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ABSTRACT

Artery-vein classification on pulmonary computed tomogra-
phy (CT) images is becoming of high interest in the scien-
tific community due to the prevalence of pulmonary vascular
disease that affects arteries and veins through different mech-
anisms. In this work, we present a novel approach to auto-
matically segment and classify vessels from chest CT images.
We use a scale-space particle segmentation to isolate vessels,
and combine a convolutional neural network (CNN) to graph-
cut (GC) to classify the single particles. Information about
proximity of arteries to airways is learned by the network by
means of a bronchus enhanced image. The methodology is
evaluated on the superior and inferior lobes of the right lung
of twenty clinical cases. Comparison with manual classifica-
tion and a Random Forests (RF) classifier is performed. The
algorithm achieves an overall accuracy of 87% when com-
pared to manual reference, which is higher than the 73% ac-
curacy achieved by RF.

Index Terms— Artery-vein segmentation, convolutional
neural networks, Frangi filter, lung

1. INTRODUCTION

Recent progresses in medical imaging applications and com-
puted tomography (CT) allow identification and segmentation
of lung pulmonary structures (e.g. lung vessels and bronchi).
However, operations such as fully-automatic segmentation
and separation of pulmonary artery/vein (AV) trees still rep-
resent a big challenge. Depending on their nature, different
pulmonary diseases may affect either the arterial or the ve-
nous trees in specific ways. As an example, recent studies
show that alterations of the arteries may be associated with
chronic obstructive pulmonary diseases (COPD) [1]. More-
over, due to the high complexity of the vascular trees and
intrinsic problems of CT images, such as scan resolution and
partial volume effect, manual identification of the two trees
represents a long and tedious job, even for expert radiolo-
gists. For this reason, the development of a (semi-)automatic
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method that allows for proper distinction and classification
of arterial and venous vessels may be of great help for physi-
cians.

Although many methods have been proposed for vessel
segmentation [2], only a few studies have attempted to sep-
arate AV trees starting from non-contrast CT images [3–9].
In [3], distances of vessels to bronchi (segmented with a mod-
ified region growing method) and to pulmonary fissures (es-
timated by a Voronoi diagram) are computed and averaged
to classify vessel sub-trees. In [4, 5], a morphologic multi-
scale opening operator is used to separate attached arteries
and veins at various scales and locations. A method to re-
construct vascular trees by labeling each sub-tree manually
and considering the strength between the marked points is
presented in [6]. However, methods [3–6] require user in-
teraction to manually correct mislabeled structures and use
only a small amount of CT cases for evaluation. [7] proposed
a fully-automated method which uses high-order functions to
encourage sets of voxels to entirely belong to arteries or veins.
Although fully-automatic, the method still lacks an extensive
evaluation, as it was tested only on vessels with intensities
higher than -200 HU, and only compared to manual reference.

Recently, two works have been published with the aim
of improving available AV segmentation approaches [8, 9].
In [9], an algorithm which represents the vessels tree as a
graph and uses local information to separate the graph in a
set of small sub-tress is presented. The sub-tress are linked
to each other under the assumption that arteries and veins ap-
proach a common alveolar sag and classification is done by
simply considering the difference in the vessel subtree vol-
umes. Although this method does not need information about
airways, discrimination based only on volume of the tress
may be not ideal, especially in patients with specific diseases
such as COPD. [8] proposed a fully automatic AV separation
algorithm where vessels are classified based on an arterialness
measure which indicates their proximity to bronchi. Uniform
distribution and reduction of vessel diameter moving towards
peripheral areas are also considered. The method was tested
on 25 non-contrast CT images and seems to outperform [6].
However, the method is highly sensitive to parameters, with
those used for calculation of arterialness being the most af-
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Fig. 1. Overview of the proposed method

fective.
In this work, we propose a fully automatic AV classifi-

cation approach that combines a Frangi filter [10], used to
extract local information of vessels and airways, with a con-
volutional neural network (CNN) [11] approach, followed by
a final graph-cut (GC) strategy [12]. The neural network is
trained to learn information about the vascular trees on small
patches surrounding the single vessel candidates defined by
the scale-space particles approach described in [13, 14]. As
in [8], we use a bronchus enhanced image, but we let the net
automatically learn the arterialness measure, thus reducing
parameters sensitivity. Connectivity information of the single
particles, based on their location and strength, is also taken
into account. A quantitative evaluation is performed by as-
sessing agreement between human observers and our method
in twenty non-contrast thoracic CT scans. Comparison be-
tween the deep neural net and Random Forests (RF) is also
accomplished.

2. MATERIAL AND METHODS

2.1. Vascular Segmentation

The automated AV separation is performed using the work-
flow described in Fig. 1. The first step consists in extracting
the vascular tree from the CT image. We first segment the
lung and then use a scale-space particle sampling methods
which exploits the Hessian matrix response to identify and
represent the single vessels as collection of particles, as de-
scribed in [13, 14].

2.2. Artery-Vein Convolutional NN

Once the particles are extracted, an initial artery-vein classifi-
cation is performed for each individual particle using a CNN

architecture. We train the network to automatically identify
the features that separate arteries from veins on three patches
of 32×32×3 pixels extracted around the axial plane of the
particles. To do so, we consider four relevant aspects: local
information on the CT image, Frangi vesselness (strength),
Frangi airwayness (proximity to bronchi), and connectivity
between particles of a vessel. For local information, the first
2D slice is extracted from the original CT image. The second
slice determines the vessel strength given by the CT image
enhanced with a Frangi vesselness filter [10]. A Frangi filter,
specifically tuned, is also used to create a bronchus enhanced
image used as the third slice of the patch. Finally, to help the
net take into account connectivity information, we include the
patches of the two closest particles that have the most similar
orientation to the sample of interest. For the classification,
we employ a 16-layer net which consists of six convolutional
layers separated and followed by a pooling and a dropout
layer, and three fully-connected layers. We use a Nesterov-
momentum update with a softmax function as output nonlin-
earity, which is a typical choice in classification tasks, and we
train for 1000 epochs with a learning rate of 0.3 and batch of
size of 128. To train the classifier, we separated four cases
from the evaluation dataset described in Section 2.4 and ex-
tracted training samples belonging only to the upper lobes.
A total of 69042 particles (37977 arteries 31065 veins) were
used.

2.3. Artery-Vein Graph-Cut

Despite the connectivity information that is provided to the
net, spatial inconsistency may still occur during classification,
mainly due to the particle-base classification strategy and the
presence of many touching and intertwined areas in the two
vascular trees. For this reason, once the first initial classifica-
tion is concluded we employ a GC strategy to refine the clas-
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sification. To this end, we use the approach described in [15]
that constructs a graph based on the probability of each par-
ticle to be an artery or a vein, and to find the minimal-cuts to
assign the particle to one class or the other. In our case, the
initial probability is given by the trained classifier.

2.4. Evaluation

Database. Twenty CT scans from the COPDGene study were
acquired using multi-detector CT scanners with at least 16
detector channels. COPDGene centres were approved from
their Institutional Review Boards and all subjects provided
written informed consent. For each subject, we consider only
the right lung, which is segmented and separated into supe-
rior, middle, and inferior lobes. For this study, only upper
and lower lobes are utilized. This allows us to have a to-
tal of 40 independent cases for AV classification, as the two
lobes present specific and unique characteristics. For each of
the two lobes, a manual labeling of arteries and veins have
been performed with a 2-steps approach. Starting from the
scale-space particles segmentation described in Section 2.1,
two trained engineers performed a pre-classification using a a
slice by slice manual labeling. Then, a radiologist with broad
expertise in lung imaging went through all cases and corrected
possible mis-classification errors. Also, points corresponding
to other structures were removed. As a final result, a total of
777206 particles (432283 arteries, 344923 veins) have been
labeled. For the training of the net we use the superior lobe of
four cases and 16 cases here used for validation.

Reference method. We compare our method with the
method proposed in [15]. This approach employs a Random
Forest (RF) algorithm as an initial classifier for a tree repre-
sentation of vessels and airways using the same scale-space
particles approach.

3. RESULTS

The proposed method was evaluated on all cases of the
database described in Section 2.4 that were not used for
training the net. In order to evaluate performance of the al-
gorithm, we carried out two different experiments. First, we
compared the results obtained for each case to the standard
reference manually created. Then, to evaluate the accuracy
of CNN, we compared the results of our neural network to
those obtained using RF [15] as initial classifier with and
without the final GC step. In both experiments, a per-particle
accuracy measure, as determined by the Jaccard similarity
coefficient, was used to evaluate results.

3.1. Comparison to Manual Classification

An overview of the results obtained for all considered cases
are shown in Table 1. When compared to manual classifi-
cation, the automatic algorithm achieves a mean accuracy of
87% (median: 88%, range: 66% to 975%). Analyzing the

Mean (%) Median(%) Range(%)

A+V A V A+V A V A+V A V

Overall 87 92 82 88 95 87 66-97 60-99 36-96
RSL 88 93 82 88 94 87 70-97 78-99 36-96
RIL 87 91 82 90 96 87 66-97 60-98 36-95

Table 1. Overview of results obtained with the proposed
method in comparison to manual reference. Overall indicates
analysis on both lobes, RSL stands for right superior lobe, and
RIL indicates for right inferior lobe. A stands for arteries, V
for veins.

Automatic Manual Automatic Manual 

(a) (b)

Fig. 2. Classification results for the upper lobe of a good (a)
and a bad (b) performing cases.

two lobes individually, the algorithm achieves a mean accu-
racy of 88% for the superior lobe (median: 88%, range: 70%
to 97%) and 87% for the inferior lobe (median: 90%, range:
66% to 97%), indicating that the algorithm is able to general-
ize well across lobes. Analyzing arteries and veins separately,
the method achieves a mean agreement with the manual refer-
ence of 92% for arteries (median: 95%, range: 60% to 99%)
and 82% for veins (median: 87%, range: 36% to 96%), indi-
cating a better performance in classifying arteries. Moreover,
CNN without the GC is able to properly classify 72% of the
vessels (median: 71%, range: 61% to 85%). An example of
good and bad performing classification is shown in Fig. 2 to
illustrate the performance of our algorithm.

3.2. Comparison to Random Forests

Table 2 shows an overview of the comparison between clas-
sifying vessels using CNN or RF as first step in the algorithm
described. Whereas the algorithm that uses CNN achieves
an overall accuracy of 87% (median: 88%, range: 66% to
97%), the usage of RF gives an accuracy of 73% (median:
74%, range: 51%-89%). In the separate lobes, the usage
of RF yields to an accuracy of 73% (median: 74%, range:
56%-87%) for the superior lobe and 72% in the inferior lobe
(median: 74%, range: 51%-89%), as compared to 88% and
87% obtained for superior and inferior lobes, respectively, us-
ing CNN. Moreover, using RF an accuracy of 94% (median:
97%, range: 66%-100%) for arteries (similar to that obtained
with CNN) is achieved, while an accuracy of 46% (median:
51%, range: 4%-80%) is obtained for veins (accuracy of 82%
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Mean (%) Median(%) Range(%)

A+V A V A+V A V A+V A V

CNN + GC 87 92 82 88 95 87 66-97 60-99 36-96
RF + GC 73 94 46 74 97 51 51-89 66-100 4-80

CNN 72 74 69 71 77 70 61-85 56-86 45-85
RF 51 59 42 51 59 42 49-65 55-73 35-54

Table 2. Comparison between results obtained with CNN and
RF both with and without GC. A stands for arteries, while V
indicates veins.

using CNN). Analysing the ability of the two machine learn-
ing approaches to classify arteries and veins without using
GC, CNN outperforms RF with an overall accuracy of 72%
(median: 71%, range: 61%-85%) against 51% (median: 51%,
range: 49%-65%).

4. DISCUSSION

In this work, an automated method for artery-vein classifica-
tion on chest CT images which uses a CNN approach in com-
bination with GC was presented. The algorithm was eval-
uated using the vessels of the right lung of twenty subjects
with COPD, from which the superior and inferior lobes were
extracted. The proposed method achieves an overall accu-
racy of 87% when compared to manual reference, with only
two cases below 70%. This is lower than the 91.1% accu-
racy claimed in [8], although a direct comparison cannot be
performed as different cases were used for evaluation. The
method we propose is similar to [8] in the sense that both
methods do not need airway segmentation, but they only re-
quire a bronchus enhanced image to exploit the knowledge of
proximity of arteries to veins. However, while in [8] an arte-
rialness measure needs to be computed, making the algorithm
high sensitive to parameters, we let the CNN automatically
define this value. To motivate the choice of the use of CNN
as first classifier, we compared the performance of the algo-
rithm to an RF approach which uses airway segmentation to
define proximity of arteries to bronchi. This way, we can also
evaluate whether airway segmentation add important infor-
mation for the classification. The results showed that a CNN
approach achieves much higher results, both in terms of over-
all classification (in combination with GC) and as single clas-
sifier. In general, our results are promising and pave the way
to a future use of CNN for AV classification. An interesting
approach might be to use a recently developed 3D CNN ap-
proach [16] to help the net learn features on vessel segments
instead of reformatted views across the vessel axis.
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