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Abstract. The development of democratized, generalizable deep learn-
ing applications for health care systems is challenging as potential biases
could easily emerge. This paper provides an overview of the potential
biases that appear in image analysis datasets that affect the develop-
ment and performance of artificial intelligence algorithms. Especially, an
exhaustive analysis of mammography data has been carried out at the
patient, image and source of origin levels. Furthermore, we summarize
some techniques to alleviate these biases for the development of fair deep
learning models. We present a learning task to classify negative and pos-
itive screening mammographies and analyze the influence of biases in the
performance of the algorithm.
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1 Introduction

Recent advances in artificial intelligence (AI) in the medical field enable trans-
forming large sets of images together with their annotations into predictive mod-
els using deep learning techniques. Such a model is expected to behave in an unbi-
ased way to produce fair, objective decisions, without basing them on spurious
attributes. However, Al algorithms can be biased towards certain input patterns,
deriving unfair decisions dependent on the domain and not on the task to be
solved. Biases may come from several origins, among which data-related biases
frequently appear [1,2]. Thus, to prevent from a biased behavior and ensure a
good generalization of deep learning models in real-world environments, special
care must be taken during the creation of training datasets and the design and
development of the models [3,4]. There are recent studies in the literature that
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analyze bias in deep learning algorithms applied to medical images [2,3,5,6]. [7,8]
perform an analysis of the impact of bias related to sociological factors such as
sex, age, race or type of health insurance. [9] describe a methodology to clini-
cally evaluate Al technology on medical images. [10] found a source of bias in
patient age, which they mitigated with adversarial training. Similarly, [11] apply
a multi-task strategy together with an adversarial training scheme to simulta-
neously detect and mitigate bias (sex and skin tone) in a skin lesion detection
scenario. [8,12-15] analyze selection biases in chest X-ray datasets and [8,14,15]
emphasize on how acquisition equipment-related biases and domain shifts affect
a pneumonia detection algorithm. Regarding mammography solutions, [2] com-
ments that the presence of an image marker could interfere in the performance
of the algorithm. [16,17] develop a deep learning algorithm to predict breast
cancer risk and they use adversarial training to discriminate image origin, even
if the variability in the manufacturers used during training is scarce. Further-
more, [18] developed an screening algorithm to predict cancer probability from a
mammogram view using a wide variety of manufacturers. Nevertheless, they do
not mention preprocessing techniques or data cleaning, which could derive into
biases.

This paper aims at highlighting the relevance of performing an analysis of
potential data-related biases before deep learning model development. Here, data
bias is defined as gathered data that does not represent the phenomenon to
predict. It can also contain characteristics produced by humans that may lead
algorithms to solve a different task from the desired one and to fail when tested
on properly selected independent data. In Sect.2, we provide an overview on
bias detection and mitigation techniques using a mammography dataset, with a
high variability in manufacturers and models, as an example. Also, we show the
influence of data related bias on classification experiments, together with possible
solutions to reduce the impact of the bias. In Sect. 3, results from experiments
are discussed. Finally, conclusions are provided in Sect. 4.

2 Materials and Methods

This section describes the input mammography dataset and our approach to
analyze biases. We also present some techniques that can be used to mitigate
these biases. Finally, some experiments were carried out to evaluate the influence
of biases in deep learning algorithms.

2.1 Mammography Dataset

The dataset is composed of 1727 mammography studies provided by the Galician
health care system. Since the goal was to provide democratized deep learning
solutions for the health area, the main criterion to gather the data from the
picture archiving and communication system (PACS) was to contemplate all the
available manufacturers. Mammograms from Fujifilm Corporation, Hologic Inc,
Philips Medical Systems, and Siemens were obtained and filtered so that only
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those containing two views, i.e. bilateral craniocaudal (CC) and mediolateral
oblique (MLO), for each breast were considered. Finally, a selection according
to the following breast cancer screening clinical categories was performed: 1)
Negative screening: mammograms where radiologist did not detect signs of
cancer and from women that were not derived for further tests and 2) Pos-
itive screening: mammograms where radiologists detected a sign of cancer
and women were derived to further tests in the diagnostic departments. The
distribution of exams in these categories, shown in Table 1, was balanced for
most equipment manufacturers except for Philips scans, which were not used to
acquire the mammography prior to further tests in any case.

Table 1. Number of studies distributed by manufacturers and clinical categories.

Fujifilm | Hologic | Philips | Siemens | Total
Negative screening | 277 263 271 270 1081
Positive screening | 262 197 0 187 646
Total 539 460 271 457 1727

2.2 Bias Analysis

An in-depth analysis of the dataset for AT model development is an important
step to detect potential biases and to ensure model performance in real world
applications. Especially, datasets containing medical images are ideally built
gathering information from different hospitals, different devices and several pro-
tocols to fulfill the needs of the whole health care system. Socio-technological
analysis is crucial in these cases to detect potential biases, some of which can be
discussed at the DICOM metadata level or at the content or pixel data level.

DICOM Metadata Analysis: Some information about the patient and the
imaging studies can be directly extracted from standard DICOM tags (Fig. 1-a).
In general, there are relevant differences between negative and positive studies.
Specially, images are acquired with different scanners (Device ID) and acquisi-
tion parameters (WW /WC) between negative and positive exams. Furthermore,
differences in the Patient Age and Institution tags induce a very important bias
in the dataset. Hence, suggesting that negative studies may come from hospitals
where a breast cancer screening program is carried out, whereas positive exams
may come from diagnostic departments. Thus, when designing algorithms, the
global performance of the network could be unfairly biased towards some specific
devices, which should be detected and considered.

Histogram Analysis: Understanding the distribution of image intensity val-
ues across different categories is another approach to measure bias in the dataset
and to decide appropriate preprocessing methods. Mean and standard deviation
histograms are calculated (Fig.1-b) for positive and negative screening exams
independently. Differences are observed, probably related to the different scan-
ners and acquisition parameters previously discussed and shown in Fig. 1-a.
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Fig. 1. a) Distribution positive and negative screening studies with respect to the
different DICOM tags. b) Mean (continuous line) and standard deviation (dotted line)
histograms for the different clinical categories in the dataset.

2.3 Bias Correction Techniques

Based on the analysis previously described, we identified some methods to miti-
gate the biases. The techniques can be divided into modification of image appear-
ance or modification of model training and architecture to guide the learning
towards the desired features.

Image Appearance Bias Correction: Some manufacturers introduce text
marks in the image, e.g. labels indicating the view (CC, MLO) or the breast (left,
right) and deletion of this markers is important to avoid biases. Furthermore,
changing window width (WW) and window center (WC) values according to
the VOI LUT DICOM tag of the study equalizes appearance between different
manufacturers, devices and acquisition protocols.

Model Training Bias Correction: Domain-Adversarial training performs a
domain transfer where final predictions must be made based on features that
cannot discriminate the domain from which the images are obtained [19]. It could
be a good solution to mitigate domain biases, derived from the distribution of the
different mammography units and hospitals found in the dataset. Furthermore,
data augmentation during training can be used to mitigate biases by increasing
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the number of training samples with different appearances applying, for example,
random Gaussian noise, elastic deformations and modifying the contrast and the
brightness.

2.4 Experimental Setup

To show the influence of data-related bias, we carried out a classification task
using a deep learning approach. Especially, we aim at building a model that
differentiates between normal mammograms (negative screening) and mammo-
grams from patients derived to further tests in the diagnostic departments of
the hospital (positive screening).

We employ a network architecture based on [18] using the DenseNet121 archi-
tecture where the four instances (right CC, right MLO, left CC, left MLO) are
used to decide whether a study is a negative or positive screening exam. The
model combines features between breast views and it is trained to minimize
a binary cross-entropy loss, with a learning rate of le ®, batch size of 4 and
Adam optimizer. The dataset is divided into training (70%), validation (20%)
and test (10%) for each class to train the network (manufacturers and clinical
categories are balanced between subsets). First, images are rescaled between 0
and 1 and normalized dividing each image by the mean and the standard devi-
ation of the intensities, calculated beforehand for the whole rescaled dataset.
Studies acquired with inverted gray scale values are modified so all images have
a dark background. Instances corresponding to the left breast are flipped to the
right side to facilite the learning process. Finally, the training dataset is balanced
according to the clinical categories to avoid a bias towards the majority class.
Several experiments are performed to evaluate the influence of the bias for the
screening classification task:

Baseline: the neural network is trained with the preprocessed dataset and
parameters as described above. The aim is the classification of mammography
studies into positive and negative screening focusing on breast tissues.

WW/WC: from the baseline, this experiment aims at adjusting WW and WC
values of the mammograms to homogenize the images across the acquisition
devices (Fig. 3-f) as described in Sect. 2.4.

Data Augmentation: data augmentation is included to the WW/WC experi-
ment as described in Sect. 2.4.

Domain-Adversarial Training: the goal is to obtain device independent fea-
tures to mitigate the image type bias and focus more on the clinical classification
task (Sect.2.4). Based on the fact that a model could be trained to differenti-
ate between devices (Fig. 3-e, upper figure), a domain-adversarial training that
extracts intermediate features independent on the device could be developed.
We introduce a domain-discriminator to classify features from different devices
according to the Device ID DICOM tag and thereby, encourage similar feature
extraction for all the domains to solve the actual screening classification task
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(Fig. 3-e). The training procedure minimizes the loss of the classifier differenti-
ating between negative and positive samples while maximizing the loss of the
domain classifier.

Unbiased Data Addition: the inclusion of additional unbiased data could help
the network focusing on the desired clinical task by ignoring previous biases.
Hence, a new dataset was requested from screening units with balanced man-
ufacturers and devices (Fig.2) for 1179 screening negative and 393 screening
positive mammograms. Furthermore, all these patients belong to the breast can-
cer screening program so the age range is fixed (Fig.2). Preprocessing (with
WW/WC modifications) of the images and data augmentation were applied in
this experiment.
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Fig. 2. Distribution positive and negative screening studies with respect to the different
DICOM tags for the unbiased dataset. The distribution of the tags is balanced unlike
in Fig. 1-a.

3 Results and Discussion

Trained models are evaluated on a subset of 188 mammography studies (104
negative screening and 84 positive screening) separated from the dataset and
on a subset of 156 studies (125 negative screening and 31 positive screening)
from the additional unbiased dataset. The experiments yield similar results,
as shown in Table 2, where models achieve a high performance on test studies
but metrics worsen for the unbiased test dataset, suggesting that the bias is
not overcome (Table 2). Positive screening studies are misclassified as negative
screening studies, probably influenced by its origin of acquisition (scanners and
hospitals).

An extra verification of the models performance was carried out by visual-
izing their learning with heatmap explanations applying the Grad-CAM algo-
rithm [20] (Fig. 3). Grad-CAM produces a coarse localization map that highlights
the important regions in the image used to predict a specific class. Results shown
in Fig. 3 suggest that screening models are not classifying studies according to
the desired clinical task, as they focus more on the type of image than on breast
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Table 2. Evaluation metrics on test and unbiased test subsets (separated before exper-
iments training)

Test dataset (188 exams) Unbiased test dataset (156 exams)
ROC-AUC | Sensitivity | Specificity | ROC-AUC' | Sensitivity | Specificity
Baseline 0.997 0.988 0.961 0.501 0.064 0.968
WW/WC 0.996 0.976 0.961 0.503 0.032 0.992
Data augmentation 0.982 0.988 0.923 0.525 0.064 0.944
Domain adversarial 0.995 0.952 0.971 0.551 0.032 1.0
Unbiased data addition | 0.995 0.964 0.961 0.658 0.032 1.0
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Fig. 3. (a—d) Grad-CAM computed for correctly classified mammography studies from
the test subset. a) Right MLO view of a negative Siemens study. b) Left CC view of a
negative Hologic stud. ¢) Left MLO view of a positive Fujifilm study. d) Left CC view
of a positive Philips study. e) Confusion matrices of the device classifier (upper figure)
and the domain discriminator classifier during the domain-adversarial training (lower
figure). f) Preprocessed instance modifying the window width (WW) and window center
(WC) values according to the function defined in the VOI LUT DICOM tag (Sect. 2.4).

tissues to find abnormalities. This is visible in Fig. 3-d, where a mass is present
but models focus on the curvature of the breast. Furthermore, such explanations
are highlighted on other parts of the images outside the breast like illuminated
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borders(Figure 3-b) or background (Fig.3-c). Adding unbiased data mitigates
the bias in some cases, where the trained algorithm focuses on the tissues inside
the breast and not on the background or other characteristics derived from the
device (Fig. 3-¢). However, such mitigation is not enough to train a fair algorithm
as seen in the quantitative results on the unbiased test subset (Table 2). Finally,
domain-adversarial training results show that the discriminator is not able to
differentiate between mammography devices (Fig. 3-e, upper figure) but metrics
on the unbiased dataset (Table2) and Grad-cam visualizations (Fig.3) demon-
strate that the bias still persists. Hence, based on the quantitative results and
the Grad-CAM visualizations on test studies, we assume that models are biased
not only by image-related features, as shown in the presented experiments, but
also due to other the patient-related characteristics, such as age.

4 Conclusions

Hereby, we presented a bias analysis approach for deep learning applications that
focuses on the inspection of DICOM metadata and pixel data distribution, using
a mammography dataset as use case. Bias correction techniques were proposed
and evaluated with experiments proving that, for the specific clinical task of
breast cancer screening, results are biased toward the source of origin. Further
techniques, like transfer learning, should be implemented to mitigate the existing
biases in the mammography dataset. Such biases could be the age of patients,
the acquisition techniques or other characteristics present in the two different
screening and diagnostic departments. A careful initial inspection of the dataset
before model building is essential to detect potential biases that may lead to
unfair performance of Al algorithms. Hence, the proposed approach could help
future researchers on the implementation of fair deep learning algorithms and
methodology for dataset extraction and generation for medical imaging applica-
tions. Future work is needed to further investigate this potential issue with more
experiments, analysis and techniques and to expand the research to different
datasets.

Prospect of Application: assist in the development of fair AI models and
unbiased database construction. Specially, in breast cancer screening scenario the
robustness of AT models would increase for a fair performance at different health
care systems, mammographers and acquisition protocols. Thus, all professionals
and patients, regardless of the hospital they are in, would have access to the
system equally.
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