally, the system has
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been designed to be universal, working with any microscope model and any smartphone
model.

From this dataset, a total of 163 stool samples (3,075 FoV images) were further
analyzed, with all visible parasites labeled by species, including Ascaris lumbricoides,
Trichuris trichiura and hookworm. This annotated dataset was split at patient level
into training (65%), validating (20%) and testing (15%). This split was used for both the
parasite detection algorithmand the species classification.All images from the remaining
unannotated stool samples (1,217 stool samples with 14,680 FoV images) were used for
training the self-supervised phase of the pipeline.

For detection, the entire FoV is used, while classification relies on patches cropped
from areas with identified parasites. Instead of random cropping for the unsupervised
dataset, we used a trained object detector to identify possible parasites, significantly
increasing the amount of relevant data. Table 1 illustrates the dataset distribution, which
is maintained consistently for both the detection and classification tasks.

Table 1. Data Distribution: Breakdown of unannotated (SSL) and annotated (Train; Validation;
Test) data sets. Expert labels includeAscaris,Trichuris, and hookworm classes, alongwith artifacts
(false positives generated by the detection algorithm). “Images” represents the number of FoV
images, while “Total” indicates the number of parasites, which corresponds to the number of
cropped patches.

Data set #Patients #Images Ascaris Trichuris Hookworm Artifact Total

SSL 1,217 14,680 - – – – 104,885

Train 84 1,637 6,294 1,283 586 2,253 10,416

Validation 43 817 1,351 698 325 937 3,311

Test 36 621 899 811 201 932 2,843

2.2 Overview of the Proposed Foundational Method

The proposed foundational model for parasite detection and classification operates as
follows: First, an object detection algorithm identifies all parasites present in an image,
regardless of their species. Then, a classification algorithm categorizes each parasite into
its specific species. This classification algorithm is based on a foundational model for
species differentiation. Initially, it is trained on a large unannotated dataset of parasite
images to learn visual representations of stool parasites using a self-supervised approach.
After learning these domain specific image-based features, the algorithm is further fine-
tuned on a labeled dataset to accurately discern the species of each parasite. Figure 1
illustrates the proposed approach.
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Fig. 1. Overview of the proposed pipeline comprising: (1) image acquisition using a 3D-printed
adapter; (2) Image labeling; (3) parasite detection using YOLOv8; (4) self-supervised pre-training
with DINO; (5) species differentiation with our DINO pretrained ViT classifier.

2.3 Slide-Level Parasite Detection

Each field of view image is processed through an object detection algorithm to detect all
possible parasites regardless of the species. The proposed algorithm for parasite detection
in stool sample images was based on a YOLO architecture (YOLOv8) [10], which is a
single-stage object detection algorithm that uses a convolutional neural network (CNN)
as backbone. Unlike two-stage algorithms, single-stage detection models like YOLO
offer enhanced processing speed, making them highly suitable for mobile deployment.
For each detected parasite, an image patch is then extracted and further processed by the
patch-level parasite classification to determine the specie.

2.4 Patch-Level Parasite Classification

In this study, we aimed to enhance stool parasite differentiation by utilizing SSL to train
a feature extractor (backbone) for better data generalization using unlabeled datasets.
Specifically, we propose the use of a vision transformer (ViT) [11] (ViT-S/16) as the
backbone, which has achieved significant success in various domains and whose appli-
cation in the medical field is rapidly expanding. During the pre-training (self-supervised
phase), we adopted the DINO technique [12], a knowledge distillation method that does
not require labeled data.

ViT operates by dividing an image of fixed-size patches (NxN), each patch is passed
to a linear operator to obtain patch embedding. To preserve spatial information of each
patch, their position is encoded and is added later to each patch embedding. The resulting
sequence is fed to the transformer encoder. In order to perform classification, an extra
learnable classification token (CLS) is added to the patch embedding, and the result is
passed to a linear classification head to classify the image. This classification token and
head is not required for SSL.
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The general concept of DINO is summarized in Fig. 2. It has two models that follow
the same architecture, teacher and student, parameterized by t and s. For an input image I,
patches of different sizes were generated: large patches (global crops) and small patches
(local crops). All crops are followed by extensive augmentation. For a crop x, pair of
view (x1, x2) were generated with random augmentation, both models produce output
probabilities Pt and Ps, obtained by normalizing the output of the model with a softmax
function. The studentmodel learns tomatch distribution byminimizing the cross-entropy
loss mins CE(Pt(x), Ps(x)). The parameters of the student s are updated by stochastic
gradient descent, and the parameters of the teacher t are updated using the exponential
moving average (EMA) of the students.

Fig. 2. Overview of the proposed pipeline for training aViT architecture withDINOSSL strategy.

After pre-training, we conducted supervised training. In this phase, we add a mul-
tilayer perceptron (MLP) layer on top of the ViT encoder to perform classification. To
ensure the need for SSL pretraining we tried two different approaches: first, by freezing
all weights of the architecture except those from the classification layer (linear probing),
and second, by enabling fine-tuning of all weights in the architecture, including the ViT
encoder.

2.5 Experimental Setup

For comparative purposes, we compared different versions of the YOLOv8 architec-
ture for parasite detection. This comparison aimed primarily to identify the optimal
architecture for deployment on edge devices, such as smartphones, enabling real-time
detections. TestingmultipleYOLOv8variants allowed us to determine their performance
and suitability for this specific application.

Additionally, we trained the ViT model without pre-training to assess the improve-
ment conferred by SSL. The comparison of these models with and without pre-training
provided insights into the benefits of SSL in improving model performance.

All comparisons, including those for parasite detection and classification, were con-
ducted on a validation set to ensure consistency and reliability in the performance assess-
ments. The optimal configurations, determined through these validation tests, were then
evaluated on an independent test set to confirm their efficacy and generalizability. This
comprehensive approach allowed us to identify the best-performing models for both
tasks and ensure their readiness for practical deployment.

The metrics used for evaluating the object detection algorithm included mean aver-
age precision (mAP), the precision and recall. The performance of the classification
algorithm was assessed by measuring the balanced accuracy (BACC) and F1-score to
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account for data imbalance and to provide a more comprehensive evaluation of the
classifier’s effectiveness across all classes.

3 Experiments and Results

3.1 Slide-Level Parasite Detection

We conducted a set of experiments to evaluate the performance of various YOLOv8
models: YOLOv8-n (nano), YOLOv8-s (small), YOLOv8-m (medium), and YOLOv8-l
(large). Instead of training the model from scratch, we used the weights pretrained with
COCO image dataset and fine-tuned on our dataset. Our experiments utilized an input
size of 640 × 640 pixels, a learning rate set to 0.01, and we trained each model for
100 epochs with early stopping implemented after 20 epochs without improvement by
monitoring the loss in the validation set. We evaluated the mAP, precision, recall, and
inference time of each one.

Table 2 illustrates the performance of each YOLOv8 model. Our results indicate
that all four models achieved a comparable mAP of 97%. However, YOLOv8-n demon-
strated significantly faster inference times, being approximately three times quicker than
YOLOv8-l. This makes YOLOv8-n particularly well-suited for deployment on edge
devices where computational resources are limited.

Table 2. Parasite detection performance on the validation set. Note: the inference time was
calculated on an Intel i5 CPU processor.

Architecture mAP Precision Recall Inference time/image (ms)

YOLOv8-n 97.07 91.27 87.19 372

YOLOv8-s 97.79 90.72 91.36 465

YOLOv8-m 97.47 89.18 92.33 696

YOLOv8-l 97.04 87.02 94.36 1060

3.2 Patch-Level Parasite Classification

During the self-supervised training phase, we employed the following setup: a ViT-S/16
model with a patch size of 16. Themodel underwent training for 200 epochs with a batch
size of 96 and an input size of 224× 224, utilizing a cosine learning rate scheduler (initial
LR: 5e−4, minimum LR: 1e−6). The backbone was trained using patches generated by
the object detection algorithms (N = 104,885). Figure 3 illustrates the efficacy of the
pretrained model in our domain-specific dataset, in extracting relevant features from
stool parasites, demonstrating that features belonging to the same class are clustered
together while those from different classes are distinctly separated.

To assess the benefits of using SSL on a domain-specific dataset, we conducted
an experiment comparing three different pre-training approaches for the ViT architec-
ture: SSL on a domain-specific dataset (DINO-STH), SSL on a domain-agnostic dataset
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Fig. 3. Uniform manifold approximation and projection (UMAP) visualization of the features
extracted from our pre-trained ViT architecture.

(DINO-ImageNet) as it demonstrated strong performance on various computer vision
tasks, and no pre-training. In all three cases, we utilized the same ViT-S/16 architecture
to ensure a fair comparison. This experiment was designed to determine whether our
model, trained on domain-specific data, extracts more relevant features compared to a
model trained on domain-agnostic data.

All experiments were conducted under the same hyperparameters: a batch size of
128, learning rate of 0.001, training for 100 epochs with early stopping patience of 10
epochs, and images resized to 224 × 224 pixels. During the supervised training phase,
we executed two types of training strategies: fine-tuning, where both the backbone and
the linear classifier (MLP) were trained together, and linear probing, where only the
linear classifier was trained while keeping the backbone fixed. All these experiments
used all available data of the training set (N= 10,416). Table 3 presents the performance
of all models on the validation set.

Table 3. Parasite classification performance on the validation set, obtained from full fine-tuning
and linear probing.

Pre-training Fine tuning Linear probing

BACC F1-score BACC F1-score

None 57.48 55.13 47.90 46.61

DINO-ImageNet 55.45 53.48 85.10 85.15

DINO-STH 91.48 91.70 90.51 90.86

In addition, and for comparison purposes, we performed supervised training with
only 200 images per parasite class, instead of using all available dataset, to assess the
models’ capacity when only a limited labeled dataset is available. When evaluated on
the validation set, the model pre-trained on our domain-specific dataset (DINO-STH)
achieved a BACC of 86.57% and a F1-Score of 86.24%, whereas when it was pre-
trained on the domain-agnostic dataset (DINO-ImageNet) achieved 74.76% and 74.05%
of BACC and F1-Score respectively.
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3.3 Evaluation of the Proposed System on an Independent Test Set

To evaluate the generalization capabilities of our proposed system, we set aside a subset
of labeled images, independent from those used for training and validation. After deter-
mining the best configurations from the validation set, we applied these configurations
to the test set.

The evaluation revealed that the optimal configuration for parasite detection was
YOLOv8-n, which achieved a mean Average Precision (mAP) of 94.93%, precision of
89.63%, and recall of 88.50% on the test set. For parasite species classification, the best
performance was achieved using the ViT-S/16 architecture pre-trained on our domain-
specific unlabeled dataset through SSL. All detected boxes (those with a probability
greater than 0.05)were then processed by the classification algorithm, and the predictions
were compared to the annotations made by experts. The performance of the parasite
classification algorithm was 80.32% BACC) and 80.17% F1-score. The whole system
achieved a mAP of 82.5%, precision of 89.63% and recall of 82.14%.

This assessment on an independent test set underscores the robustness and general-
izability of our approach, demonstrating its potential for accurate parasite detection and
classification in practical applications.

4 Conclusions

In this work, we presented a comprehensive approach for the detection and classification
of soil-transmitted helminth (STH) parasites using YOLOv8 and Vision Transformers
(ViT). For the classification task,we created a foundationmodel based onSSL techniques
to leverage a large amount of unannotated data, enabling the model to learn meaning-
ful features. The proposed classification system trained on our domain-specific data
achieved better results compared to the ViT backbone pre-trained on domain-agnostic
dataset (ImageNet). This improvement is particularly noticeable when the available
annotated training set is small. With only 200 training images per parasite class, the
performance improved by 12% when comparing our SSL-pretrained model to the one
trained on a domain-agnostic dataset. This work is highly relevant because, in the field of
medical imaging, the availability of labeled data is often limited. By incorporating SSL
and leveraging unannotated data, we have shown that it is possible to enhance model
performance, especially in data-scarce environments. This approach, which also lever-
ages 3D-printing technologies and smartphones to enable data digitization without the
need for expensive hardware, holds great promise for improving diagnostic accuracy and
accessibility in low-resource settings, ultimately aiding in the fight against parasitic dis-
eases. This marks a step toward meeting the World Health Organization’s performance
benchmarks for in-vitro diagnostic devices, leveraging AI to combat parasitic diseases.
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