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ABSTRACT

Tuberculosis (TB) is still recognized as one of the leading
causes of death worldwide. Recent advances in deep learning
(DL) have shown to enhance radiologists’ ability to interpret
chest X-ray (CXR) images accurately and with fewer errors,
leading to a better diagnosis of this disease. However, little
work has been done to develop models capable of diagnos-
ing TB that offer good performance while being efficient, fast
and computationally inexpensive. In this work, we propose
LightTBNet, a novel lightweight, fast and efficient deep con-
volutional network specially customized to detect TB from
CXR images. Using a total of 800 frontal CXR images from
two publicly available datasets, our solution yielded an accu-
racy, F1 and area under the ROC curve (AUC) of 0.906, 0.907
and 0.961, respectively, on an independent test subset. The
proposed model demonstrates outstanding performance while
delivering a rapid prediction, with minimal computational and
memory requirements, making it highly suitable for deploy-
ment in handheld devices that can be used in low-resource
areas with high TB prevalence. Code publicly available at:
https://github.com/dani-capellan/LightTBNet.

Index Terms— Deep learning, Efficient ML, Deep con-
volutional neural network, Chest X-ray, Tuberculosis.

1. INTRODUCTION

Tuberculosis (TB) remains one of the leading causes of death
worldwide [1]. About a quarter of the world’s population
is infected with Mycobacterium tuberculosis, the agent that
causes TB, usually affecting the lungs, although it can also
affect other parts of the body [2]. Prior to the coronavirus
(COVID-19) outbreak, TB was the leading infectious disease-
related cause of death due to a single infectious agent, sur-
passing HIV/AIDS [1, 3]. Since then, there has been a sig-
nificant drop in the number of people newly diagnosed and
treated that has led to an increase in TB deaths [1]. Early di-
agnosis of TB is essential to promote effective treatment and
to reduce further transmission. Chest X-rays (CXRs) are rec-
ommended by the World Health Organization (WHO) as a TB
screening and triage tool given their wide availability, rapid

execution, and acquisition with portable machines to reduce
the risk of cross infection [4, 5]. Artificial intelligence (AI)-
powered computer-aided detection (CAD) tools have shown
to improve health outcomes, especially in under-resourced ar-
eas with a high TB burden [6, 7]. By using these solutions,
radiologists are able to interpret images with greater accuracy
and with fewer errors, allowing them to devote more time to
patient care [8].

Several studies have explored the use of deep learning
(DL) for TB detection in CXRs. Hwang et al. [9] and Is-
lam et al. [10] proposed DL-based methods combining Con-
volutional Neural Networks (CNNs) and Transfer Learning
techniques, and also explored the ensembling of predictions
from multiple architectures to improve TB detection. How-
ever, efficiency is crucial when designing DL models for med-
ical tasks, given the limited amounts of data that may lead to
overfitting and poor generalization. Pasa et al. [11] proposed
a novel Residual Neural Network (ResNet) for TB detection,
emphasizing the importance of efficiency and the need for
models that can generalize well with limited data. Rajpurkar
et al.[12] combined clinical information with CXR images
in a deep learning algorithm based on a DenseNet-121 ar-
chitecture to diagnose TB. Wong et al. [13] introduced TB-
Net, a novel architecture specifically tailored to TB detection
in CXRs, which included self-attention mechanisms and ex-
plored new approaches to CNN-based TB detection. Despite
previous efforts, considering the WHO recommendation for
TB screening and the increase in undiagnosed and untreated
TB, there is an urgent need to create new solutions specifi-
cally tailored for deployment in low-resource settings, where
efficiency and computational time could be a challenge.

In this context, we propose LightTBNet, a novel light-
weighted, fast and efficient CNN specially customized to de-
tect TB from CXRs. The main objectives of our design have
been to outperform current state-of-the-art methods while re-
ducing computational and memory requirements, through a
careful design of the number of residual blocks and skip con-
nections, and by proposing a specific architecture that reduces
the number of operations and thus increase efficiency. This
could allow our method to be deployed on handheld devices
maximizing accuracy. Additionally, we present a thorough
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assessment of the performance and efficiency of our method
considering public datasets and state-of-the-art alternatives.

2. METHODS

2.1. Dataset and splits

For the development of this study, we considered a total of
800 frontal CXR images from two public datasets [14]:

• Montgomery County X-ray Set (MC): 138 frontal CXRs.
80 CXRs are non-TB and 58 are abnormal with manifes-
tations of TB, including effussions and milary patterns.

• Shenzhen Hospital X-ray Set (SZ): 662 frontal CXRs. 326
CXRs are non-TB and 336 are abnormal showing diverse
manifestations of TB, including some pediatric CXRs.

The mean age of the whole set (MC & SZ) is of 36.24 ± 15.65
y.o. (MC: 40.11 ± 18.72 y.o., SZ: 35.43 ± 14.80 y.o.). The
dataset was randomly split following a training-validation-
testing scheme. Twenty percent of the data was reserved for
independent testing, with no patient overlap, and stratifying
the data by cohort, TB class (positive/negative), sex and age,
ensuring that the data were as balanced as possible. The re-
maining 80% was further split using a 5-fold cross-validation
approach for hyperparameter tuning.

2.2. Image preprocessing and data augmentation

We applied Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) to all the data, as it has been shown to improve
the detection of TB in CXRs [15, 16, 17]. The images were
downscaled to 256×256 when inputted to the networks, en-
suring that the tensors are not excessively large while keeping
the spatial resolution required to distinguish TB findings, if
present.

The training data were augmented with a random horizon-
tal flip, a random rotation from -15º to +15º, a random shift
from -10% to +10% (both height and weight) and a random
scaling from -10% to +10%. The input images were normal-
ized to zero mean and unit variance in order to train the net-
work more efficiently.

2.3. Model architecture

The proposed architecture (see Figure 1) is an efficient,
lightweight adaptation of the ResNet architecture composed
of N residual convolutional blocks. These residual blocks
consist of two 3×3 convolutions followed by ReLU acti-
vations and batch normalizations (BatchNorm). Parallel to
these two convolutions, there are skip connections with a 1×1
convolution, which act as shortcuts when the tensors of both
branches are concatenated. The residual block ends with a
max-pooling layer (pooling size 2×2, stride 2). These resid-
ual blocks are followed by a 1×1 convolutional layer, which
reduces the dimensionality of the feature maps extracted

from the previous blocks. Then, an MLP-based classification
module composed of two fully-connected layers is included.

There is a trade-off between inference time and model
size that depends on the number of residual blocks (N ). The
more residual blocks we include to the architecture, the lighter
the model will be, since the extracted feature maps will be
smaller. However, this leads to an increase in the number of
multiply–accumulate operations (MACs) and inference time.
Moreover, the use of skip connections in the residual blocks
allows the model to automatically decide where to pass the
information through, following an optimal pathway for the
given task. The number of convolutional layers impacts on
the detection of TB findings in CXR images, since the more
convolutional layers the model has, the more general features
it will extract from the image.

The design of our architecture differs from traditional
ResNets in the introduction of pooling layers between con-
volutions and in the use of convolutional steps within the
skip connections. In addition, our proposal includes a fewer
number of convolutional layers and a smaller number of
parameters. The use of fewer convolutional layers, ReLU
activation functions and max-pooling layers (which reduce
tensor dimensionality) within the architecture leads to a fewer
number of MACs and parameters, thus making it more effi-
cient.

Other high-performing and efficient architectures includ-
ing DenseNet-121 (used by Rajpurkar et al. [12]), Efficient-
Net (B0 and V2-s), MobileNet (MobileNetV3-small) and
ResNet (ResNet-18, ResNet-34), were used in the experi-
ments to compare with the performance and efficiency of our
proposal.

3. EXPERIMENTS AND RESULTS

3.1. Implementation details

For all the experiments, we used Adam optimizer with de-
fault parameters (β1 = 0.9, β2 = 0.999), batch size of 16
images, learning rate 1× e−4, and focal loss [18], a variation
of the cross entropy loss which introduces a modulating term
(1−pt)

γ that downweights the loss assigned to well-classified
examples (easy examples) and upweights the loss assigned to
hard-to-classify examples, focusing learning on negative hard
examples. The focal loss is formulated as follows:

FL (pt) = −(1− pt)
γ log(pt) (1)

where p ∈ [0, 1] is the model’s estimated probability for
target label t and γ ≥ 0 is a tunable focusing parameter.

We also performed 5-fold cross-validation. On each fold,
we evaluated performance on the validation subset and chose
the best model checkpoint based on the highest validation
AUC.

During the testing of the models, we used the best algo-
rithm trained on each fold and averaged their predictions (TB
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Fig. 1: Model architecture (LightTBNet) and pipeline for TB prediction. N corresponds to the hyperparameter that controls the number of
residual blocks included in the model. Inference is done by ensembling five models obtained from five different cross-validation folds.

Model Val ACC Val F1 Val AUC MACs (G) Params (M) Inference time (ms) Size (MB)

LightTBNet (N=3) 0.869 ± 0.024 0.874 ± 0.027 0.948 ± 0.016 0.822 4.298 2.25 ± 0.63 150.02
LightTBNet (N=4) 0.867 ± 0.057 0.873 ± 0.043 0.952 ± 0.02 1.138 1.467 2.55 ± 0.21 148.44
LightTBNet (N=5) 0.836 ± 0.04 0.878 ± 0.019 0.947 ± 0.013 1.456 1.932 3.22 ± 0.27 154.9

Table 1: Results for model comparison in validation set (cross-validation). The inference time is expressed in milliseconds (ms) and the values
correspond to the time taken to predict one image by a single fold model. The model size is expressed in megabytes (MB) and corresponds to
the size of a single fold model (including architecture and weights). The best option in each metric is highlighted in bold.

scores) across an ensemble of the five models (see Figure 1).
Previous experiments showed better performance when en-
sembling the five models extracted from each fold, ensuring a
more robust final score.

To implement the networks, we used the PyTorch frame-
work (v. 1.12). For the experiments, we used a workstation
with NVIDIA A30 24GB GPU, 256GB RAM and 2 x Intel
Xeon Silver 4216 @ 2.1 GHz CPUs.

3.2. Hyperparameter optimization

We compared the TB classification performance, efficiency
and size among three different versions of the proposed ar-
chitecture, in which we vary the the number of residual con-
volutional blocks (N ). We considered different architectures
(N=3,4,5) and selected the best performing configuration on
the cross-validation subsets by analyzing their AUC scores.
We compared these three versions since, if we took a smaller
number of N , the network was not deep enough to correctly
find TB-compatible findings, and if we took a higher value,
the feature maps extracted after the convolutional steps were
extremely small considering the input image size, and there
was a significant loss of spatial information in the process.

We also calculated the multiply–accumulate operations
(MACs)1, the number of parameters and inference time for
each of the configurations in order to compare their efficiency
and computational requirements. These calculations were
performed by running 300 repetitions in a row and then aver-
aging the timings, thus preventing the GPU from going into
power-saving mode when measuring time.

The results obtained for each of the configurations in the
validation set are included in Table 1. All three versions

1Code used: https://github.com/Lyken17/pytorch-OpCounter

demonstrated high efficiency and low inference times. Light-
TBNet with 4 residual convolutional blocks (N = 4) shows
better performance (val AUC) with low computational re-
quirements when comparing with the other configurations (N
= 3, 5) tested. As a result, this configuration was selected for
testing.

3.3. Results on test set

In this section, we test our best configuration (N=4) along
with other high-performing and efficient architectures, de-
tailed in section 2.3, on an independent test subset of 160
images. The Table 2 shows that our proposal outperforms the
results of other efficient approaches both in terms of perfor-
mance (highest AUC score) and efficiency (lowest number of
parameters and inference time). The inference times of all
the architectures were obtained following the same procedure
as detailed in section 3.2. Moreover, a graphical comparison
taking into account performance (AUC score) and efficiency
(MACs & number of parameters) of each of the architectures,
is shown in Figure 2.

Next, we compared as fairly as possible our proposal with
other approaches in the literature that report results on the
same TB datasets. To do so, we considered different deep-
learning proposals and selected the best results from each
contribution which are comparable to our results. As shown
in Table 3, our proposal outperforms the results of other con-
tributions, both when combining and splitting separately the
two TB datasets. However, our work could not be directly
compared to other efficient TB methodologies, such as those
proposed by Wong et al. (TB-Net) [13] and Lakhani et al.
[16], as their results were not reported independently for the
two public datasests used in this work. When testing on the



Model Test ACC Test F1 Test AUC MACs (G) Params (M) Inference time (ms) Size (MB)

DenseNet-121 0.906 0.908 0.952 3.639 6.95 26.09 ± 0.9 411.01
EfficientNetB0 0.844 0.839 0.937 0.513 4.01 13.23 ± 0.33 213.51
EfficientNetV2-s 0.9 0.893 0.955 3.749 20.18 27.7 ± 0.69 444.82
MobileNetv3-small 0.812 0.803 0.892 0.072 1.52 6.59 ± 0.43 46.93
ResNet-18 0.875 0.868 0.959 2.274 11.176 3.79 ± 0.76 118.64
ResNet-34 0.9 0.896 0.951 4.695 21.288 7.56 ± 0.32 207.21
LightTBNet (N=4) 0.906 0.907 0.961 1.138 1.467 2.55 ± 0.21 148.44

Table 2: Results for model comparison in test set. The inference time is expressed in milliseconds (ms) and the values correspond to the time
taken to predict one image by a single fold model. The model size is expressed in megabytes (MB) and corresponds to the size of a single
fold model (including architecture and weights). The best option in each metric is highlighted in bold.

Model / Implementation ACC (MC + SZ) AUC (MC + SZ) ACC (MC) AUC (MC) ACC (SZ) AUC (SZ)

Hwang et al. [9] - - 0.67 0.88 0.84 0.93
Islam et al. [10] - - - - 0.88 0.91
Pasa et al. [11] 0.862 0.925 0.79 0.811 0.844 0.9
LightTBNet (N=4) 0.906 0.961 0.889 0.943 0.91 0.963

Table 3: Accuracy (ACC) and AUC results of our model on the Montgomery County (MC) and Shenzhen (SZ) test subsets in comparison to
the results reported in other publications. To provide a better comparison with our results, figures from other publications where pre-training
is performed on ImageNet and/or ensembles are used have been discarded. Only deep learning-based approaches with results on MC & SZ
were considered. The best option in each metric is highlighted in bold.
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Fig. 2: Performance (AUC score) on the test set vs. efficiency
(MACs & number of parameters). Comparison between our pro-
posal and other high-performing and efficient architectures.

independent test set, the proposed model provides an ACC,
F1 and AUC of 0.906, 0.907 and 0.961, respectively. With
a default prediction threshold of 0.5, we achieve a sensitiv-
ity (SN) and specificity (SP) of 0.924 and 0.889, respectively,
thus fulfilling the requirements of the WHO’s Target Prod-
uct Profile (TPP) of triage tests (≥90% SN and ≥70% SP).
Finally, Figure 3 displays the saliency maps and grad-CAMs
of two true positive (TP) cases, i.e., truly classified as posi-
tive for TB. Saliency maps can be used to assess an image’s
overall spatial support for a given class. On the other hand,
grad-CAMs are coarse location maps that highlight the key
areas of the image that the model focuses on for prediction.
As shown in Figure 3, the proposed model correctly identifies
a TB-compatible cavity in the left lung of patient 1 and shows
a generalized activation in the image of patient 2 due to the
miliary pattern present in the CXR.
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Fig. 3: Preprocessed image (CLAHE), saliency map and grad-CAM
of two TB positive cases truly predicted as positive. Patient 1 be-
longs to MC and patient 2 to SZ. The output TB scores provided by
the model were 0.8215 and 1.0 for patient 1 and 2, respectively.

4. CONCLUSION

In this study, we have proposed a lightweight, fast and ef-
ficient DL-based residual network for detecting TB from
CXRs, which has shown outstanding performance and low
computational requirements compared to other state-of-the-
art architectures and implementations. Given these low com-
putational requirements and good performance, this solution
demonstrates its potential use in computer-aided diagnosis
systems and could be deployed for use in smartphones or
other handheld devices, serving to gain accessibility to diag-
nosis and to reduce the high clinical burden when screening
for TB, which remains a challenging task, especially in low-
resource settings with high TB prevalence.
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