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Abstract—4 preliminary study is presented on the potential role of similarity mapping
(SM) in the evaluation of oncological dynamic ^^F-ftuorodeoxyglucose positron
emission tomography studies, mainly in lesion localisation and detectability. Similarity
maps were calculated using previously described (correlation coefficient (COR) and
normalised correlation coefficient (NCOR)) and newly introduced similarity measures
(sum of squares coefficient (SSQK squared sum coefficient (SQS), sum of cubes coeffi-
cient (SC) and cubed sum coefficient (CS)). The results were evaluated using simulated
and clinical data. The study revealed that the best-suited similarity measure for such
applications was the CS similarity coefficient, which provided the best parametric
images, delineating structures of interest and supporting the visual interpretation of
data sets, tt was shown that SM and standardised uptake value (SUV) images had
comparable diagnostic performance, although SM was able to offer additional time-
related information in a single image. For the case of colorectal recurrences (17 cases),
the measured contrast values for the CS and SUV images were 2.36 ± 0.47 and
4.12 ± 0.42, respectively, whereas, for three cases of giant cell tumours, these values
were 11.6 ±2.1 and 11.9 ± 1.8, respectively.
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1 Introduction
POSITRON EMISSION tomography (PET) provides physicians
with unique diagnostic intormation that can improve patient
management and reduce the total cost of patient care
(GAMBHIR et al., 2001; PHELPS, 2004). It produces images of
molecular-level physiological function that can be used to
measure many vital processes, such as glucose metabolism,
blood flow and oxygen utilisation.

PET allows the assessment of chemical and physiological
changes related to metabolism. This is important because func-
tional change often predates structural changes in tissues. PET
images can therefore demonstrate pathological changes long
before they would be revealed by modalities such as computerised
tomography (CT) and magnetic resonance imaging (MRI).

Unlike traditional nuclear medicine. PET uses unique radio-
pharmaceuticals that are tbe basic elements of biological
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substrates. These tracers mimic natural substrates such as sugars,
water, proteins and oxygen. As a result, PET will often reveal
more about the cellular-level metabolic status of a disease than
other types of imaging modality.

After extensive investigation in experitnental and clinical
oncology. '^F-fiuorodeoxyglucose ("*F-FDG) PET has been
proved to be a valuable imaging technique for thc evaluation
of a variety of tumours (ALAVI and RrjvicH. 2002; JtJUiSALHM
et al., 2003). Visual inspection of PET images is the practice
routinely used for tumour diagnosis and evaluation.
However, quantitative measures based on the normalisaiion
of tracer concentrations for the injected activity and body
weight (standardised uptake values. (SUVs)) are becoming
common in clinical practice of oncological PET (STRAUSS
andCONTI, 1991).

The SUV approach, however, represents a static measure-
ment of the tracer accumulation within the time of the data
acquisition and does not take into account the fact that F-
FDG uptake is a dynamic process. Dynamic ' " F - F D G PET
studies (temporal sequences of images in the same bed
position) offer differential diagnostic inlbrmation and therefore
are the tnost accurate approach to quantify '^F-FDG kinetics.
Such studies are being increasingly used in oncological PET

23



studies for diagnosis, therapy management and evaluation
(STRAUSS e/(//.. 2003).

To increase the accuracy of localising primary tumours and
metastases and to improve the prognosis of patients, several
methods have been propo.sed for the analysis of dynamic
sttidies. including compartmental and non-compartmental
approaches (STRAUSS et al.. 1998), principal component
analysis (THIREOU et ai, 2003) and non-negative matrix
factorisation (LEE et a!., 2001). In this context, we have investi-
gated the performance of similarity maps (SMs).

Similarity mapping involves the definition of a reference
region of interest (RROI) and the correlation of the pixel
value intensity time distribution (or time activity curve.
(TAC)) with this reference curve to form a similarity map
(temporal match). The analysis is performed using pixel-by-
pixcl analysis of the dynamic image series. The generated
result of this analysis is a similarity map where the value of
each pixel measures its temporal similarity to the reference.
In this way. the whole image sequence is reduced to a single
image (similarity map), where each pixel value is set equal
to the value of the similarity parameter at that point. This
approach can be also considered as a segmentation tool,
segmenting an image into regions with the same temporal
properties (AMARAL et a/., 1998).

Using similarity measurement techniques, background noise
or contrast signal originating from the superposition of struc-
tures wilhout clinical interest or significance can be efficiently
removed. This signal de-noising property, however, does not
imply that noise related to the physics of positron annihilation
(e.g. positron range) and g-ray detection (e.g. partial volume
effects, non-accurate scatter and attenuation corrections) can
al.so be corrected with this method.

Similarity maps segment multidimensional images into
regions according to their temporal rather than spatial pro-
perties (RoGOWSKA et ai, 1994). SM images therefore
provide spatially differentiated quantitative information
describing lhe physiological behaviour of the image structures,
which sometimes cannot easily be extracted from visual
inspection of dynamic PET image sequences. Several measures
can describe the similarity, including the cross-correlation
coefficient (ROGOWSKA et al., 1995). the sum of absolute
valued difference (SAVD) (BARNEA and SILVERMAN, 1972),
thc stochastic sign change (SSC) criterion (VENOT et ai,
1984) and the Tanimoto coefficient (TANIMOTO, 1961), a simi-
larity coefficient commonly used in chemical informatics.

Similarity mapping has been applied to CT images of rabbits
wilh focal cerebral ischaemia and was able to identify small
ttifferences in the temporal dynamics around the infarct
(It) et ai, 1996). SM has also been applied in time series of
cindiac images in regions of similar temporal behaviour to
capture tbe essential informalion ofthe sequence while reducing
the number of image data presented to the clinician for diag-
nostic interpretation ( BOUDRAA et ai, 1999). Other applications
include the use of similarity transformations to match two
images with different resolutions (DUFOURNAUD et ai. 2(K)4).

Spectral SM segments images according to their spectral
characteristics and has been used in combination with spectral
imaging and electron microscopy to extract differentiation
parameters for several types of cell (ROTHMANN et ai, 2000;
HYMAN eiai. 2001). Anexampleof the numerous applications
ol SM in fields other than imaging is its use in spoken word rec-
ognition, where most models assume lexical representations
are activated based on the degree of similarity of the acous-
tic-phonetic input to a stored lexical representalion (CONNINE
eiai, 1997).

In this work, we present the application of similarity maps to
the identification of clinically significant features in simulated
dynamic PET image sets. To demonstrate the feasibility of
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the application of the proposed methods to such kinds of
image sequence, clinical data sets from oncological PET
studies were used, and the results of this preliminary evaluation
study are given.

2 Materials and methods

2.1 Similarity mapping

Two of the similarity measures previously described
(ROGOWSKA et ai. 1994; 1995) were used for the calculation
of similarity maps: the correlation coefficient COR and
normalised correlation coefficient NCOR.

(1)

(2)

where A' is the number of frames, A^n is the value of pixel (/,;)
in frame n: /?„ is the value of the TAC of the RROI: /x,^. is the
mean value ofthe reference TAC; and /i^y is the mean value of
pixel (f,7)TAC.

The result from the application of each ofthe above algorithms
to a sequence of frames from a dynamic PET study is one image
per tomographic slice, where each pixel value represents the
degree of temporal similarity of area A to reference region R.
Both correlation and normalised correlation maps have values
ranging from - 1 (for regions that are perfect ^negatives" of
the reference ROI's TAC: TAC,,./) to -M (for regions that are
identical to TACn^). Although both measures are normalised
for proportional differences (TAC - a x TAC,,.,. « = const),
only the NCOR is normalised for additive differences {TAC =
a + TAC,,./, a = const) (ROGOWSKA et ai. 1994).

Although COR and NCOR were able to identify several
structures in dynamic MRI images (R(X)OW.SKA et al., 1994;
1995; BANDETTINI ei ai, 1993; LUCAS-QUESADA et ai.
1996; BOUDRAA et ai, 2001). they proved to be ineffective
in analysing dynamic PET studies (see Section 3). As new
similarity measures were required, we introduced the following
formulas: sum of squares coefficient 55^, .squared sum coef-
fcient SQS. sum of cubes coefficient SC and cubed sum
coefficient CS:

cs, =

(3)

(4)

(5)

(6)

SSQ and SQS provide a similarity measure normalised for
additive differences and perfect negatives and have values
ranging from 0 (for totally uncorrelated regions) to a maximum
value different in each case. SC and CS are normalised for
additive differences and range from negative values (for
regions with opposite TACs) to positive values.
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Values in the similarity map images also depend on the
intensity levels at the RROI's TAC and the TACs of the rest
of the pixel values. Therefore, even in the case of similar
temporal behaviour for the RROI and another ROI in one
image sequence, the similarity map values will also reflect
the proportional difference between those two regions.

In the case of PET image sequences, proper decay correc-
tions should be performed before SM methods are applied.
Another important parameter that could lead to erroneous
results is lack of spatial registration between image frames for
the same tomographic slice. To classify voxels or volumes/
regions of interest correctly, based on similarity criteria, the
images should previously be checked for spatial registration.
Patient motion and respiratoiy artifacts should therefore be
corrected prior to the application of SM. To compensate for
such possible errors, for this study, the original ROis were
visually repositioned but not redrawn. At present, there is no
technique available for the clinical routine that would correct
for patient motion or respiratory artifacts, although such
methods are currently being Investigated. An evaluation of the
robustness of the method as a function of motion is, however,
outside the scope of this study.

Where similarity maps are to be applied to sequences of
images taken at different times (e.g. before, during and after
treatment) to evaluate the tumour response to therapy, then
spatial registration, as well as appropriate .selection of the ana-
tomically identical slices from each image volume, should be
carefully applied before the application of SM methods.

2.2 Dynamic phantom

To evaluate the performance of the similarity measures
developed before their application to real clinical cases, a
dynamic data set was created simulating an image series
from a lower abdomen PET study. Eor this purpose, a one-
slice phantom image was created. This phantom image is
shown in Fig. I and consists of a big ellipse M corresponding
to normal tissue masses (which, for real PET scans, could
include, apart from muscle, gut, fat, fine vasculature, other
soft tissue structures and bones of the pelvis), and three
smaller ellipses corresponding to the bladder B. tumour T
and vessel V.

The time activity curves were generated based on the TACs
measured in a real dynamic '^ 'F-FDG PET study from a case
of colorectal tumour recurrence, including the noise charac-
teristics of the measured data. This guaranteed that the
simulation results were performed at realistic noise levels.
The study consisted of 23 frames (30 s. 9 x 60 s, 90s,
4 X 120 s, 210 s, 7 X 300 s). From this study, appropriate
ROls were placed over areas corresponding to normal tissue,
tumour, bladder and vessels, and the TACs were calculated
for each of these regions. The results are also shown in Fig. 1.

2.3 Clinical data

The study included 17 patients with colorectal tumour recur-
rences and three patients with giant cell tumour, who were
referred on the basis of clinical symptoms and radiological
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Fig. 1 (a) First and (b) last frame of real patient dynamic PET study used for formation of(c) simulated dynamic PET phantom image series.
Id) Time acrivity curves from study were used as basis for definition of corresponding TAC functions of phantom
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examinations, either CT or MRI. The final diagnosis was based
on the hislologieal data obtained from .surgical specimens.
None of the patients had received chemotherapy or radiation
therapy at least 3 months prior to the PET study. Informed
consent was obtained from each patient. The study was per-
formed in accordance with the institutional review board
requirements.

Dynamic PET studies were performed after intravenous
injection of 300-370 MBq 'V-FDG for 60 min. A 23-frame
protocol was used (10 x I min, 5 x 2 min and 8 x 5 min).
^F-FDG was prepared according to the protocol described

by TooRONGiAN (1990).
A dedicated PET system* was used for the patient studies

(BRIX ct ai, 1997; ADAM et ai. 1997). The system consists
of four rings of 72 BGO detector blocks. Each block detector
is divided into an 8 x 8 matrix, and the crystal size of an indi-
vidual detector element is 4.39 x 4.05 x 30 mm. The system
allows the simultaneous acquisition of 63 transverse slices.
with a theoretic slice thickness of 2.4 mm. and has an axial
field of view of 15.3 cm. The system was operated in two-
dimensional mode (with septa extended). Transmission scans
were obtained for a total of 10 min with three rotating germa-
nium pin sources, before the tirsl radionuciide application for
the attenuation correction of the acquired emission tomo-
graphic images.

All PET images were attenuatioti corrected. An image matrix
of 128 X 128 pixels was used. The images were reconstructed
using an iterative reconstruction algorithm (weigbted least-
square method, ordered subsets, four subsets, six iterations)
(KONTAXAK[S ('/ ai, 2002). and the standardised uptake
values (SUVs) were calculated (STRAUSS and CONTI. 1991)

Table I Contrast values for ROli, and ROI^ for simulated phantom
ima^e series

SUV =
tissue concentration (MBq g ')

(injected activity (MBq)/hodY weight (g))

The SUV calculations were performed based on the last study
frame (55-60 min post injection). No partial volume correction
was performed; however. SUV measurements were performed
on volumes of interest (VOIs) spanning several tomographic
slices, instead of the conventional methods that average the
measured concentration over an ROI drawn in just one slice.

The similarity map images were evaluated mainly by cal-
culating the contrast of the tumour area with normal tissue.
Contrast is measured as CR = (T — M)/M, where T and M
are tbe mean activities of pixels in ROIs placed over tbe
tumour (7") and normal tissue masses (A/) areas., respectively.

3 Results

3.1 Dynamic phantom

We first applied the similarity coefficients by placing a
reference ROI over the bladder ROI/, and another on tbe
normal tissue mass ROI,,, of the simulated phantom image
series. Table 1 summarises the contrast values measured for
each of the similarity coefficients for tbese two cases.

In the first case ROI/,. the tumour can be distinguished in
all similarity maps with different levels of contrast and
clarity. The SUV for the lesion (see Fig. 1) was 34. In the
COR map, thc tumour shows similar contrast with normal
ti.s.sue areas. In the NCOR. SC and CS maps, it is well deli-
neated. In some of the maps, vessels are also present, either
with negative (COR. NCOR or SC) or positive values (SSQ,
where all values are raised to the second power). For the
case of the reference ROI^ in most of the maps, tbe tumour

•ECAT EXACT HR+; Siemens, Eriangen, Germany
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ROI

ROli,
ROI,,,

COR

0.15
0.10

NCOR

2.46
0.83

SSQ

40.0
0.0

SQS

30.0
0.12

SC

0.97
0.15

CS

54.0
0.22

is visible, but has similar (low) contrast levels to the reference
normal tissues. In NCOR it is well delineated, whereas, in SSQ.
it cannot be detected.

For comparison, similarity maps were also calculated for tbe
original dynamic PET study (shown in Fig. 1). using tbe same
TACs and placing ROIs over the bladder (ROI,,, Fig. 2) and
normal (issue masses {ROI,,,. Fig. 3). For ROI,,, both the COR
and NCOR maps are very noisy, and the tumour, located
below the bladder, is 'guessed at' rather than clearly detected.
In SSQ and SQS. the tumour is visible below a very bright
bladder, whereas, in SC. it bas similar intensity values to
normal tissue and is not visible, ln contrast, the CS map can
clearly separate bladder and tumour from tbe other structures.
For ROI,,,. tfie tumour is slightly visible in NCOR. but no other
similarity measure is able to detect it. as can be seen in the
calculated contrast values, presented in Table 2, which sum-
mari.ses the contrast values measured for eacb of the similarity
coefficients for these two cases.

As COR and NCOR values range over | - 1. + I ]. normali-
sation of values for display results in amplification of small
differences and therefore produces noisy images. In contrast,
the other SM value intervals are larger, resulting in maps
where only major differences are represented and that therefore
can produce clearly separated structures.

In the presence of the high-activity bladder and the quickly
disappearing vessel activity, in most of tbe maps, tumour simi-
larity values are comparable witb tbe normal tissue ones, and
therefore the tumour cannot easily be detected. However.
using the newiy introduced CS measure and an ROI placed
over the bladder, the resulting paratnetric image is comparable
with the last frame SUV image, and the tumour is clearly
revealed.

3.2 Clinical data

The time required for the analysis of a complete data set (23
frames. 32 slices per frame. 128 x 128 pixels per slice) was
40 s.̂  A reference VOI over tbe tumour, instead of a reference
ROI. was used, to improve the statistical properties ofthe TAC.

Fig. 4 shows an example of six similarity maps calculated
according to (i)-(6) for the same transaxial image slice of
one data set from a clinical patient study (colorectal recurrence
tumour). The contrast values calculated for tbis case are given
in Table 3.

In SSQ and SQS similarity maps, botb the tumour and the
vessels are present, although, in SQS. the tumour is the pre-
dominant structure. As both measures are normalised tor
'negative' differences, regions with almost opposite time
activity curves, .such as the tumour and the ves.seKs. have
similar values and are visible in the resulting map. However,
tbe SQS enhances the differences and provides better results
in revealing the structures of interest, without, however, pro-
viding information on the physiological differences of each
region (ves.sel as against tumour).

In SC and CS similarity maps, tumours bave positive values,
whereas vessels have negative values, and therefore they can be
easily discriminated (light as against dark colours). Moreover.

*C/C+-|-, Windows2000, Pentium III, 600 MHz, double processor,
512MB RAM
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Fig. 2 Similarily maps nf dxmimic PET study .shown in Fig. I. i-a!ctilaied using reference RO/ placed over hludder ami similarity nwii.siires (a)
COR, (h) NCOR,'(c) SSQ. (d) SQ.S, i'e) SC and (f) CS

in CS, the values of regions with quite different TACs (tumour
against normal tissue) show greater variatitm than in SC. result-
ing in hctter contrast for the tumour areas. The ratio of mean
intensities R0l,/R0l,i, forCS is twice that for SC, thus support-
ing the previous observation, where ROI, represents a region of
interest placed over the tumour area in the image.

Table 4 summarises the diagnostic performance (visual
detection of tumours and vessels) of the similarity coefficients
in ail 20 patient studies. Similarity maps based on the corre-
lation coefficient and the normalised correlation coefficient
are very noisy, and the tumours cannot be separated from the
other structures.

Fig. 5 shows a comparison of SM images (CS, upper row)
with SUV images of the same studies (lower row). Fig. 5a
shows a transaxial slice from a dynamic PET study of a
patient with a giant cell tumour of the righi tibia, and Figs 5h
iind c show two transaxial slices from dynamic '^F FGD PET
studies of two patients with recurrent coiorectal tumour.
The similarity maps demonstrate lesions with enhanced FDG
uptake, negatively delineate vessels and have comparabk' con-
trast with the SUV images. Table ? shows the measured
contrast values for the CS and SUV images for the 17 ca.ses
of coiorectal cancer recurrence and the three cases of giant
cell tumour.
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Fig. 3 Similarity- maps of dynamic PET srudx shown in Fig. I calculared using reference ROI placed over normal ris.we and simitariry measures
(a) COR. (hj NCOR. Ic) SSQ. (d) SQS, (e) SC and (f) CS

Table 2

ROI

ROI,.
ROI,,,

Contrast

COR

0.18
0,0

values for ROI/, and ROI^ for dynamic PET study

NCOR

0.69
0.34

SSO

23.0
0.0

SQS

18.0
0.0

SC

0.0
0.0

CS

54,0
0,0

4 Discussion
This study focused on exploring the role of similarity

mapping in oncological dynamic PET studies and addressing
the problem of enhanced localisation of lesions and metastases.

28

SM segments regions in the dynamic images according to their
temporal rather than their spatial properties. It has been applied
to dynamic MRI data sets and has successfully identified
various structures such as the renal coitcx and medulla
(ROGOWSKA er ai. 1995), low grade astrocytoma (ROGOWSKA
et al, 1994), activated areas of the brain during photic
stimulation (ROGOW.SKA er ai. 1995) and activated areas of
the motor-cortex during finger motion (BANDETTINI er ai.
1993), ischaemia in the left coronary artery territory and
focal ischaemia in the brain (ROGOWSKA er ai, 1995), breast
tumours (LuCAS-QuESADA et ai, 1996), lung tumour and
tentorial meningioma (ROGOWSKA er ai. 1995).
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Fig. 4 Similarity maps of clinical data set ofcolorecral recurrence calculared using tumour reference VOI and siwihtriry measures (a) COR. (b)
NCOR. (c) SSQ. (d) SQS. (e) SC and (f) CS

We have used two previously described formulas for the
calculation of similarity maps. COR and NCOR. and we
have introduced four new similarity measures: SSQ. SQS, SC
and CS. Use of the correlation-based similarity metrics has
been selected as the most commonly used methodology for

Table 3

COR

0.0

Contrast values for clinical patient

NCOR SSQ SQS

0.0 3.55 30.9

study

SC

0.35

CS

2.45

Table 4 Detectability of clinically significant tissues and organs in
similarity map images of clinical data studies. Numbers represent
fraction of cases

COR
NCOR
SSQ
SQS
SC
CS

Tumour

no (20/20)
no {20/20}
yes(20/20)
yes(20/20)
yes(17/20)
yes(20/20)

Vessels

no (20/20)
no (20/20)
yes(20/20)
slightly (18/20)
negatively (20/20)
negatively (20/20)
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Fiji- 5 Sittiilariry CS maps {upper row) and SUV imai^e.s (lower row) from rhree rransaxicil slices from dynamic PET studies of patients with gianr
cell rumcntr of right tibia (left column) and recurrent cotorectal ttitnotir {middle and right columns)

comparison ofthe similarity between images or image segments.
The use of these metrics steins from the fact that the Euclidean
distance D between two image vectors x and y or image
scjiiiicnls can describe a measure ofthe dissimilarity between
these two: £>̂  = ^ , [ A ( / ) - v(/)]~. It can be shown that the
correlation measure 5ZfV(0v(') is included as one ofthe factors
of the e.xpansion of the Euclidean distance: D^ = ^ , [ J : ( / ) ]~ -
2,|.v(/)|~ X!-^^''^'*') +5Z/I>'(')I"- The u.se ofthe normalised
version of the correlation measure is dictated by the need to
provide a metric independent of parameters such as changes in
the count rates, differences in the study and the camera par-
ameters and other additive or multiplicative factors that
could appear in images acquired at different times.

Ill this study, the COR and NCOR maps could discriminate
between structures in the dynamic phantom data set. whereas
they were ineffective in separating structures in clinical data.
Higher background noise, lower resolution and iess structural
information in dynamic PET images compared with dynamic
MRI scans could account for the different performance of
those similarity measures. Unlike COR and NCOR. the new
measures managed to reveal the structures of interest. Particu-
larly, CS provided better parametric images and would be the
method of choice as far as discrimination between the
tuinotir and other structures was concerned, both on simulated
phanlom studies and clinical data from PET studies of colorec-
tal tumour recurrences (even in the vicinity of hot organs such
as the bladder) and giant eel! tumour. Structures are in.stantly
identilied in the simiiarity maps, as vessels are either absent
(when the bladder is present) or displayed is difterent scales
of grey.

The selection ofthe reference ROI depends on the clinical
question being asked and provides different kinds of infor-
mation. Using a reference ROI placed over the bladder could
reveal a small lesion in its vicinity obscured by its higher
activity in the original image set. Even though an ROI placed

Table 5 Contrast vatues for CS and SUV images for nvo types of
tumour

CS SUV

Colorectal recurrences
Giani cell tumour

2.36 ± 0.47
11.6+ 2.1

4.12 + 0.42
11.9 + 1.8

over the normal tissue can also delineate the tumour in a
simple phantom study, for clinical data sets, this was shown
to be inefficient. In cases where a tumour is clearly visible in
the original image, an ROI placed over it could help detect
small nietastases. under the condition that these have the
same metabolic rate and behaviour in time as the tutnour
selected. Partial volume effects can be an additional source
of eiTor: however, as SM images show enhanced contrast ftir
areas of interest, it is expected that ihe detection of small
lesions would also be improved.

As manual selection of the reference ROI could be time
consuming and prone to operator bias, research is ongoing
into the development of a semi-automatic technique for Ihc
optimum selection of a reference ROI by the testing of many
possible reference pixels using a maximum entropy method
(ROGOWSKA and WOLF. 1992). At the same time, this operator
bias affects the sensitivity and specificity of the lechnique.
as the manual selection of the reference ROI could also
affect the probability of reaching false-negative or false-
positive diagnoses. This is expected to be improved when a
semi-automatic or fully automatic ROI selection method is
introduced.

We have shown that SM and SUV images have comparable
diagnostic performance, although SM is able to offer addi-
tional, time-related information in a single image. SM
images summari.se the underlying kinetics of the radiotracer
uptake, whereas SUV offers information only on the static
image frame (here, at 55-60 min post-injection) under evalua-
tion, independent of the previous image frames. Similarity
maps could therefore be an alternative, offering specific advan-
tages, to SUV-based evaluation for studies that require
dynamic PET acqui.sitions.

In fact, the use of SUV as a method of classification of tissue
areas as benign or malignant is still under discussion among
nuclear medicine physicians and oncologists (KiiYES, 1995;
HUANG, 2000). as high metabolic activity (relkctcd by FDG
uptake) can arise for a large number of reasons that are not
related to tumours. A wide variety of benign disorders have
high SUVs (LAPELA et al, 2000) including inflammation
areas, a common cause of 'false positive" '^F-FDG PET
scans (STRAUSS, 1996). On the other hand, some malignant
lesions may not necessarily have particularly high SUVs.
Furthermore, high degrees of fluctuation for the SUVs from
one day to another have been observed.
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Camera quality controls and calibrations are other para-
meters on which SUV measurements depend. In addition,
there is currently no proper study on the dependence of SUVs
on the type of PET camera used (i.e. BGO against LSO-
based tomographs etc.). or on the data processing prior to
image formation, such as attenuation and scatter correction,
efficiency normalisation methods etc., and some studies have
already indicated dependence on the image reconstruction
method (VisviKis el ai. 2001). Therefore the utility of the
information provided by the SUVs largely depends on its inte-
gration with all the available clinical and instrumental data
{UJCIGNANI ct ai. 2004).

SM could facilitate visual evaluation, by summarising the
information about the temporal dynamics of structures in one
image and improving the detectability of tumours and meta-
stases, especially in cases where poor image quality, due lo
lack of iterative image reconstruction or lesion characteristics
(size, location etc.). complicates the visual interpretation of
dynamic ' "F -FDG-PET data sets. On the other hand, given
(he dynamic process that repre.sents the FGD uptake in tissue,
dynamic '^F-FDG-PET is the most appropriate procedure for
oncological studies. However, the fact that such explorations
are. in general, time-consuming (although efficient alternatives
to solve this problem have been recently presented (STRAUSS
er al.. 2003)) and more expensive has prohibited, until now.
the spread of this powerful technique in routine oncological
PET explorations. It would be interesting also to explore the
perlbnnance of the newly introduced similarity measures in
other fields of dynamic PET imaging as well as in dynamic
MRI scans.

5 Conclusions
Although similarity mapping has successfully identified

various structures in dynamic MRI data sets, its potential appli-
cation to dynamic PET data sets has not yet been sufficiently
studied. In this work, a feasibility study ofthe use of similarity
maps in the extraction of features with diagnostic and general
clinical interest from dynamic PET images has been presented.
The goal of the present study was not to present a tool of
clinical utility, but to offer a method for nuclear medicine
physicians to proceed to further detailed clinical evaluation
and validation studies ofthe proposed technique.

Similarity mapping could be a more appropriate diagnostic
technique than the SUV approach, especially in dynamic PET.
It has been also argued that dynamic PET is a more appropriate
acquisition protocol for oncological studies for cancer diagnosis
and therapy management than conventional, static, whole-body
acquisitions.

The present study showed that the newly introduced CS
similarity map criterion rapidly identifies structures with
similar temporal properties, has comparable contrast to SUV
images and could enhance the detection of tumours that
might not be easily discriminated in the original images. There-
fore similarity mapping based on this measure could success-
fully be used to support the visual interpretation of dynamic
'^F-FDG PET data sets in oncology. The pertbrmance of the
newly introduced similarity measures in other fields of
dynamic PET imaging, as well as in dynamic MRI scans, is
under study.
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