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ABSTRACT 

This work is framed within the general objective of helping 

to reduce the cost of telepathology in developing countries 

and rural areas with no access to automated whole slide 

imaging (WSI) scanners. We present an automated software 

pipeline to the problem of mosaicing images acquired with a 

smartphone, attached to a portable, low-cost, robotic 

microscopic scanner fabricated using 3D printing technology. 

To achieve this goal, we propose a robust and automatic 

workflow, which solves all necessary steps to obtain a 

stitched image, covering the area of interest, from a set of 

initial 2D grid of overlapping images, including vignetting 

correction, lens distortion correction, registration and 

blending. Optimized solutions, like Voronoi cells and 

Laplacian blending strategies, are adapted to the low-cost 

optics and scanner device, and solve imperfections caused 

using smartphone camera optics. The presented solution can 

obtain histopathological virtual slides with diagnostic value 

using a low-cost portable device. 

. 

Index Terms— Microscopy, whole slide imaging, 

stitching, smartphone camera 

1. INTRODUCTION

Acquisition of whole slide imaging (WSI) is routinely done 

in histopathological microscopy using automated scanners to 

get a large-field image composed of multiple stitched image 

tiles. High-quality optics and precision mechanics facilitate 

the process of obtaining a virtual slide. 

As an alternative to high cost WSI scanners, stitching 

solutions have also been proposed to create virtual slides 

from a set of overlapping images acquired on conventional 

microscopes with manual or motorized stages [1-3]. Stitching 

tools also have been extended to 3D volumes in light-sheet 

microscopy [4] and X-ray microphotography [5]. 

Low-cost solutions based on smartphones attached to a 

microscope have been proposed, taking advantage of the 

increasing processing capacity of mobile devices [6]. 

Replicability in such systems is a limitation, and the need for 

a conventional microscope and an attached motorized or 

manual stage limits the ability of the system to be portable.  
Current stitching methods in microscopy are mainly 

focused on the registration step, which corrects the limited 

precision of the mechanical scan, preferably using phase 

correlation algorithms for pairwise registration between 

adjacent tiles [1,4,5] as well as feature-based matching 

methods [2]. However, images need to be corrected from 

vignetting and distortion when these effects are present. 

Vignetting is the lack of homogeneous intensity due to 

uneven background illumination, resulting in the usual 

darkening of the corners of the image [7]. The most common 

approach to correct the vignetting effect consists of selecting 

a previously acquired image of the background and use it for 

intensity normalization [4,5]. On the other hand, the 

distortion introduced by lens is not considered in reviewed 

stitching methods used in light microscopy imaging, and this 

effect is not negligible when a smartphone is used [6]. After 

registration, the overlapping regions are blended linearly or 

by an average value [1,5] to get a seamless result. 

Composition methods based on Voronoi diagrams would 

reduce potential artifacts [8], but are not used in reviewed 

works on image stitching in microscopy. 

Our proposal to get low-cost WSI automatic scanning 

replaces the conventional microscope by a low-cost portable 

device (shown in Fig. 1), fabricated using 3D printing 

technology, leveraging the camera and computing power of a 

generic smartphone. A software app installed on the 

smartphone controls the acquisition process of an image grid 

and further transmission to the cloud where the virtual slides 

are obtained. Once the virtual slides are reconstructed in the 

cloud, experts can analyze them from anywhere using a web 

interface.  

In this paper we describe the entire workflow of 

preprocessing and stitching the 2D grid of acquired images to 

obtain a final virtual slide, and present preliminary results of 

histopathological samples. Our work includes novel methods 

in stitching microscopy images: automatic vignetting 

correction without reference or background image, integrated 

distortion correction, and fusion using Voronoi cells and 

Laplacian blending. 
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Fig. 1. Left: Top view of the low-cost robotic microscope. Right: Workflow with an array of 2×2 images: 1) acquired 

overlapping images; (2) images corrected from uneven illumination (vignetting) and distortion; (3) pairwise registration 

based on matching features (yellow segments) and general optimization; (4) final stitched image using Voronoi cells (blue 

line segments) and Laplacian blending in regions delimited by back lines. The complete stitched image is shown on the right. 

 

2. METHODS 

 

The workflow to get a virtual slide image from the initial 2D 

grid of overlapping images consists in the following steps: a) 

vignetting correction; b) lens distortion correction; c) 

pairwise registration; d) general registration optimization; e) 

image fusion or blending. These steps are shown in Fig. 1.  

 

2.1. Vignetting correction 

 

In our device, the smartphone camera is manually attached to 

the 3D-printed microscopy system using an adapter that 

allows flexibility so that we do not have to be limited to any 

model or brand. Therefore, we need a new vignetting 

calibration at least every time the mobile is attached to the 

microscope. For greater safety, we perform a different 

calibration per acquired sample, so it considers variations in 

illumination due to the placement of the sample.  

Our proposal relies on a vignetting correction without 

reference image to avoid an additional acquisition or the need 

of background in the sample [7] . We estimate the intensity 

nonuniformity using a method based of the sparseness of the 

gradient probability distribution [9]. The images are 

converted to HSV channels (hue, saturation, value) and the 

correction is performed over the image with the highest mean 

value of the V channel. We fit the illumination with a 

bipolynomial model of 5th degree. We get a robust estimation 

of the intensity nonuniformity even in the absence of a 

background image.  

However, many histopathological samples contain many 

background regions surrounding tissue. These regions are 

automatically detected, using a variance/mean threshold, to 

create a normalized illumination field which can also be used 

for vignetting correction. A maximal pixel-wise image is 

composed to avoid dust or small remaining objects. 

 

 2.2. Distortion correction 

 

A polynomial distortion model [10], with radial and 

tangential distortion is used: 
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 where the normalized coordinates of the undistorted image

( , )u ux y are transformed into the distorted coordinates 

( , )d dx y using three radial parameters k and two tangential 

parameters n , being 2 2 u ur x y  the distance from the 

principal point. The model is flexible enough to include the 

distortion induced by the camera optics of a generic 

smartphone. 

The distortion parameters are optimized using a target 

grid, as shown in Fig. 2, whose coordinates in the distorted 

image ( , )d dx y are automatically detected and matched with 

their ideal positions ( , )u ux y . The parameters of the model of 

(1) are optimized using the Levenberg-Marquardt method 

over the set of matching correspondence pairs. The matching 

algorithm is totally automatic and robust as it does not require 

a complete segmentation of the grid, which could be occluded 

due to dust or blurred in the extremes of the image. 

 

 

Fig. 2. Left: Distortion correction using a target grid, 

showing detail with detected centers (in red) matched to 

ideal coordinates (in blue). Right: Contour plot of the 

absolute value of distortion in pixels. 
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2.3. Pairwise registration 

 

The optical system scans the sample following a horizontal 

continuous movement with vertical jumps at the ends of the 

rows, as illustrated in Fig. 3(b), The number of rows N and 

columns M is determined in advance to get a grid of N×M 

images, with a predetermined approximated overlap between 

adjacent tiles. Mechanical distress makes the real overlap  not 

coincide with  the theoretical one, therefore a registration 

between images is necessary to correctly estimate the 

movement of the smartphone when scanning the sample. 

We test four registrations by every image (up, down, left 

and right adjacent images) except in the extremes of the grid, 

getting M×(N-1) horizontal registrations and N×(M-1) 

vertical registrations. With enough overlap, the common area 

guarantees a successful registration, but more images need to 

be acquired to cover the same total area. 

We use a feature-based registration method based on 

matchings of multiscale AKAZE features [11], estimating a 

translation transformation with a random sample consensus 

(RANSAC) algorithm to reject outliers. A minimum number 

of features must be reached in order to label the registration 

as valid. 

 

2.4. General optimization 

 

The pairwise registration process produces relative 

translations in x and y between pairs of adjacent images a and 

b, denoted as ,a b a bx x x   , ,a b a by y y   . There are 

N(M-1) + M(N-1) ≈ 2MN pairs of images registered in a grid 

of MN images. 

We can express the relative translations in the x 

dimension in a vector-matrix form Wx = Δx , being x  the 

column vector of absolute locations, and Δx  the column 

vector of relative translations ,a bx . The sparse matrix W  

has a size of MN columns and ~2MN rows, fulfilling the 

,a b a bx x x   relations. We compose a similar equation for 

the y coordinates: Wy = Δy . 

In the most favorable case, when all possible adjacent 

images have been successfully registered, the systems of 

equations are overdetermined and can be solved by least 

squares to get the absolute positions x and y. 

When some pairwise registration are not successful, 

mainly because there are homogeneous regions such as a 

background in the overlapping area, the relative shifts are not 

defined, and those pairs will not be considered to solve the 

least squares problem. If a background zone completely 

separates two tissue zones, the remaining equation is 

undetermined and cannot be solved. 

In our solution, we check the subsets of images that are 

interconnected through registration pairs, solving the 

equations n n nW x = Δx  where nx  are the coordinates x of the 

subset n of connected images. Once the sample's movements 

are identified inside each subset, we estimate the location of 

unmatched images by extrapolating the registered 

coordinates row by row. It should be noted that we do not 

need great accuracy in this estimation of remaining images, 

because they are expected to be background areas with no 

significant features. Once we have an estimation of absolute 

positions x and y, the fusion process can be performed to 

obtain the final stitching. 

 

2.5. Image fusion 

 

To construct the stitched image, we define a Voronoi diagram 

with Euclidean distance using the centers of images as the 

seeds of the cells. The Voronoi diagram is the optimal 

division of the stitched image from its original images if it is 

assumed that the image degradation, (e.g., out-of-focus and 

chromatic aberrations) increases with the distance to the 

center of the image [12]. We get polygonal cells as shown in 

Fig 3(c).  

 
(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Array of 20×20 images where segments indicate successful registration between adjacent tiles. Unregistered 

images are represented ad gray dots; (b) estimated positions showing scanner path. The unregistered images (gray dots) are 

interpolated from the grid of registered ones (blue dots); c) Voronoi diagram of in superimposed stitched result. Unregistered 

images correspond to zones with background without significant features. 
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Image degradation, as well as possible registration 

imperfections, recommend the use of a blending scheme to 

smooth the result around the line segments between Voronoi 

cells. We use Laplacian pyramids [13], a multi-scale 

transform based method, for image blending. This process is 

applied to the rectangular regions around line segments 

between two adjacent Voronoi cells, as shown in Fig. 4. 

  

Fig. 4. Laplacian blending is applied to rectangular regions 

surrounding the segments of the Voronoi diagram. Left: 

Two image positions and their Voronoi cells with its 

common blending rectangle. Right: Blending rectangles 

between image tiles. 

The stitching algorithm is deployed using container 

technology (AWS ECR) and is executed using cloud 

computing services (AWS Batch jobs) using 2 virtual CPUs, 

representing a portion of a shared physical CPU (custom Intel 

Xeon processors with an all core Turbo frequency of 3.6GHz) 

and 4GB of memory. 
 

3. EXPERIMENTS AND RESULTS 

 

A total of 87 independent slides were acquired and the 

corresponding stitchings were performed with samples from 

9 different pathologies, including breast carcinoma, 

colorectal carcinoma, endometrial carcinoma, and lung 

carcinoma, covering different areas depending on the 

magnification, overlap (ranging from 10% to 40%) and the 

corresponding variation in the number of images used, i.e., a 

20×20 tiles acquisition with magnification 40x and 30% 

obtains a 7.2×7.2 mm2 image. Besides, we used different 

models of mobile phones: BQ X2, OnePlus3T, Samsung S9 

and Samsung A40. The stitching was successful for all 85 

images acquired with an overlap greater than 20%. 

To adjust a robust overlapping value, a histopathological 

sample was acquired with different overlapping ratios (from 

a 10% to 40% overlap) with a 10×10 grid. The percentage of 

failed pairwise registrations is shown in Table 1. The total 

number of pairwise registrations was 180. 

Table 1. Percentage of successful pairwise registrations. 

Overlap (%) 10 15 20 25 30 35 40 

Failed regs (%) 40.5% 25% 22.2% 1.6% 1.1% 0% 0% 

The mean squared error (MSE) of the optimization 

method gives an estimation of the stitching accuracy. 9 

stitchings of lung carcinoma acquired from 20×20 images of 

1080×1440 pixels, with 30% overlap were tested. The MSE 

measured in pixels without lens distortion correction was 

14.87 (SD 4.14) and was reduced to 1.43 (SD 0.79). 

  

Fig. 5. Endometrial polyp of 6×6 mm2 stitched from a 

stack of 30×30 image tiles with 30% overlap at 

magnification 55x.  

4. DISCUSSION 
 

In this work we present a complete workflow for mosaicing 

histopathological samples, designed to be robust using low-

cost optics but completely automatic as is going to be 

operated by non-trained specialists in remote or rural areas. 

Our proposal is aimed to work with a low-cost WSI 

scanner manufactured using a 3D printer, which leverages the 

optics and the computing power of a generic smartphone. 

This device needs a robust method of correction, registration 

and blending to get a mosaic image. This solution can help to 

reduce the cost of telepathology in developing countries and 

rural areas with no access to automated WSI scanners. 

Comparing with the existing low-cost solutions, we can 

stitch the mosaic even though some image tiles associated to 

homogeneous regions are not registered, extrapolating the 

approximate missing locations from its adjacent images. 

Besides, we correct the image distortion, the uneven color, 

and the seam line, creating a high-resolution virtual slide 

image. The operational implementation of the proposed 

solution runs in the cloud within 15 min for a field of view of 

7.2x7.2mm², creating an image of approximately 150002 

pixels. The proposed size allows to keep focus and provides 

a relevant piece of tissue for pathology diagnosis. 

The study was approved by the Ethics Committee of 

Hospital Universitario 12 de Octubre, Madrid, Spain. 
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