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ABSTRACT
This paper presents an algorithm devoted to the reconstruc-
tion of the coronary tree from Cardiac Multislice CT data
sets. Quantitative measurement of this segmentation may
help the diagnosis and treatment of ischemic heart disease.
The algorithm is based on morphological grayscale recon-
struction through 2D slice images and overall 3D segmen-
tation of the coronary artery tree. The method has been
validated in 9 CT-datasets with satisfactory results.
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1 Introduction

Cardiovascular disease is the leading cause of death in
many countries. The conventional way of imaging coro-
nary arteries is by using invasive coronary angiography, but
this technique brings complicated clinical procedures and
risks to the patient. Recent technical developments have
converted CT in a very interesting alternative for imaging
coronary arteries. CT imaging is a non-invasive imaging
technique, that provides information of the whole 3D vol-
umetric data with high resolution. An intravenous con-
trast agent is used to enhance the visibility of blood, and
consequently the vessels. The areas containing the con-
trast agent are marked in the resultant output images with
a larger Hounsfield value. Therefore, the segmentation of
the coronary arteries provides a valuable diagnostic tool for
clinicians interested in detecting plaques, calcifications or
stenosis. However, segmentation of the coronary tree is a
difficult task due to low contrast conditions, the vicinity
to the heart cavities, and its complex structure, including
branching and curvatures. Furthermore, for real applica-
tions a fast and efficient approach is desired. From a med-
ical imaging point of view, vessel segmentation (there is
a very complete review in [8]) is the core of many medi-
cal applications such as diagnosis systems, image registra-
tion, visualization or computer-guided surgery. However
segmentation is still an open problem with many meth-
ods depending on the imaging modality, the human inter-
action and many other factors. Concerning recent publi-
cations on segmentation of the CT cardiac tree, we find

several promising attempts in early stages of development
such as [13], based on active contour models. In [9], the
segmentation is achieved using a combination of thresh-
olding, region-growing, and morphological operations. In-
deed, a very good visualization interface is provided, how-
ever the segmentation algorithm gives false positives. In
[6], a particle-based approach to vessel segmentation is per-
formed with interesting results, but non principal branches
are missed. Regarding general problems with other seg-
mentations methods, we find that level-sets are not suited
for real-time applications because they are computational
time-consuming; parametric cylindrical models may not be
suited for the non-linearity of vessel structures and region-
growing techniques may be sensitive to local conditions.
Because of these difficulties on the accurate detection of the
whole coronary tree, we propose a prior robust and fast seg-
mentation technique based on mathematical morphology
that extracts the entire coronary tree from an initial click
given by the human expert. In this reconstruction our goal
is not to lose any information even in pathological cases. In
a second stage, the coronary tree would be segmented into
different regions such as lumen, plaque or calcium; in order
to give quantitative measurements to help the diagnosis of
calcifications and stenosis. This article is going to lead with
the first phase of the proposed approach and it is organized
as follows: firstly, we present the MACTSE algorithm used
for the coronary tree reconstruction. Then we present and
discuss the segmentation in 9 clinical data sets. Finally we
discuss the results and further developments.

2 Morphological algorithm for causal tubu-
lar structures extraction (MACTSE)

2.1 Theorical framework

Mathematical morphology is a powerful nonlinear image
technique with operators capable of handling sophisticated
image processing tasks in binary, grey-scale, colour and
multiresolution imaging modalities based on geometric
analysis. A tutorial on the technique can be found in
[11]. These techniques have been widely used in vessel
extraction with successful results [14] and also in seg-
mentation and quantification of 2D angiograms [2, 10].
Morphological grayscale reconstruction methods through

555-020 391

bryson




2D slice images and overall 3D reconstruction has been
previously used in [7] for the segmentation of the airway
tree with successful results. In the case of the coronary
artery tree, the image conditions are different as there are
not as many scale changes in the coronary arteries as in
bronchia and the existance of other surrounding structures
may difficult the segmentation process. This contextual
information has been used to develop a specific algorithm.

The basic morphological operators are dila-
tion δB(f(x)) = supy∈B{f(x − y)} and erosion
εB(f(x)) = inf−y∈B{f(x − y)}. These two elementary
operations can be composed together to yield a new set
of operators having desirable feature extractor properties
which are given by opening γB(f) = δB [εB(f)] and
closing ϕB(f) = εB [δB(f)]. Morphological openings
(closings) filter out light (dark) structures from the images
according to the predefined size and shape criterion of the
structuring element. The main morphological operator we
use is the morphological reconstruction by dilation [12]
which consists in reconstructing a mask image from a
marker image by iterating geodesic dilations of the marker
image inside the mask image until stability (see fig. 3).
We denote by f the marker image and by g the mask
image. The geodesic dilation with structuring element B
of the marker image f with respect to the mask image g is
δn
g (f) = δ1

gδn−1
g (f), where δ1

B(f, g) = δB(f) ∧ g; δ1
B(f)

indicates a dilation of image f by the structuring element
B restricted to g. The reconstruction by dilation of mask g
from marker f , is denoted RB(f, g) = δi

B(f, g) where i is
chosen such that δi

B(f, g) = δi+1
B (f, g) (idempotence).

2.2 General architecture

The general structure of the algorithm is the following (see
fig.1):
1) The human expert selects a point as a marker in the first
slice where it is found the coronary artery. We use the hy-
pothesis that the artery is a causal structure along the z-axis
(there is no possibility for the artery to grow backwards)
2) The proposed segmentation method is performed from
the mark in the 2D slice i.
3) The human expert selection is automatically generated
in the slice i+1. A set of potential marks is automatically
provided for the morphological segmentation of the slice
i+1.
4) The process of segmentation is performed again in the
slice i+1, which generates a set of potential marks for the
slice i+2. These steps are iterated until there is no set of po-
tential marks for the prolongation of the tubular structure.

It is important to remark that the output is not a bi-
nary segmentation but a grey-level reconstruction of the
ROI with levels of intensity in each slice corresponding to
the difference from the vessel to the background (the plate
zone around the vessel). Pre-knowledge from the charac-

Figure 1. Scheme of the architecture of MACTSE.

teristics of the tubular structures provides us two key fea-
tures for the segmentation algorithm:

a) Inspired by the principle of good-continuation from
psychological Gestalt’s theory and its interpretation in
terms of human vision [5], we use the notion of asso-
ciative field. Let T be a tubular causal structure along
the z-axis. We define the associative field from the
cross-section of T in the slice i (XY plan) as the 2D
region in slice i + 1 where there is high probability
to find a cross-section of the previous tubular struc-
ture(see fig.2).

b) As it has been studied in generalized cylinders models
[1], the cross-section function of a tube is defined by
an ellipse (a circle when the spine of the tube corre-
sponds with the z-axis). Even in the case of bifurca-
tion we could have several ellipses. In MACTSE, we
use the fact that all the connected regions of a cross-
section from the tubular structure have at least one di-
rection that measures the same as the diameter of the
real tube(see fig.2).

Figure 2. Parameters µ2 and µ1 are function of the associa-
tive field and the maximum diameter allowed to a vessel.

2.3 Implementation details

The MACTSE works as follows. Let (Si) be the first
image where it is possible to find a coronary artery, (Mi)
the mark selected by the human expert and Bi is a disc
structuring element of size i.
1) (IRi) = RB1(Mi, Si)
2) (SGi) = IRi−RB1(γBµ1

(IRi), IRi)
3) (MSi) = Thresholdλ(SGi)
4) (Ai) = δBµ2

(MSi)
5) (B(i + 1)) = (S(i + 1)) ∧ (Ai)
6) (M(i + 1)) = RegionalMaxima(B(i + 1))
7) If (M(i + 1)) = 0 then [end]
else [step1(M(i + 1), S(i + 1))]
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Steps 1,2 are devoted to the one-slice segmentation
(see fig. 3). First by highlighting the marked regions with
the reconstruction by dilation of the original image. Then
the top-hat opening by reconstruction is used to extract
only the light tubular-like structures. As a z-section of
these arteries has at least one direction with a measure
similar to the artery diameter, this diameter is a minimum
for the size of the structuring element Bµ1 . So the parame-
ter µ1 is directly correlated to the diameter of the searched
tubular structure.

Figure 3. Schema of the segmentation of the vessel candi-
dates in one slice.

From step 3 to step 7, the associative field for the
slice S(i + 1) is created by the dilation of the binary mask
of the segmentation of the slice Si. The marks that are
used for the segmentation of S(i + 1) are all the regional
maxima from the intersection of the associative field and
the original slice. We suppose that these regional max-
ima are a good approximation of the hypothetic selection
of a human expert. This process is iterated until there
are no marks for the next slice segmentation. It is worth
noting the fact that the parameter µ2 is directly related
to the size of the associative field considered. Further-
more, the size of this associative field should be adjusted
in function of the distance between two slices so µ2 =
f(∆Zslice(i),slice(i+1)). This parameter allows tracking
the tubular structure even in undersampled z-axis images
where the continuation of the tube is not so closely aligned
in two consecutive slices. Generally, the segmentation re-
sults may be mathematically described in function of the
parameters regarding the property of ordering preservation
of morphological operators (X ≤ Y ⇒ Ψ(X) ≤ Ψ(Y )).
Let S(µ1, µ2, λ, I) be the segmentation of the image (I).
So µ1a ≤ µ1b ⇒ S(µ1a, µ2, λ, I) ≤ S(µ1b, µ2, λ, I); and
µ2a ≤ µ2b ⇒ S(µ1, µ2a, λ, I) ≤ S(µ1, µ2b, λ, I); and
λa ≤ λb ⇒ S(µ1, µ2, λa, I) ≥ S(µ1, µ2, λb, I). These
order relationships allow to construct a hierarchy of em-
bedded segmentations with increasing details by modifying
µ1 ↑, µ2 ↑ or λ ↓.

(Si) (Mi) (IRi) (SGi)

(S(i+1)) (MS(i)) (A(i)) (B(i+1))

(M(i+1)) (IR(i+1)) (SG(i+1)) (A(i+1))

Figure 4. MACTSE procedure example.

3 Coronary artery segmentation from CT-
images

3.1 Data analyzed

The reconstruction algorithm has been tested on 9 3D-CT
data sets. The images were acquired with a Toshiba Aquil-
ion 16 CT scanner with a slice resolution of 0.5mm and
a slice spacing of 0.5mm (isotropic). Five of the cases
present minimal or inexistent lesions. The other four cases
present medium or severe problems. The original data has
a size of 512x512 in the horizontal plane and between 200
and 300 slices for the z-axis. No pre-processing has been
done in the images. The number and length of visible coro-
nary artery segments differs largely in the set of patient data
particularly in pathological cases. We restricted the analy-
sis to the left coronary arteries: the left anterior descending
(LAD) coronary artery and the left circumflex (LCX) coro-
nary artery and their branches. The segmentation results
have been visually evaluated by an expert.

3.2 Reconstruction results and discussion

The proposed algorithm has reconstructed the entire left
coronary tree in most of the normal and pathological cases
(see table 1 and fig. 5). In order to achieve the best re-
construction, the parameters have been manually tuned in
each case. The optimal three parameter choice vary in
the following subsets: µ1 ∈ {8, 9, 10}, µ2 ∈ {2, 3, 4},
λ ∈ {1, 2, 3}. A choice of µ1 = 8, µ2 = 3, λ = 3 pro-
vides acceptable results detecting the main branchings in
5 of the cases. However the small range of variability of
the parameters could be interesting for the implementation
of a user interaction interface. The main drawback of the
algorithm is the extraction in most of the cases of false pos-
itives in the lowest half of the vessel tree (we can argue that
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Patient (i) (ii) (iii) (iv) (v)
a 1 3 Yes V 4
b 1 1 Yes W( 3

4
) 1

c 1 4 Yes V 3
d 2 4 Yes No 2
e 2 4 Yes W( 2

3
) 3

f 3,stent 2 NO LAD No 1
g 4 3 Yes No 3
h 4 3 Yes W( 1

2
) 3

i 4,stent 3 Yes W( 3
4
) 3

Table 1. Segmentation results. Legend: (i) Severity of the
pathology: no calcium(1)-multiple lesions(4); (ii) Image
quality: bad(1)-excellent(4); (iii) Main branches detection:
Yes/No; (iv) False positives: No/Ventricular wall - W (in
parenthesis the starting point of the artefacts expressed as
a proportion of the heart length)/Vein ; (v) Small branches
tracking: poor(1)-excellent(4).

this part is less significant). These structures are part of the
low ventricular wall which has a granulated texture which
is interpreted by the algorithm as potential bifurcations of
the artery. We propose a 2D-area filtering or a morpho-
logical 3D reconstruction in order to eliminate the prob-
lematic regions. This kind of 3D reconstruction has been
used in[3] for similar purposes during the segmentation of
the airway tree in CT images. Other kind of false candi-
dates detected in few cases are the veins that cross very
near the arteries and are selected as prolongations. Regard-
ing the dependence on the parameters we find that if µ1 ↑ or
λ ↓, less significant details are extracted and false positives
are obtained as well as all the small branches are tracked.
If µ2 ↑, more potential vessel candidates are marked and
consequently more details are captured. One of the main
advantages in comparison to other methods is its indepen-
dence from intensity variations during the acquisition pro-
cedure. Because of the local nature of the 2-dimensional
slice analysis, the algorithm is able to follow the arteries
in the presence of intensity changes between two slices.
The algorithm also behaves in a robust way in presence of
horizontal shifts between two slices (which is an important
problem for the commercial stations) because of the asso-
ciative field which permits to track the vessel even if it is
misaligned. From a computational point of view the algo-
rithm is quite efficient and the reconstruction is performed
in a few seconds in a PentiumIV 3.2GHz, RAM-2GB.

4 Conclusions and perspectives

The proposed algorithm performs an efficient prior seg-
mentation of the coronary tree from a one-click initializa-
tion. It doesn’t lose any information, but in some cases
gives false candidates in the more distal areas of the tree.
It behaves in a robust way in the presence of intensity
or displacement steps. A larger validation and optimiza-

tion of the parameters by including a learning process re-
garding different pathologies should be done. Concerning
MACTSE, the most important restriction is the causality of
the structures imposed to the model; which is biologically
reasonable in our case but in other cases may not occur.
MACSTE is currently being enhanced to follow non causal
structures. We also may include a robustness module that
permits to track the artery even when it disappears for some
slices. Further developments will be devoted to assist in

(b)

(a)

Figure 5. (a) Left coronary tree without lesions; (b)
Left coronary tree with severe calcifications. The iso-
surfaces superimposed to the rendering are at calcium-
level intensity. Video renderings are available at
www.die.upm.es/im/videos/CT/.

the diagnosis of unhealthy arteries with quantitative data.
Current state-of-the-art measurements of clinically signifi-
cant parameters in order to obtain a quantitative estimation
of stenoses or aneurysms is based on diameters and cross-
sectional areas of vessels at different locations [4]. These
measurements are strongly dependent on the estimation of
the central axis which is a sensitive task specially in the
presence of stenosis. As an alternative methodology, our
future workplan is to develop directly a three dimensional
segmentation based on the Hounsfield levels associated to
each tissue and to measure volumetric parameters on this
segmentation.
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