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ABSTRACT
This paper describes a fully automatic simultaneous lung ves-
sel and airway enhancement filter. The approach consists of a
Frangi-based multiscale vessel enhancement filtering specif-
ically designed for lung vessel and airway detection, where
arteries and veins have high contrast with respect to the lung
parenchyma, and airway walls are hollow tubular structures
with a non negative response using the classical Frangi’s fil-
ter. The features extracted from the Hessian matrix are used to
detect centerlines and approximate walls of airways, decreas-
ing the filter response in those areas by applying a penalty
function to the vesselness measure. We validate the segmenta-
tion method in 20 CT scans with different pathological states
within the VESSEL12 challenge framework. Results indicate
that our approach obtains good results, decreasing the number
of false positives in airway walls.

Index Terms— segmentation, vessel, lung, filter, CT

1. INTRODUCTION

Accurate quantification and visualization of lung vasculature
is an important task for many clinical procedures and diag-
nosis, especially in cases with chronic obstructive pulmonary
disease (COPD), pulmonary embolism (PE), pulmonary vas-
cular disease (PVD), emphysema or lung cancer.

Multiple past and on-going approaches have been used
for the extraction of pulmonary vessels. Appearance and ge-
ometric models [1], region growing and active contours [2],
skeleton-based approaches [3] or particle filtering approaches
[4] are widely used, but methods based on features extracted
from the Hessian matrix [5, 6] are the most popular ones and
they achieve quite good results in the majority of vessel sce-
narios. However they performed uniformly across the image
and fail when other structures are locally tubular-like. Ad-
ditionally, the evaluation of vascular segmentation remains
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a very challenging task due to complexity of the tree vessel
structure and the inaccessibility to reference standard images
needed to compute appropriate validation measures.

In this work we present a completely automatic method
for lung vessel extraction derived from the Hessian-based fil-
ter developed by Frangi [5], modified to avoid false positives
in areas that present locally tubular-like features such as the
airways.

2. METHOD

We introduce first the principles of vessel detection based on
features extracted from the Hessian matrix and the vesselness
measure introduced by Frangi in section 2.1. In section 2.2
we propose a novel approach for decreasing the vesselness
in airway walls. The data, experiments and evaluation results
can be found in section 3. We end with a discussion in section
4.

2.1. Frangi Filter

Most of Hessian-based vessel enhancement filters use eigen-
values extracted from the Hessian matrix to derive geometri-
cal structures which can be regarded as tubular. Since vessels
in the lung have different radius it is important to study these
features in a multi-scale framework.

The Hessian matrix in the point x at scale σ, Hσ(x), can
be efficiently computed using Gaussian derivatives:

Hσ(I, x) =
∂2Iσ
∂x2

= I(x) ∗ ∂
2Gσ(x)

∂x2
(1)

where I is the image and Gσ is the gaussian function with
standard deviation σ.

The decomposition of the local second order structure of
the image extracts the eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) and
principal directions (ū1, ū2, ū3). An analysis of these features
allows us to differentiate between different orientation pat-
terns (blob-like, tubular, plate-like or no preferred direction).
For our purpose, an ideal tubular structure implies |λ1| ≈
0, |λ1| � |λ2|, λ2 ≈ λ3, with ū1 the direction of minimal
curvature (along the vessel).

2013 IEEE 10th International Symposium on Biomedical Imaging:
From Nano to Macro
San Francisco, CA, USA, April 7-11, 2013

978-1-4673-6455-3/13/$31.00 ©2013 IEEE 926



(a) (b)

Fig. 1: (a) Rendering of vesselness extraction for lung vessels.
(b) Airways enhancement (threshold=15% for visualization).

Using this information, Frangi et al. [5] designed a vessel-
ness function, VσF , to measure the similarity of one structure
to an ideal tube:

VσF (x) =



0 if λ2 > 0 or λ3 > 0, 1

(
1− exp
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))
exp

(
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)
(

1− exp
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− S

2

2c2

)) (2)

where α, β, c are parameters that control the sensitivity of the
filter to the dissimilarity measures that distinguish between
tube-like and plate-like structures (RA), blob-like (RB) and
background (S):

RA =
|λ2|
|λ3|

(3)

RB =
|λ1|√
|λ2λ3|

(4)

S =
√
λ21 + λ22 + λ23 (5)

The final vesselness measure integrates the filter re-
sponses at different scales taking the maximum response:

VF (x) = max
σmin≤σ≤σmax

VσF (x) (6)

Regardless of these dissimilarity measures, the filter
shows a non-negative response in structures that are locally
and partially tubular in the image. This is the case of airway
walls, where a) they are partially tubes with the radius of wall
thickness and b) sometimes they are in contact with vessels
becoming indistinguishable from them.

In order to overcome these difficulties it will be necessary
to link the vesselness information with the airways structure
to avoid false detections in those areas. Our approach will
use the features previously extracted from the classical Frangi
filter to do it so.

1Condition for vessels brighter than background. For vessels darker than
background the condition would be: λ2 < 0 or λ3 < 0

2.2. Our Approach

In order to avoid erroneous detections in airway walls, infor-
mation about the bronchial tree becomes necessary. Some
works noticed the importance of airway wall removal before
the lung vessel segmentation step, but in most of the cases
they used an independent method for airways detection and
morphological operations in order to attenuate or remove air-
way walls [7, 8]. Generally, those methods assumed a con-
stant wall thickness in every bronchial generation which is not
realistic. Furthermore, the additional airway segmentation in-
crease computation times and complexity of the algorithm.

Our proposal performs vessel and airway enhancement at
the same time and suggests an adaptive airway wall attenua-
tion in order to achieve a more accurate and efficient vessel
enhancement. The first step consists on bronchial tubes de-
tection. Later, we estimate airway walls depending on the
bronchial generation. Finally, a penalty function is applied in
wall areas to decrease the response of the vesselness filter.

Airway enhancement. Since airways are tubular struc-
tures too, the same multi-scale filtering framework for the
vessel enhancement could be used. Actually, if the scale range
is appropriate (covering the possible radius of vessels and air-
ways), a unique eigenvalue analysis of the Hessian would be
necessary to extract both (Fig. 1).

Thus, we compute the vesselness function (equation 2)
twice, one for the vessel extraction, VσFvessel(x), and one
for the airways extraction, VσFairway(x). The only difference
between both is the condition of being zero, changing from
λ2 > 0 or λ3 > 0 in vessel detection (structures brighter
than the background) to λ2 < 0 or λ3 < 0 in airways de-
tection (structures darker than the background). To get the
final measure we use equation 6, obtaining VFvessel(x) and
VFairway(x). The increment in computing time is minimum.

Airway centerline extraction. A skeletonization algo-
rithm for 3D grayscale images based on [9] is used to extract
the centerlines of bronchial tubes. It uses not only the struc-
tural information, but the density (in this case is the vesselness
measure VσFairway(x)) to obtain a more accurate estimation
of centerlines.

Fig. 2: Airway estimation. Wall candidates are shown in
green.
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Airway wall estimation. Taking advantage of features
extracted from the Hessian analysis, we can use the scale, σ,
and the first eigenvector, ū1, of maximal filter response in
each point of the airway centerline. They will represent, re-
spectively, lumen radius and directions along the vessel, so
we can use them to estimate the position of the inner part of
airway walls along the bronchial tubes.

In order to estimate the position of the external part of air-
way walls we used wall thickness values wt(σ) measured in
[10] for CT images, based on Weibel’s Model [11] which de-
pend on bronchial generation. Fig. 2 shows an scheme of air-
way wall estimation in one point of the bronchial centerline.
Wall candidate voxels will be in the intersection between the
plane with normal vector ū1 (direction along the airway) and
a hollow sphere of radius σ and (σ + wt(σ)).

Penalty function. The attenuation of airway walls is per-
formed using a penalty function over candidate voxels in the
walls. Since airway detection is a pseudo-probability segmen-
tation (not a binary one), VFairway measures could be inter-
preted as confidence of having an airway in a specific point.
This information is important when the penalty function is
applied to wall voxels. Thus, we subtract the airway score
VFairway(y) obtained in one point y of its centerline, to all
the vessels scores VFvessel(x) obtained in the wall candidates
for this specific point in the centerline of the bronchial tube
(x ∈WallCandidates(y)) as follows:

VFvessel(x ∈WallCandidates(y)) =

max(0,VFvessel(x)− VFairway(y))
(7)

The principal idea under this penalty function is the reduc-
tion of vessel confidence depending on the airway confidence.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

The dataset consists of 20 chest CT scans made available in
the scope of the ISBI VESSEL12 Challenge. Details can be
found on their website 2.

The scans come from different scanners and protocols, us-
ing contrast media in approximately half of the CT images.
They are nearly isotropic with a maximum slice spacing of
1 mm. About half of the scans contain pathologies such as
emphysema, nodules or pulmonary embolisms.

For each scan, a binary lungmask was available. They
were used to reduce the scope in the vessel search. A binary
erosion with a ball structuring element (radius 3 pixels) was
applied and the rest of the image was fixed to the mode inten-
sity inside the mask to reduce boundary effects in the limits
of the lung.

2http://vessel12.grand-challenge.org/

3.2. Evaluation Measures

The results have been uploaded online as a submission to
VESSEL12 challenge, and evaluated identically as the rest
of the participants. A variety of axial slices were selected
from each image for manual labeling. In each slice, a large
number of points within the lung fields (local maxima and
ramdom points) were labeled by 3 observers as: vessel, lung-
parenchyma, fissure, airway/airwaywall or lesion.

ROC curve analysis were used to evaluate the perfor-
mance of the method. Different probability threshold values
were used to compute true/false positives and true/false neg-
atives and create points in the ROC curve. Finally, the area
under the ROC curve Az and specifity/sensitivity at optimal
threshold were computed.

3.3. Results

For the experiments we use a medium range of scales (σ =
{0.5, 1, 1.5, ..., 3.5}) and parameters α = β = 0.5, c = 500.
The filtered output was normalized to the range [0,255].

Table 1 summarizes evaluation results on the dataset.
Mean areas under the ROC curves Az (0.978 ± 0.013) show
quite good performance of the algorithm in vessel detec-
tion, and values of specificity (0.900± 0.087) and sensitivity
(0.973 ± 0.024) at optimal threshold are higher than 0.9 in
almost all cases. As it is expected, scores become lower when
vessels are smaller due to the size of the filter is related to the
quantity of information used to evaluate the vesselness score.
Moreover, contrast in small vessels is low. This makes the
detection of high generation vessels a hard task.

Results for vessels/airways walls are lower than the vi-
sual examination made us expect (Figure 3). The classical
Frangi filter obtains values of Az between 0.738 and 0.906
depending on the scales selection, specificity values between
0.380 and 0.725 and sensitivity values between 0.889 and
0.977. Our method outperforms these values slightly using

(a) (b)

Fig. 3: (a) Example of critical area with vessels and airway
walls in contact. (b) Segmentations obtained using Frangi fil-
ter (red) and our approach (white). Light pink is shown in
common areas. Yellow arrows and elipse point to improve-
ment areas. Threshold=5% of maximum vesselness response.
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Table 1: Area under the ROC curve (Az), specificity and sen-
sitivity at optimal threshold (from 0 to 1) results on the dataset
using positive-points/negative-points as reference standard

Az Specificity Sensitivity

All vessels/Non-vessels 0.978 0.900 0.973
Small vessels/Non-vessels 0.947 0.887 0.953
Medium vessels/Non-vessels 0.985 0.968 0.953
Large vessels/Non-vessels 0.987 0.991 0.965
Vessels/Airways walls 0.918 0.756 0.973

the same scales vector. Nevertheless, the evaluation frame-
work uses a relatively low amount of positive and negative
points (compared with number of voxels involved), so the val-
idation maybe is a little limited and broader specific studies
could improve these results.

A visual evaluation of segmentation results could assess
strongly the contribution of this method in airway wall areas.
An analysis of vessel connectivity sometimes shows incorrect
connections between different vessel branches when airways
wall removal is not applied. Our approach avoids many of the
false positives in wall areas, correcting these mis-connections
that could influence obtaining a more reliable vessel tree as
well as other derived connectivity based measures

Moreover, our method could simplify estimations of air-
way lumen area/arterial area (LA/AA ratio), a critical marker
of bronchiectasis in, for example, cystic fibrosis studies.

4. DISCUSSION AND CONCLUSIONS

In this paper we have presented a novel approach to enhance
lung vessels simultaneously to airway in CT scans. An ex-
isting method for vessel enhancement was improved to re-
duce false positives in airways walls, obtaining good results
in vessel detection and airway wall exclusion. Since mean
Az shows good results discerning vessels and airways walls,
there is room for improvement in specificity and sensitivity.
Additionally, a new vesselness function specifically designed
for airway enhancement or the independent selection of pa-
rameters for vessel and airway segmentations could improve
airway lumen detection and consequently, airway wall esti-
mation.

In studies where a connectivity analysis is important, our
method could achieve more reliable segmentations of vessels.
Its use could be also critical when a separation between veins
and arteries is needed or in irrigation studies assessing which
vessel branches supply blood to specific lung areas.

Finally, this approach could have a direct application in
bronchiectasis studies where a reliable LA/AA ratio is criti-
cal.
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