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ABSTRACT

Automated medical image analysis requires methods to
localize anatomic structures in the presence of normal inter-
patient variability, pathology, and the different protocols used
to acquire images for different clinical settings. Recent
advances have improved object detection in the context of
natural images, but they have not been adapted to the 3D
context of medical images. In this paper we present a
2.5D object detector designed to locate, without any user
interaction, the left and right heart ventricles in Computed
Tomography Pulmonary Angiography (CTPA) images. A 2D
object detector is trained to find ventricles on axial slices.
Those detections are automatically clustered according to
their size and position. The cluster with highest score,
representing the 3D location of the ventricle, is then selected.
The proposed method is validated in 403 CTPA studies
obtained in patients with clinically suspected pulmonary
embolism. Both ventricles are properly detected in 94.7% of
the cases. The proposed method is very generic and can be
easily adapted to detect other structures in medical images.

Index Terms— Heart Ventricle, Detection, CTPA, HOG

1. INTRODUCTION

Object detection is an essential preprocessing step for
fully automatic segmentation or registration algorithms,
as well as for the automatic computation of image-based
biomarkers and computer-aided detection (CAD) systems [1].
The growing number of digitized images and distributed
repositories poses a new demand of this type of methods,
both for application in large clinical studies as well as for
assisting specialists to perform their reporting faster and more
efficiently. Robust identification of anatomical structures
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in biomedical imaging is particularly challenging, since
structures and even organs can vary greatly in appearance.

Computed Tomography (CT) is the reference standard
imaging modality for the diagnosis and exclusion of
Pulmonary Embolism (PE). The study is commonly referred
to as CT Pulmonary Angiography (CTPA). Iodinated contrast
is used to enhance the pulmonary arteries and reveal emboli
as filling defects within the pulmonary arteries. CT acquires
data volumetrically; resulting 3D images include the entire
heart, and thus can assess the status of the right ventricle. This
is particularly important for patients with acute PE because
right ventricular strain, characterized by an enlarged right
ventricular cavity when compared to that of the left, predicts
a poor prognosis and is used to decide those patients who
will benefit from a more aggressive treatment plan. Such
aggressive treatments are associated with life-threatening
complications, emphasizing the need for accurate reporting
of the sizes of both cardiac ventricles when a patient is
diagnosed with acute PE. [2].

Automatic ventricle detection in CTPA is challenging,
due to inter-subject variability and inconsistency in image
quality from factors related to either the patient (e.g. obesity)
or the CT acquisition. Pathology such as atelectasis and
cardiomyopathy make the appearance of the heart variable,
as does differences in CT settings and variation in the timing
of the iodinated contrast delivery. Also, while almost all
CT studies of the heart use electrocardiogram gating to
minimize motion, CTPA are done without gating to simplify
the acquisition and reduce patient radiation exposure. The
summation of these effects cause spatial blur and high
contrast variability within the heart. Furthermore, the cranio-
caudal field of view varies widely, e.g. including/excluding
cervical or abdominal information. All of these factors
compromise the ability of simple heuristics to locate the
ventricles and justify the need of the following more complex
solution for clinical implementation

Object recognition has been widely studied in computer
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vision, with techniques that range from simple models, such
as rigid templates [3] and bag-of-features [4], to richer
models such as pictorial structures [5]. These techniques
are designed to be robust to changes on shape and location
of the objects detected. Some of these methods have been
previously applied to the detection of anatomical structures in
medical images [6, 7]. However, to our knowledge, there is
no previous study focused on the detection of heart chambers
from CTPA data.

2. METHOD

In this work we extend one of the best performing object
detectors [8] to detect 3D objects in medical images by
combining it with a clustering mechanism that selects the
subset of the 2D detections that form the 3D ventricles. The
right and left ventricles are detected independently in each
CTPA scan, since they have different image characteristics
and may be visible at different axial slices. For each ventricle,
we follow the workflow described in Fig. 1. The detailed
workflow below focuses on left ventricle detection; the
process is identical for the right ventricle.

2.1. Training Dataset

A training dataset of 80 CTPA axial images from 40 patients
of Unidad Central de Radiodiagnóstico in Madrid, Spain was
assembled from 3D CTPA images. The positive training set
was the axial slices of each study where the ventricle had the
highest diameter. For each slice a bounding box that fits the
ventricle was defined. The negative training was 40 images,
one of each patient, in which neither ventricle is visible. The
training dataset thus consists of P = 40 positive axial slices
per ventricle and N=40 negative axial slices.

2.2. Model Creation

The left ventricular model was learned using Histograms of
Oriented Gradients (HOG) as features, efficient matching
algorithms for deformable part-based models (pictorial
structures) and discriminative learning with latent variables
(latent SVM), as described in [8].

The ventricles in the positive training data have different
aspect ratios according to their shape. In some patients
the ventricles are wide structures, with an aspect ratio close
or above one, while other patients have thinner ventricles.
In order to detect properly both cases, each final ventricle
model was created by merging two different models obtained
for different aspect ratios: 0.8 and 1. Those aspect ratios
were chosen from the positive training set. The models
are firstly trained with a random subset of locations of the
negative images as negative training samples. The learned
model is later evaluated in the negative training images. Then
the model is retrained with the same method but using as

Fig. 1. Method workflow.

negative samples a combination of random locations on the
negative training images and false positive detections found
on the negative training images (“hard negatives”). These
hard negatives usually correspond to areas around the trachea,
the superior region of heart and near aorta or liver region. At
the end of the process, there are two single models, one for
each ventricle.

2.3. Detection

For each axial slice, a Gaussian pyramid is created and
the right and left ventricles are detected separately using
their respective models. Since the detection algorithm
was developed for 2D image detection, each axial slice
is processed independently. The method returns several
detection boxes per slice, each with an associated score
sc(i) representing the goodness of fit of the image to the
model. Almost all axial slices had at least one detection. The
bounding boxes were not only in the ventricles, but also in
other structures not related to the heart. For such reason a
post-processing is needed, to find the set of boxes, one per
slice, that better describes the heart.

2.4. Post-Processing

Four main steps are performed to obtain the 3D detection of
the ventricle from the set of 2D detections: initial selection
of boxes, size and location constraints, clustering and a final
processing of clustering results. The sequence of steps are
shown in Fig. 1.

Initial selection of boxes

A selection of boxes is needed to reduce processing time.
Selecting the box with highest scoring in each slice is
insufficient since the highest scored bounding box does not
always correspond to the ventricle. Consequently, for each
axial slice we select the n bounding boxes with highest score.
n was adjusted to 25 after few tests as a good tradeoff between
correct detected boxes and processing time.
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Fig. 2. Examples of successful ventricle detections imaged at the middle axial slice of the detection. Each image is taken from
a different patient. Please note inter-patient variability. Top row: left ventricle. Bottom row: right ventricle. The first column
represents images with high contrast and clearly delimited chambers. The second column shows patients with collapsed lungs.
The third column shows hearts whose image properties differ from the rest of the dataset: top row: abnormal distance between
the heart and the sternum, bottom row: dilated right atrium. The fourth column represents variability in contrast and location.

Size and location constraints

Size priors are established in order to remove bounding
boxes that due to size (extremely big or small) can not be
part of a ventricle. A minimum and a maximum value are
established for the width and the height of detected boxes.
These values are different for right and left ventricles, and are
computed from the bounding boxes of the training dataset.
Location priors are established to remove bounding boxes
that are far away from the heart. In order to deal with inter-
subject variability, we position the location prior relative
to a landmark that is very constant for all patients and
CTPAs. The bone tissues were the most stable structure
in the training dataset. We therefore select as reference
point for distances computation the center of mass of the
bone-thresholded CTPA projection in the Z axis. We use
the distances between bounding boxes centers and CTPA
reference points of the training dataset to establish the
maximum and minimum distance allowed between the center
of the ventricular candidate detected box and the reference
point of the CTPA.

Clustering

Some remaining bounding boxes are placed in the heart
region, but instead of being in the ventricles, they are placed
near the aorta and the superior vena cava. A clustering method
is used to assign bounding boxes with different features to
different groups. The clustering method used was mean shift

clustering, a non-parametric feature space analysis technique
that does not require prior knowledge of the number of
clusters. The features used for clustering are the position
of the center and the area of the boxes, thereby the clusters
consists of groups boxes with similar size and located close
to each other.

Cluster selection

The clustering process returns L clusters, each one including
bounding boxes with similar features. In order to select a
single cluster, a score is assigned to each cluster. The selected
cluster l̂ is the one that maximizes:

l̂ = argmax1≤l≤L

(∑nb(l)
i=1 sc(i)

nb(l) + 2

)
(1)

where nb(l) stands for the number of boxes that are in the
cluster and sc(i) is the detection score associated with the
box i. The cluster score therefore depends on the individual
scores of each box and on the number of boxes of the
cluster. Equation 1 penalizes clusters made of few boxes that
have high detection score and encourages clusters with high
number of boxes with high detection score. This criterion
is very useful because mistaken boxes are often grouped in
clusters with low number of boxes. Consequently, despite
having high individual scores, such clusters will receive a low
score and it will not be selected. The output of the algorithm
is the collection of 2D bounding boxes associated with cluster
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l̂, which define the 3D region where the ventricle is located.

3. RESULTS

We test the algorithm in two datasets. The first one consists
of 199 CTPA scans positive for PE obtained from the Applied
Imaging Science Laboratory, Department of Radiology,
of Brigham and Women’s Hospital in Boston, USA. A
description of the population study and other details of this
database can be found in [9]. The second dataset consists
of 204 CTPA studies obtained from Unidad Central de
Radiodagnóstico in Madrid, Spain. None of the 403 studies
was used for training. The algorithm was applied to all
403 patients. The detection was defined as correct if all
its 2D detections enclose the ventricle in the axial slice of
detection. Two experts jointly examined the results, with no
disagreements between them. Table 1 presents the number
of correct ventricular detections in the right ventricle, the left
ventricle and both ventricles in the same patient.

BWH UCR
RV 192/199 (96.5 %) 194/204 (95.1%)
LV 196/199 (98.5 %) 194/204 (95.1%)

Both 191/199 (96 %) 191/204 (93.6%)

Table 1. Correct detections on the datasets.

Detection mistakes occurred when the ventricle is
detected on the veins and arteries above the heart (n=16),
in the atria (n=3), when the detection is in the ventricle but
does not cover it completely (n=4) or when the detection is
not placed close to the heart (n=7). On average, the method
analyzes a CTPA examination with 500 axial slices in 120
seconds, being most of the time spent in ventricle detection
(118s) and only 2 seconds in the post-processing.

4. DISCUSSION AND CONCLUSIONS

This paper describes a robust 2.5D method to detect the
right and the left heart ventricles in CTPA studies. Both
ventricles were correctly detected in 94.7% of 403 CTPA
studies acquired from routine clinical practice. Few of the
challenging correct detections are shown in Fig. 2. Most of
detection errors are located in anatomy with similar contours
as the ventricles and in close proximity to the heart. The
performance of the method with only 40 training subjects
proves that the clustering step and the size and location
constraints in particular, are critical to deal with the high
variability in shape and appearance of human hearts.

The two minute processing time is compatible with
the interpretation time for clinical CTPA workflow.
Specifically, automatic segmentation can be concurrent
with the radiologists clinical interpretation of the study for
the presence or absence of acute PE. For those patients

who have PE, these methods can be used to quantify the
right-to-left ventricular (RV/LV) diameter ratio, a proven
method for prognosis and an important step for clinical risk
stratification [10].

While the method has been tested in database of
CTPA images, the workflow could be adapted to localize
automatically heart ventricles or other structures generated
by other imaging modalities by changing the training dataset
and adjusting the size and location priors.
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