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ABSTRACT

Lung cancer is the leading cause of cancer death in Europe

with an approximate 5-years survival rate of 13% from diag-

nosis. The potential of computational image analysis to pro-

vide decision support in oncology and the importance of iden-

tifying predictive and non-invasive biomarkers of disease pro-

gression and response to therapy has led to Radiomics. The

objective of this study was to develop a delta-radiomics sig-

nature to predict survival and treatment response in patients

with advanced non-small cell lung cancer (NSCLC) under-

going immunotherapy. Pre-treatment and first follow-up CT

images and intra-nodular and peri-nodular regions from 88

patients have been used to calculate delta-features. The delta-

radiomics signature significantly stratified high- and low-risk

patients (p = 0.018), it was significantly associated with Over-

all Survival (p = 0.03) and it predicted responders with an area

under the receiver operating characteristic curve (ROC-AUC)

of 0.76 in an independent test set. The results demonstrate

the potential of delta-radiomics to be an early biomarker of

immunotherapy response.

Index Terms— Lung cancer, Immunotherapy, Radiomics,

Biomarker, CT, Survival analysis

1. INTRODUCTION

Lung cancer is the most common cause of cancer-related

deaths worldwide [1]. Despite recent efforts in lung cancer

screening, 47% to 57% of new cases are diagnosed at an

advanced stage [2]. Recent work with immune checkpoint

inhibitors has changed the landscape of cancer treatment,

leading to a rapid rise of immunotherapy treatments [3].

However, one of the challenges of immunotherapy, recently

adopted as a new standard of care for stage III-IV NSCLC

patients, is the ability of accurate and reproducible biomark-

ers that would allow a proper patient selection that are more

likely to respond [4]. Different biomarkers have been intro-

duced in clinical practice such as levels of PD-L1, presence of

tumor-infiltrating lymphocytes or Tumor Mutational Burden

(TMB), all of them with mixed results.

The potential of computational image analysis to provide

decision support in oncology and the importance of iden-

tifying predictive and non-invasive biomarkers of disease

progression and response to therapy has led to Radiomics [5].

These quantitative image features, extracted from radiologi-

cal images, offer information on tumor radio-phenotype and

microenvironment that differs from that provided by clinical

reports, laboratory test results, and genomic or proteomic

assays. Radiomics features could potentially aid cancer de-

tection, diagnosis, assessment of prognosis, prediction of

response to treatment, and monitoring of disease status. The

key to success in applying radiomics to diagnosis, progno-

sis and treatment response monitoring is that most of the

lung cancer patients will undergo multiple CT (Computed

Tomography) and PET (Positron Emission Tomography) ex-

aminations during the treatment [6].

Therefore, there is a manifest clinical need to develop new

radiologic response criteria given the unusual behavior of tu-

mors with these new treatments. As immunotherapy has high

cost and can bring toxicity, it is important to stratify patients

who are more likely to benefit from therapy.

Previous studies have been proposed to predict treatment re-

sponse using radiomics in NSCLC. Few studies have focused

on the immunotherapy response and these consider only the

pre-treatment CT or one of the possible types of immunother-

apy treatment [7, 8, 9].

In this work, a delta-radiomics signature has been imple-

mented to predict survival and treatment response in pa-

tients with advanced NSCLC undergoing immunotherapy

as monotherapy, combination of immune-based agents or in

combination with traditional treatments.
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2. METHODS

2.1. Patients and endpoints

A total of 182 patients with pathologically confirmed stage IV

NSCLC treated with immunotherapy from January 2013 to

December 2019 at Hospital Universitario Fundación Jiménez

Diaz (FJD) and Clı́nica Universidad de Navarra (CUN) were

retrospectively collected.

Patient inclusion criteria were: 1) patients treated with

immunotherapy as monotherapy, combination of immune-

based agents or in combination with traditional treatments

as chemotherapy or radiotherapy; 2) availability of clinical

patient data; 3) for patients who underwent more than one

line of treatment, only the last immunotherapy line was con-

sidered; 4) availability of both baseline and first follow-up

CT image within two months from treatment start. Patients

that had a primary tumor too complex to be isolated by an

experienced radiologist on the CT image were excluded. This

resulted in 88 patient datasets that were available for analysis.

Patients were divided in two complete independent co-

horts, including a training cohort of 63 patients from FJD and

a test cohort of 25 patients from CUN.

The primary endpoint in our study was the Overall Sur-

vival (OS), the gold standard endpoint in immunotherapy

[10]. It was calculated as the time in months between the

initiation of the immunotherapy treatment and the death or

censored to last follow-up visit for survivors. The secondary

endpoint was the patient response status based on patient

survival. Patients who survived more than 12 months after

the first cycle of treatment were classified as responders. If

a patient was censored at 12 months, he was discarded. This

resulted in 27 patients defined as responders and 35 as no

responders.

2.2. CT acquisition and processing

All patients underwent a CT scan within 30 days before

treatment and a follow-up CT scan within two months after

treatment. CT images were acquired after contrast injec-

tion during the patient inspiration breath-hold, following the

Contrast-enhanced CT chest protocol. Standard reconstruc-

tion algorithm was used. Since the CT images were acquired

at different institutions, they were performed with different

scanners from different manufacturers (Siemens, GE Medical

System, Philips, Toshiba) and acquisition parameters.

Tumor segmentation was performed under the supervision

of experienced radiologists on the CT images. Only the pri-

mary nodule for each patient was segmented. If a patient pre-

sented an ambiguous primary nodule, only one of the possible

primary nodules was considered.

The segmented nodule mask was used to obtain the bor-

der mask (peri-nodular tumor region) through a morpho-

logical dilatation operation with a 3D spherical structural

element, which radius was chosen depending on the Major

Fig. 1. Baseline CT image with intra-nodular (blue) and peri-

nodular (green) regions.

Axis Length of the nodule. Subtracting the intra-nodular

mask from this dilated mask enabled to extract a ring of

lung parenchyma surrounding the nodule, that represents the

peri-nodular mask. Air and mediastinal muscle pixels were

removed from CT images and were replaced with the aver-

age pixel intensity of the 9x9 neighborhood surrounding the

pixel; this is important to avoid edge artifacts during feature

extraction [11]. An example of intra-nodular and peri-nodular

regions from a baseline CT image is shown in Figure 1.

Anisotropic image voxels were resampled to 1x1x1 mm3

across the whole cohort and voxel intensity values were dis-

cretized using a bin width of 20 Hounsfield units.

2.3. Features extraction and selection

Radiomics features were extracted from primary nodules in

both baseline and first follow-up CTs by using Pyradiomics

[12]. Different features types were considered: first order

statistics-based features, shape and size features and textu-

ral features. Features were extracted from both original and

transformed images: many filters were used such as Wavelet,

Laplacian of Gaussian, Local Binary Pattern, Square, Square

Root, Logarithm and Exponential filters.

A total of 1925 Radiomics features were extracted from

the intra-nodular and peri-nodular regions of the nodule, re-

sulting in 3850 radiomics features at each time point.

Delta-radiomics features were calculated as the difference

between first follow-up (post-treatment) and baseline (pre-

treatment) features. This resulted in 1925 delta-radiomics

features for each case, which were standardized based on a

scaling transformation learned in the training set.

The features repeatability against segmentation was ana-

lyzed using two datasets: QIN Lung CT Segmentation dataset

[13] and a subset of FJD dataset. In the first dataset, for each

nodule two segmentations performed with two different auto-

matic segmentation algorithms were considered. In the FJD

subset, a radiologist performed the semi-automatic segmen-

tation with two different modules of syngo®.via software. A

total of 56 nodules were analyzed and the Lin’s concordance

correlation coefficient (CCC) for each feature was calculated.

A cutoff value of 0.85 was chosen. Only repeatable features

with CCC > 0.85 in both datasets were considered.
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Feature reproducibility was also assessed. The test-retest

scans from the Reference Image Database to Evaluate Ther-

apy Response (RIDER) dataset were used [14]. This dataset

includes 31 patients, each one underwent two chest CT scans

within 15 minutes by using the same imaging protocol. Only

reproducible features with CCC > 0.85 were considered.

Reproducible and repeatable features were considered sta-

ble and used for the subsequent analysis in our study.

2.4. Statistical analysis and signature construction

All the statistical analyses were performed with R software,

version 3.6.2 (http://www.R-project.org). P-value < 0.05 was

considered as significant. Regression model’s performance

was evaluated with the concordance index (C-index).

A univariate Cox proportional hazard regression analysis

was implemented in the training set to study the relationship

between delta-radiomics features and OS. Using a bootstrap

approach, the CI of each feature was calculated 100 times:

features found to be significantly correlated with OS (p-value

< 0.5) and with C-index greater than 0.60 were considered

predictive.

Among these selected delta-radiomics features, the least

absolute shrinkage and selection operator (LASSO) was used

to select the most useful predictive features in a multivariate

Cox regression model. To avoid overfitting, 3-fold cross val-

idation was performed in the training set to select features.

A delta-radiomics score was calculated for each case as linear

combination of the selected features weighted by their respec-

tive coefficients in the multivariate Cox model. The potential

of delta-radiomics signature to predict OS was assessed by us-

ing the Kaplan-Meier survival analysis. Based on the median

value of the delta-radiomics score in the training set, the pa-

tients were stratified in low- and high-risk groups. The statis-

tical differences between the survival curves of these groups

was calculated with log-rank test.

The ability of each selected delta-radiomics feature to

stratify patients was also investigated.

Based on the delta-radiomics signature, a Logistic Re-

gression model was implemented to predict responders to

treatment. AUC and ROC curve analysis were performed.

Youden’s index was calculated to choose the appropriate

cut-off point to discriminate patient outcome.

In addition, following the same method pre- and post-

treatment signatures were also obtained.

3. RESULTS

3.1. Feature analysis and Delta-Radiomics signature

1925 radiomics features were extracted from each image.

The feature repeatability against segmentations was achieved

by 383 features (26% of features) and the reproducibility

by 1068 features (57% of features). A total of 206 features

remained after the stability filtering.

Features C-index (95% CI) HR (95% CI) p-value

Pre-treatment 0.59 [0.43, 0.75] 0.89 [0.28, 2.78] 0.84

Post-treatment 0.52 [0.34, 0.70] 1.03 [0.65, 1.62] 0.91

Delta-radiomics 0.69 [0.54, 0.84] 2.06 [1.05, 4.06] 0.03

Table 1. Delta-radiomics signature performance in the test set

compared to the signatures based on pre-treatment and post-

treatment features.

Stable features were extracted from the intra-nodular and

peri-nodular masks and merged to obtain a vector of 412 fea-

tures for each case. Delta-radiomics features were calculated.

A univariate Cox regression analysis was performed.

It resulted in 60 features significantly correlated with OS,

17 of which were extracted from peri-nodular regions. All

features had a C-index > 0.60, with a maximum of 0.65

reached by Small Dependence Emphasis extracted from peri-

nodular mask of the LoG image (C-index = 0.65, 95%CI =

[0.54,0.77], HR = 0.58, P = 0.04). This feature explains the

texture homogeneity of peri-nodular region, with a greater

value indicative of less homogeneous texture.

From the LASSO multivariate Cox regression analysis

(lambda = 0.0218), a total of 13 features with non-zero coef-

ficient were selected in the training set, including 9 features

from tumor and 4 features from peritumoral masks. The

delta-radiomics signature achieved a C-index of 0.81 (95%CI

= [0.73, 0.89], HR = 3.66, 95%CI = [2.31, 5.79], p < 0.0001)

and significantly stratified low- and high- risk patients (p <
0.0001) in the training set.

The Logistic regression model based on delta-radiomics

signature achieved AUC of 0.88, ACC of 0.82, Sensitivity of

0.85 and Specificity of 0.79 in classifying responders to treat-

ment.

3.2. Delta-Radiomics signature validation

Delta-radiomics signature was validated in a completely inde-

pendent cohort of 25 patients from a different center (CUN).

This signature was significantly correlated with OS (p-value

= 0.03), as shown in Table 1. The results were compared to

the ones obtained with the pre-treatment and post-treatment

signatures.

The corresponding Kaplan-Meier analysis showed that

the delta-radiomics signature was able to significantly strat-

ify patients in low- and high- risk groups (p = 0.018). The

median OS in the high-risk group was significantly shorter

than that in the low-risk group (4.4 and 12.0, respectively)

as well as the survival probability at 1 year (0.50 and 0.13,

respectively). Kaplan-Meier survival curves are shown in

Figure 2.

The association of each selected feature to predict OS was

investigated. Only Inverse Variance from Wavelet image was

significantly correlated with OS in the test set (C-index =

0.68, %CI = [0.53, 0.81]), HR = 2.27), but it could not stratify

patients’ risk (p = 0.16).
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Fig. 2. Kaplan-Meier survival curves of low- and high- risk

groups in the test set based on the delta-radiomics signature.

AUC ACC SENS SPEC

Pre-treatment 0.28 0.26 0.13 0.5

Post-treatment 0.54 0.3 0 0.88
Delta-radiomics 0.76 0.70 0.67 0.75

Table 2. Performance of Logistic Regression models us-

ing the delta-radiomics (red), pre-treatment (green) and post-

treatment (blue) signatures.

The delta-radiomics signature was also predictive of treat-

ment responders in the test set achieving an AUC of 0.76, as

shown in Table 2. The results were compared to those ob-

tained using only the pre- or post- treatment signatures inde-

pendently. ROC curves are shown in Figure 3.

4. DISCUSSION AND CONCLUSION

Immunotherapy has recently been adopted as a new stan-

dard of care for advanced NSCLC patients. However, one

of the challenges of immunotherapy is that an accurate and

reproducible biomarker that would allow to predict patients

that are more likely to respond has yet to be identified. In

Fig. 3. ROC curves of Logistic Regression models using

the delta-radiomics (red), pre-treatment (green) and post-

treatment (blue) signatures.

this study, a delta-radiomics signature has been developed to

predict overall survival and response to treatment in patients

treated with different combinations of immunotherapy and

traditional treatments.

The developed delta-radiomics signature comprised both

intra-nodular and peri-nodular regions, highlighting the im-

portance of the tumoral microenvironment to understand pa-

tient’s response. Indeed, one of the selected features (Small

Dependence Emphasis) suggests that more homogeneous

peritumoral environment was related to a better prognosis

in terms of survival. Since the delta features captured the

changes over time, this means that a homogenization of the

tumoral environment could be associated with a better prog-

nosis. Morphological heterogeneity could be associated with

infiltration, inflammation, neovascularization and necrosis of

the tumor tissue and therefore a worse prognosis.

Kaplan-Meier analysis showed that proposed delta ra-

diomics signature successfully stratified low- and high- risk

patients. It works better compared to the signatures based

only on pre- or post- treatment features, demonstrating the

potential of delta-radiomics to capture the changes over time

of tumor environment during immunotherapy treatments.

The Logistic regression model implemented for predic-

tion of treatment responders with the delta-radiomics signa-

ture reached better results (AUC = 0.76) compared to the

pre- and post-treatment signatures, suggesting that there is a

significant association between changes in radiomics features

and immunotherapy response.

In addition to the lack of data, the main limitation of this

study was the heterogeneity of treatments provided to the pa-

tients of the institutions involved in this retrospective analy-

sis. A homogenization of the dataset according to the patient

treatment will be performed in future studies. Furthermore,

the use of longitudinal data introduced the need of consider

the temporal alterations not related to disease progression or

response to therapy. An autocalibration of CT images may be

useful.

In conclusion, the development of a delta-radiomics sig-

nature that could stratify low- and high- risk patient and pre-

dict response status can be very useful in the context of per-

sonalized medicine. Considering the relationship between

delta-radiomics features and survival, more investigations are

guaranteed to better understand the underlying biological in-

sights of this observation.
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