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ABSTRACT 

Approaches based on the Denoising Diffusion Probabilistic 

Model (DDPM) have shown promise for directly generating 

segmentation maps from medical images. However, 

denoising in the original image space limits the application of 

DDPM to 2D images. We present a latent diffusion model-

based segmentation method (LDM-seg) to directly generate 

multi-label segmentation maps from 3D medical images, 

such as multisequence magnetic resonance imaging (MRI). A 

distinctive aspect of our approach is utilizing ControlNet to 

apply MRI as a conditioning factor to control the generation 

process. Trained and validated on the BraTS 2023 Adult 

Glioma dataset, we show LDM-seg outperforms state-of-the-

art methods, including nnU-Net and MedNeXt. In addition to 

segmentation, the method can be used to generate an 

unlimited number of realistic brain tumor masks, which are 

typically required as conditions for generating synthetic brain 

MRI with tumors. Further, the method can also produce a 

detailed variance map of predicted segmentations.  

Index Terms— latent diffusion model, ControlNet, 

segmentation, BraTS, magnetic resonance imaging

1. INTRODUCTION

With wide intrinsic heterogeneity in appearance, shape, and 

histology, brain tumors such as glioblastomas (GBM) and 

diffuse astrocytic gliomas are challenging to diagnose and 

treat, although they represent the most common malignant 

primary tumors of the central nervous system in adults [1]. 

Automated and quantitative imaging analysis tools for 

accurate segmentation of brain tumors from magnetic 

resonance imaging (MRI) can aid clinicians in the diagnosis 

and treatment of these tumors.  

With the vast advancements in deep learning techniques, 

there has been tremendous success in automatic segmentation 

of brain tumors. In this field, a prominent effort is the Brain 

Tumor Segmentation (BraTS) Challenge, which is an 

ongoing annual event that has been held since 2012 [1]. The 

winning method of BraTS 2020 was based on nnU-Net [2], 

which analyzes the training dataset and automatically 

configures a matching U-Net-based [3] segmentation 

pipeline. The winning method of BraTS 2021 was based on 

nnU-Net with some optimizations of the network’s pipeline 

[4]. An ensemble of three different methods, including nnU-

Net, was introduced at BraTS 2022 and ranked first. The 

winning method of BraTS 2023 Adult Glioma sub-challenge 

[5] also used an ensemble of three different methods:

standard nnU-Net, Swin UNETR [6] and the winning method

of BraTS 2021. Specifically, they incorporated methods to

augment data with synthetic images. Based on the past

experiences, nnU-Net has been used as the baseline of these

winning methods because of its accuracy, robustness, and

ease of use. It is also clear that an ensemble of different

architectures is a winning strategy.

Recently, diffusion models have achieved impressive 

results in image synthesis. Unlike generative adversarial 

networks, diffusion models do not face issues such as training 

instabilities and mode-collapse. The latent diffusion model 

(LDM) is a diffusion model variation employing pretrained 

autoencoders to better model image distributions in the latent 

space, while greatly reducing the need for excessive 

computational resources [7]. In medical imaging, generative 

models have been used to generate synthetic healthy brain 

MRI [8], abdominal CT with tumors [9], and brain MRI with 

tumors [5,10,11]. The synthetic brain MRI with tumors can 

be utilized for data augmentation to enhance tumor 

segmentation accuracy [5,12]. To generate such synthetic 

brain MRI with tumors, synthetic brain tumor label maps are 

often required as conditional inputs [5,10-12].  

Besides generating MR images, diffusion models are 

used to directly generate segmentation maps with MRIs as 

conditioning priors [13-18]. Previous approaches relied on 

the Denoising Diffusion Probabilistic Model (DDPM) [19], 

which performs the diffusion process in the original image 
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space. MRIs were treated as conditions that were 

concatenated [13] or dynamically encoded [14] with the 

segmentation maps during the denoising process. While 

showing promising results, these approaches usually work 

only with 2D MRI slices because of the high computational 

resources required by DDPM. 

In this work, we propose to use LDM to directly generate 

3D multi-label segmentation maps of adult glioma from 

multisequence MRI. A unique feature of our approach is to 

use ControlNet [20] to impose MRI as conditions during the 

generation. ControlNet adds precise and specific control 

during text-to-image generation [20]. Trained and validated 

on the BraTS 2023 Adult Glioma datasets, we show that our 

LDM-seg method outperforms the two state-of-the-art 

(SOTA) non-diffusion-based methods, namely nnU-Net [2] 

and MedNeXt [21]. In addition to providing accurate 

segmentations, we show that LDM-seg can generate 

unlimited brain tumor labels, which can be used as conditions 

for generating synthetic brain images with lesions [5,10-12]. 

Because of the stochastic nature of diffusion models, once 

trained, multiple variants of segmentations can be generated 

to form a detailed variance map, a byproduct of LDM-seg for 

better interpretability of segmentation results.  

2. METHODS

2.1. Method Overview 

The overview of our LDM-based segmentation method is 

depicted in Fig. 1. It includes three separate phases. The first 

step (red box) is to train a compression model using only the 

ground truth labels. The compression model ensures that any 

label image can be encoded (ℇ ) into a latent space and 

accurately reconstructed through a decoder (�). Based on the 

pretrained compression model, the second step (green box) is 

to train an unconditional diffusion model in the latent space 

also using only the ground truth labels. Combined with the 

compression model, the unconditional diffusion model is 

supposed to generate random but realistic brain tumor masks. 

Based on the pretrained compression model and the 

unconditional diffusion model, the third step (yellow box) is 

to train a ControlNet using ground truth labels as input to ℇ 

and multisequence 3D MR images as conditions. The 

ControlNet is attached to each encoder level of the denoising 

U-Net. The parameters of the pretrained denoising U-Net are

frozen, and the ControlNet is trained on a trainable copy of

the denoising U-Net with zero convolution layers. For

inference, the noisy segmentation map is denoised in the

latent space with testing MR images as conditions. It is then

upscaled to the image space with pretrained � to generate the

final segmentation. Each inference creates a slightly different

segmentation prediction.

Fig. 1. Method overview. Training the compression model 

(red box) and the unconditional diffusion model (green box) 

only require ground truth segmentations. MRI are used as 

conditions when training a ControlNet (yellow box) based on 

pretrained compression model and the unconditional 

diffusion model. 

2.2. Data 

The publicly available dataset of the Adult Glioma sub-

challenge of BraTS 2023 [1] was used. For each case, 

multisequence MR images were considered including T1-

weighted, post-contrast T1-weighted, T2-weighted, and T2 

Fluid Attenuated Inversion Recovery (FLAIR). All images 

were pre-processed following the standard pipeline, i.e., co-

registered to the same anatomical template, interpolated to 

the same resolution (1 mm3 with image size of 

240×240×155), and skull stripped. Ground truth annotations 

of brain tumors were provided by expert neuroradiologists. 

     For all methods discussed in this work, training and 

validation were performed using the BraTS 2023 training 

dataset (1,251 cases), and validation dataset (219 cases), 

respectively. As a preprocessing step, we centrally cropped 

the images and labels to a spatial resolution of 244×244×144. 

The resulting segmentations from LDM-seg were padded to 

the spatial resolution of 240×240×155 to be able to submit to 

the Synapse (www.synapse.org) for validation.  

2.3. Compression Model Training 

As shown in Fig. 1, training the LDM can be decomposed 

into training a compression model and training a diffusion 

model in the latent space. Our perceptual compression model 

consists of an autoencoder trained by the combination of ℒ� 

loss, Kullback-Leible regularization, perceptual loss and a 

patch-based adversarial loss. Given a 3D segmentation map 

� ∈ ℝ�	
	� , the encoder ℇ  encodes �  into a latent 

representation  �  ℇ���, and the decoder � reconstructs the 

segmentation map from the latent � , giving ��  ���� 



��ℇ����, where � ∈ ℝ�	�	�. The encoder downsamples the 

image by a factor �  �/ℎ  �/�  �/�.  

     For training the compression model, we set the 

downsampling factor to be �  4, i.e., two downsamplings 

with number of channels to be [32, 96, 192]. The output of 

the encoder was a latent representation of size 61×61×36. The 

training data was augmented with random flips along the 

three axes. This augmentation was not used for training the 

diffusion model and the ControlNet. The model was trained 

with the Adam optimizer, a learning rate of 10-5 and a batch 

size of 2. The model was trained for 250 epochs.  

2.4. Unconditional LDM Training 

As probabilistic models designed to learn a data distribution 

����,  diffusion models gradually denoise a normally 

distributed variable, which can be viewed as learning the 

reverse process of a fixed Markov Chain of length �. Let �  

be a noisy version of the input �,  training a diffusion model 

can be considered as training an equally weighted sequence 

of denoising autoencoders !"�� , #�  1…�  to predict a 

denoised variant of � , by minimizing the objective 

 &�'  (),*~,�-,��, .‖! − !"�� , #�‖1
12,   (1) 

with # uniformly sampled from 31, … , �4. 

     For LDM with pretrained compression model, the input � 

is downsampled to a low-dimensional latent space in which 

high-frequency details are absent. Compared with the original 

image space, this space can train in a lower dimension and 

thus computationally more efficient. The objective now is 

 &5�'  (ℇ�)�,*~,�-,��, .‖! − !"�� , #�‖1
12.   (2) 

As in [7], we employed a U-Net architecture for !"�∙, #� with 

layers of the encoder skip connected with layers of the 

decoder. Because ℇ and the diffusion process are fixed, �  are 

determined during training, and samples from ����  are 

decoded to image space through �. 

     For training the unconditional diffusion model, we used a 

scaled linear beta scheduler with T=1,000 steps. The model 

was trained using a mean squared error (MSE) loss and a 

batch size of 2. We used the Adam optimizer and a learning 

rate of 10-4. The model was trained for 250 epochs.  

2.5. ControlNet Training 

By adding spatial conditioning controls, ControlNet [20] has 

significantly enhanced the ability to customize pretrained 

diffusion models. ControlNet preserves the generative 

capabilities of the pretrained model by locking its parameters, 

while making a trainable copy of the model’s encoding 

layers. The locked and trainable copies are interconnected 

using zero convolution layers, i.e., 1×1 convolution with both 

weight and bias initialized to zero. The convolution weights 

progressively grow from zero and ensure no harmful noise 

could affect finetuning of the original diffusion model.   

 As shown in Fig. 1, the noisy segmentation in the latent 

space �  and the four MRI sequences are input to the 

ControlNet. The trainable copy of the encoder from the 

denoising U-Net is trained with the latent representations of 

ground truth labels together with MR images, which was 

encoded to the same latent space with a convolutional 

network that was trained jointly with the ControlNet. The 

output features of ControlNet are incorporated with the 

middle blocks and the decoder of the denoising U-Net 

through zero convolution layers.    

     For training the ControlNet, images were range scaled 

from [0, 99.5] intensity percentile to [-1, 1]. The model was 

trained with an MSE loss and a batch size of 2. We used the 

Adam optimizer and a learning rate of 10-4. The model was 

trained for 700 epochs. The scaling factor (i.e., 1/SD���) we 

obtained during training the diffusion model was used in 

training the ControlNet.  

     For inference, the testing MRIs were used as input to the 

trained ControlNet, and the same scheduler with T=1,000 

steps was used for generating the output segmentation map. 

Our implementation was based on MONAI Generative 

Models [22], running on a high-performance computing 

cluster node with NVIDIA H100 GPUs. The hyper-

parameters used in this study were empirically determined.  

     An advantage of diffusion-based methods is that once 

trained, the model can generate infinite number of plausible 

variants of predictions, which can then be ensembled for 

better performance. The LDM-seg was trained with 3 

channels, representing the 3 labels of adult glioma considered 

in BraTS 2023. Each channel was considered as a binary 

segmentation, and the output of each channel contained 

positive floating numbers. To ensemble multiple predictions, 

we averaged them and thresholding with 0.5 as was in [13]. 

3. EXPERIMENTS AND RESULTS

3.1. Brain Tumor Label Generation 

We randomly split the BraTS2023 Adult Glioma training 

dataset (only ground truth label maps) into Dataset A (1,001 

label maps) and Dataset B (250 label maps). We trained the 

compression model and unconditional diffusion model using 

Dataset A. Using the trained models, we generated 250 

synthetic brain tumor label maps and compared them with 

Dataset B using Fréchet inception distance (FID), as shown 

in Table 1 [23]. As a reference, we compared 250 real brain 

tumor maps (randomly selected from Dataset A) with Dataset 

B. To interpret the difference in FID scores, we further

compared 60 real Adult Glioma label maps (randomly

selected from Dataset B) with label maps from a different

cohort, i.e., the BraTS2024 Sub-Sahara-Africa Adult Glioma

training dataset, which contains 60 cases, each with the

defined 3 labels. Table 1 shows our method can generate



realistic synthetic adult glioma label maps. Figure 2 shows 

examples of LDM generated glioma label maps. 

Table 1. Fréchet inception distance between datasets I and II. 

Dataset I Dataset II FID 

250 LDM generated glioma 

(trained using Dataset A)  

250 real glioma 

(Dataset B) 

1.90 

250 real glioma (randomly 

selected from Dataset A) 

250 real glioma 

(Dataset B) 

1.96 

60 real SSA glioma 60 real glioma 2.64 

Fig 2. Examples of real Adult Glioma label maps (top) and 

generated label maps (bottom). 

3.2. Segmentation 

We compared our segmentation results with and two non-

diffusion-based methods: nnUNet [2] and MedNeXt [21]. All 

methods were trained on the BraTS2023 Adult Glioma 

training dataset using all 1,251 cases (i.e., no cross-validation 

to be consistent with how we trained the LDM-seg) and 

validated on the validation dataset (219 cases) by submission 

through the Synapse evaluation platform. Following 

BraTS2023, we used lesion-wise Dice similarity coefficient 

(LW-DSC) and lesion-wise 95% Hausdorff distance (LW-

HD95) to evaluate segmentation on 3 sub-regions of tumor, 

i.e., the enhancing tumor (ET), the tumor core (TC), and the

whole tumor (WT).

     Tables 2 and 3 show the segmentation results. LDM-seg 

outperformed nnU-Net and MedNeXt significantly for WT 

segmentation. LDM-seg’s better performance, especially on 

LW-HD95, may be caused by its much lower number of false 

positives (Table 3). The LDM-seg results were generated 

using an ensemble of 30 predictions. Based on our 

experiments, the performance of LDM-seg improved with a 

greater number of predictions used for ensemble, although its 

performance plateaued after ensemble of 30 predictions. 

Figure 3 shows LDM-seg’s result qualitatively and a detailed 

variance map, indicating where the model is uncertain with 

its predictions.  

Table 2. Lesion-wise Dice score (best in bold) and p-value 

between LDM-seg and other. 

Model ET TC WT Mean 

nnU-Net 0.725±0.318 

(0.537) 

0.835±0.224 

(0.353) 

0.838±0.210 

(0.031) 
0.799 

MedNeXt 0.764±0.295 

(0.139) 

0.843±0.219 

(0.116) 

0.816±0.230 

(<0.01) 
0.808 

LDM-seg 0.736±0.269 0.823±0.234 0.867±0.168 0.809 

Table 3. Lesion-wise HD95 (best in bold), p-value between 

LDM-seg and other, and number of false positives for WT. 

Model ET TC WT Mean FP_WT 

nnU-Net 67±120 

(<0.01) 

27±71 

(0.470) 

38±79 

(<0.01) 
44 0.228 

MedNeXt 50±107 

(0.612) 

24±67 

(0.824) 

47±87 

(<0.01) 
40 0.297 

LDM-seg 46±105 23±70 23±59 31 0.087 

Fig. 3. Original T2-FLAIR (left) overlaid with LDM-seg’s 

result (middle; red: ET, red+blue: TC, all labels: WT). Our 

method generates detailed variance map (right) illustrating 

areas with less certainty (i.e., high variance). 

4. DISCUSSION AND CONCLUSION

A limitation of having a compression model is that some 

image details will be lost due to the encoder-decoder 

architecture. Another limitation of the LDM approach is the 

slow inference time compared with conventional methods. In 

the future, this issue may be mitigated by using consistency 

models [24]. In conclusion, we presented LDM-seg, a method 

to directly generate 3D multi-label segmentation maps from 

multisequence MRI. We showed LDM-seg outperformed 

SOTA methods including nnU-Net and MedNeXt on the 

BraTS 2023 Adult Glioma datasets. This method can be used 

to generate unlimited number of realistic tumor masks. It can 

also produce detailed variance maps along with 

segmentation. Although demonstrated with brain tumor 

segmentation, LDM-seg can be extended to other 

segmentation tasks and modalities. Given these benefits, 

LDM-seg may be considered as one of the baseline models 

for ensemble to achieve SOTA performance in a brain tumor 

segmentation challenge, such as BraTS. 
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