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a b s t r a c t 

Computerized tomography (CT) is a widely adopted modality for analyzing directly or indirectly func- 

tional, biological and morphological processes by means of the image characteristics. However, the poten- 

tial utilization of the information obtained from CT images is often limited when considering the analysis 

of quantitative information involving different devices, acquisition protocols or reconstruction algorithms. 

Although CT scanners are calibrated as a part of the imaging workflow, the calibration is circumscribed to 

global reference values and does not circumvent problems that are inherent to the imaging modality. One 

of them is the lack of noise stationarity, which makes quantitative biomarkers extracted from the images 

less robust and stable. Some methodologies have been proposed for the assessment of non-stationary 

noise in reconstructed CT scans. However, those methods focused on the non-stationarity only due to the 

reconstruction geometry and are mainly based on the propagation of the variance of noise throughout 

the whole reconstruction process. Additionally, the philosophy followed in the state-of-the-art methods 

is based on the reduction of noise, but not in the standardization of it. This means that, even if the 

noise is reduced, the statistics of the signal remain non-stationary, which is insufficient to enable com- 

parisons between different acquisitions with different statistical characteristics. In this work, we propose 

a statistical characterization of noise in reconstructed CT scans that leads to a versatile statistical model 

that effectively characterizes different doses, reconstruction kernels, and devices. The statistical model is 

generalized to deal with the partial volume effect via a localized mixture model that also describes the 

non-stationarity of noise. Finally, we propose a stabilization scheme to achieve stationary variance. The 

validation of the proposed methodology was performed with a physical phantom and clinical CT scans 

acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The 

results confirmed its suitability to enable comparisons with different doses, and acquisition protocols. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Quantitative imaging (QI) is the process of reducing functional,

biological and morphological processes to a measurable quantity

by means of medical imaging. The uses of QI are even greater

in the light of a new healthcare delivery system that becomes

more personalized and tries to tailor therapies to the underlying

pathophysiology. 

QI includes the development, standardization, optimization,

and application of structural, functional, or molecular imaging

acquisition protocols, data analyses, display methods, and re-
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orting structures, as well as the validation of QI results against

elevant biological and clinical data. This way, QI contributes to

he radiological interpretation by assessing the degree of a given

ondition ( Buckler et al., 2011; Abramson et al., 2015 ). QI has been

dopted in clinical studies and trials to obtain more sensitive and

recise endpoints. The advancement in techniques to automatically

nterpret and quantify medical images have been recognized by

egulatory agencies that have now proposed guidelines for the

ualification of image-based biomarkers to be used as valid end-

oints in clinical trials (e.g. the Quantitative Imaging Biomarkers

lliance (QIBA) at www.rsna.org/qiba ). The utility of quantitative

maging is somehow hampered by the lack of standardization

mong vendors due to the nuisances of the acquisition and recon-

truction processes such as signal-to-noise ratio, spatial resolution,

http://dx.doi.org/10.1016/j.media.2017.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.06.001&domain=pdf
mailto:gvegas@bwh.havard.edu
http://www.rsna.org/qiba
http://dx.doi.org/10.1016/j.media.2017.06.001
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lice thickness, image reconstruction algorithms among others

 Mulshine et al., 2015 ). 

Computerized tomography (CT) is recognized as a very suitable

nd widely adopted modality for quantitative imaging due to its

igh contrast and physical interpretability of the acquired signal.

ses of the quantitative imaging in CT (qCT) are the assessment of

umor size and texture ( Aerts et al., 2014 ), calcifications ( Agatston

t al., 1990 ), emphysema ( Müller et al., 1988 ), stenosis ( Boogers

t al., 2010 ) to name a few. In all cases, there is a reliance on the

tatistics of the CT signal to derive a valid quantity that captures

he pathological process. 

Although CT scanners are calibrated as part of the imaging

orkflow, the calibration is circumscribed to global reference

alues of air and water ( Millner et al., 1978 ). This fact jointly to

ther inherent factors of the acquisition makes the CT signal more

ariable than desired (e.g. photon starvation, partial volume effect,

eam hardening) ( Hsieh, 2003 ). These effects are particularly

mportant to create a quantitative metric that is consistent among

endors and free of confounding factors due to changes in patient

eight and size to fulfill requirements of accuracy and precision

 Uppot et al., 2007 ). 

Among all those issues, CT noise is an important factor that

as been carefully studied during the last decades at the detector

evel as part of the transmission process ( Whiting, 2002; Whiting

t al., 2006 ). The non-monochromatic nature of the X-ray signal,

he amount of total X-ray energy defined by tube current coupled

ith the effects of the reconstruction and the interaction between

-ray and matter within the scanning field of view make the noise

haracterization in the reconstructed image a complex process.

ne of the main consequences of this complexity is the lack of

tationarity. It is well understood that fan-beam tomography in-

roduces nonstationary frequencies components and nonstationary

oise ( Zeng, 2004 ) by the nature of the scanning geometry. Several

ethods have been developed to assess the CT noise spectrum in

onstationary conditions ( Borsdorf et al., 2008a; Balda et al., 2010;

aek and Pelc, 2010 ). 

Borsdorf et al. (2008a ) proposed a non-stationary estimation of

oise based on an analytical propagation of the variance through-

ut the whole reconstruction process (involving interpolations,

onvolutions, and backprojection) ( Borsdorf et al., 2008b ). This

ethod provides an estimate of the variance of noise which is

urther decomposed into vertical and horizontal components to

et the anisotropic behavior of noise in the fan-beam recon-

truction. The main limitations of this method are the need of

 calibrated physical noise model to estimate the noise variance

n the fan-beam projections and the need of the raw fan-beam

rojections that are not typically available after reconstruction. Be-

ides, although the variance is split into two different components

vertical and horizontal), they are assumed to be independent and

hus, the method does not provide a truly anisotropic description

f noise. The anisotropic limitation is partially avoided in Borsdorf

t al. (2009) , where the preferred direction is estimated as the

irection with the strongest correlation during the backprojection

f variance contributions. 

It is important to note that the philosophy adopted in Borsdorf

t al. (20 08a , 20 09 ) is not to provide a comparable level of noise

etween regions of the same image or even different acquisitions

ut to reduce the noise from direction estimates of its variance.

his means that even with a noise reduction, the non-stationary

ehavior of noise remains active in the filtered image. This fact

vidences that reducing non-stationary noise does not provide a

olution for quantitative CT analysis in terms of enabling com-

arisons between different acquisitions that may show different

tatistical characterization. 

A different approach was adopted by Balda et al. (2010) to

rovide not only the propagation of noise variance throughout the
econstruction process but also the noise power spectrum. The

tatistical model that describes the attenuation levels is assumed

o be known (following a model or by calibration measurements).

hen, certain equally distributed noise is generated with the

arameters of the location under study that is reconstructed.

he result is a patch with a stationary noise with the estimated

oise power spectrum. This approach strongly depends on the

nderlying noise model adopted for the attenuation observed in

he detector. Thus, the noise power spectrum can be substantially

iased in scenarios where the underlying model differs due to

he response of polychromatic X-ray beams. Besides, the fan-beam

rojections are required to estimate the noise power spectrum.

his methodology provides a way to compare acquisition protocols

or CT scanners from different manufacturers when comparing

he reconstruction over the same phantom (matching different

econstruction kernels). However, it does not provide a suitable

ay to enable comparisons between different acquisitions. 

Recently, Kim et al. (2016) proposed a methodology based on

he IMPACT iterative reconstruction algorithm ( Man et al., 2001 ).

hat reconstruction method allows the calculation of the local

ariance in each iteration that can be used to transform the non-

tationary noise to a more treatable one. A functional relationship

etween local variance and local mean is imposed by considering

 conversion factor defined as the local mean divided by the local

ariance, which is multiplied to the reconstructed image. Then,

he resulting random variable is assumed to have a linear depen-

ence, which can be used to transform the noise distribution to

 Gaussian one. Finally, any optimal filter for stationary Gaussian

oise can be applied for noise reduction and the transformation is

nverted to obtain the denoised image. 

The method proposed by Kim et al. (2016) offers an interesting

erspective to deal with non-stationary noise. However, it requires

he raw data projections before the reconstruction, which are not

sually available in standard clinical routine. Besides, the calcula-

ion of local statistics is also required. This calculation was done

onsidering identically distributed samples in the local region. This

s a strong assumption that obviously provides biased results in

ocations with different attenuation levels, especially at the edges. 

Summarizing, the methods mentioned above show com-

on inconveniences to provide a unifying framework to enable

omparisons between images acquired in different conditions: 

• They require the projection information from the detectors.

That information is not available in all studies. 
• They are not designed to address other sources of nonstation-

arity like changes in the transmission medium due to different

body weight distributions. 
• They are focused on the noise reduction. The resulting im-

ages are still not comparable after noise reduction; the noise

remains non-stationary. 
• They do not provide a statistical characterization of noise after

processing. 

In this paper, we propose a complete methodology to avoid

hese limitations. With this aim, we circumvent the need of pro-

ection information by proposing a statistical characterization of

oise in the images after reconstruction. The proposal is supported

y a statistical exploratory analysis of reconstructed images with

ifferent configurations including dose, reconstruction kernels, and

anufacturers. As a result, we propose a non-central Gamma as

he probabilistic distribution that describes the statistical behavior

f noise in all the different situations. 

The probabilistic distribution is used to define a statistical

ixture model that allows us to account for the partial volume

ffect in the description of local noise characteristics. The full

ethodology to estimate the local probabilistic characterization of

oise throughout the image is also derived. 
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1: 340 HUs

2: 240 HUs

3: 100 HUs

4: 0 HUs

5: -160 HUs

6: -370 HUs

7: -540 HUs

8: -810 HUs
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Fig. 1. Scheme of the Cylindrical LSCT 0 0 01 phantom studied. The legend specifies 

in descending order the mean attenuation levels per material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Axial view of the acquired 3D volumes with different devices (Top: General 

Electric; Bottom: Siemens) for different kernels and doses. a) STD HD, b) STD LD, c) 

BONE HD, d) BONE LD, e) B31f HD, f) B31f LD, g) B45f HD, h) B45f LD. 
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Finally, we propose a suitable variance stabilization approach

for a mixture of non-central Gamma distributions. Our transfor-

mation shows some significant advantages: i) it naturally avoids

biases in the estimation of local statistics due to the local char-

acterization of noise; ii) the resulting image shows a stationary

noise with known statistical distribution. 

The suitability of the proposed methodology is validated with

a physical phantom and with clinical images, all of them acquired

with different configurations. Our method exhibits a homogeneous

response of noise after the stabilization. Besides, the comparison

between low dose and high dose shows that, after the proposed

stabilization, the local histograms significantly increase their sim-

ilarities in all the cases. This results confirm that the proposed

methodology provides a unifying framework allowing for com-

paring images acquired with several acquisition parameters. The

method was also tested for iterative reconstruction. The results

also confirmed its suitability to enable comparisons with different

doses, and acquisition protocols. 

The paper is structured as follows: Section 2 presents the

exploratory data analysis of a phantom acquired with different

kernels, doses, and devices. The exploratory analysis carefully tests

the functional relationships between the statistics of noise for

varying attenuation levels, reconstruction kernels, and doses. The

descriptive analysis allows defining some features that a proba-

bilistic distribution should meet to describe the noise statistics

( Section 2.3 ). The proposed distribution is then generalized to deal

with heterogeneous tissues using a mixture model, the local esti-

mation of the mixture model that fulfills the distribution features

is fully derived in Section 3 . The variance stabilizing transformation

is presented in Section 4 . The validation of the proposed method-

ology is given in Section 5 . Finally, in Section 6 we conclude. 

2. Descriptive statistics of attenuation in CT scans 

In this section, we perform an exploratory analysis of the

statistics of reconstructed CT scans. Our purpose is to provide

both qualitative and quantitative behaviors of the statistical dis-

tributions that describe the noise in reconstructed images with

different reconstruction kernels, doses, and devices. The resulting

analysis will provide the evidence for the proposal of a versatile

family of distributions that models the overall behavior of noise

for different reconstruction kernels, doses, and devices. 

2.1. Materials 

The exploratory analysis was performed considering the 8-step

linearity LSCT 0 0 01 phantom (Kyoto Kagaku, Japan) acquired

with different devices and reconstruction kernels. The phantom is

schematically described in Fig. 1 . It consists of a cylindrical struc-

ture made of a homogeneous material that contains other eight

concentric tubular structures with different attenuation levels. 

The phantom was acquired with two different devices with the

following reconstruction protocol: 
• General Electric Discovery STE. Four volumes of size 512 ×
512 × 313 were acquired at Brigham and Women’s Hospital

with different doses (400 mA and 100 mA) and reconstruction

kernels (Standard, Bone). All of them with a KVP: 120 kV, Slice

thickness 0.625, with software 07MWDVCT36.4. We will refer

to these volumes as STD HD, STD LD, BONE HD, BONE LD for

the different arrangements of kernels, and doses (HD: high

dose; LD: low dose). 
• Siemens Definition. Similarly, four volumes of size 512 × 512

× 313 were acquired at Brigham and Women’s Hospital for

the same configurations of doses (400 mA and 100 mA) and

reconstruction kernels B31f, B45f. All of them with a KVP:

120 kV, Slice thickness 0.75, with software syngo CT 2007C.

Following the same convention as before, we will refer to them

as B31f HD, B31f LD, B45f HD, B45f LD. 

Fig. 2 shows an example of the acquired images for all the

ernels, devices, and doses considered. 

.2. Exploratory data analysis 

The analysis of characteristics of noise in CT scans is performed

y following the three main strategies proposed by Jones (1986) : i)

raphical representation, ii) quantitative evidence when possible,

nd iii) search for simplicity. Thus, to provide an accurate de-

cription of the statistical behavior of attenuation levels, the study

f data was performed in a set of samples collected from each

issue identified by the numbered regions from 1 to 9 of the CT

mages as shown in Fig. 1 . The samples were acquired by manually

electing a circular area in the axial view laying within each tissue

ype. More than 20,0 0 0 samples were acquired in each region. 

In Fig. 3 , we show the behavior of the estimated probability

ensity functions (PDFs) obtained from the samples for the differ-

nt configurations (represented as black dots). At first sight, the

istributions look symmetrically centered on their expected value,

lthough a positive skewness appears as the attenuation levels

ecrease. This effect is due to the lower limit of the attenuation,

hich is around −10 0 0 HUs. It is also worth to mention that

he variance of noise increases as the attenuation levels of the

egions increase, which is observed in the way the PDFs decrease

heir height as their central attenuation level increases. This effect

as already observed by Li et al. (2004) for the study of the

elationship between variance and mean in the receiving sensors.

he precise functional relationship will be carefully studied for

ach tissue type in terms of its moments until fourth order. 

nalysis of mean and variance. The functional relationship between

ean and variance is studied by representing the variance with

espect to the average attenuation levels for the regions consid-

red. In Fig. 4 , the sample variance is plotted against the sample
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Fig. 3. Empirical probability density functions of samples for the different tissue regions and different arrangements of devices, kernels, and doses. Top: GE, Bottom: Siemens. 

Fig. 4. Functional relationship between variance and mean and its regression line. 
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Table 1 

Results for the linear regression between variance and mean. 

All the results are strongly significant and confirm that more 

than 70% of variance is explained by linear regression. 

Pearson’s Coef. R 2 p-value Hyp. 

STD LD 0.8686 0.7544 < 10 −4 H 1 
STD HD 0.8593 0.7384 < 10 −4 H 1 
BONE LD 0.9312 0.8671 < 10 −4 H 1 
BONE HD 0.9133 0.8342 < 10 −4 H 1 
B31f LD 0.8971 0.8047 < 10 −4 H 1 
B31f HD 0.8613 0.7419 < 10 −4 H 1 
B45f LD 0.9097 0.8276 < 10 −4 H 1 
B45f HD 0.8815 0.7771 < 10 −4 H 1 
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t  
ean jointly to its regression line. At first glance, the monotonic

elationship between variance and mean becomes evident and

eems to behave linearly. This is confirmed with an F-test for the

ull hypothesis “H 0 : The variance and mean do not have a linear

elationship.” The results obtained for the regression are shown in

able 1 , where the Pearson’s correlation coefficient shows a strong

inear relationship between mean and variance. Additionally, the

oefficient of determination R 2 , that accounts for the explained

ariance shows that more than 75% of the variance is explained by

 linear model. Finally, the p -value obtained for the F -test confirms

ith a strong evidence ( p -value < 10 −4 ) that both parameters

mean and variance– exhibit a linear relationship and, thus, the

ull hypothesis can be rejected. 

nalysis of Skewness. The skewness for the different tissues was

tudied by testing the unbiased Fisher-Pearson skewness statistic

 Groeneveld and Meeden, 1984 ), G 1 , defined as: 

 1 = 

n 

(n − 1)(n − 2) 

∑ n 
i =1 (x i − x̄ ) 3 (

1 
n −1 

∑ n 
i =1 (x i − x̄ ) 2 

)3 / 2 
, (1) 

here x̄ is the sample mean. If the data follows a Gaussian

istribution, this statistic is distributed as a zero-mean Normal

istribution with variance ( Kendall and Stuart, 1969 ): 

ar { G 1 } = 

6 n (n − 1) 

(n − 2)(n + 1)(n + 3) 
−−−→ 

n →∞ 

6 

n 

. (2) 
Thus, we can easily test the null hypothesis “H 0 : The data

ollows a Gaussian distribution”, by calculating the p-value for the

btained G 1 statistic. In our case, since the number of samples

s high, Var{ G 1 } ≈ 6/ n , so G 1 / 
√ 

6 /n follows a standard Gaussian

istribution, i.e. G 1 / 
√ 

6 /n ∼ N (0 , 1) . The results obtained for the

est are shown in Table 2 , where the value of | G 1 | is represented

s well as the hypothesis adopted according to the obtained p-

alue. Note that the null hypothesis can be rejected with a strong

ignificance for the lowest density tissues (shown in bold letters),

hich corresponds to the range [ −10 0 0 , −898] HUs that can be

elated to air and lung parenchyma. 

nalysis of Kurtosis. An analysis of kurtosis allows us to confirm

f the distribution of the observed samples may be considered

s Gaussian distributed when it is combined with the analysis of

kewness. We proceed in a similar way as we did for the skewness

ith the statistic known as sample excess of kurtosis ( Groeneveld

nd Meeden, 1984 ), which is defined as: 

 2 = 

(n + 1) 

(n − 1)(n − 2)(n − 3) 

1 
n 

∑ n 
i =1 (x i − x̄ ) 4 (

1 
n −1 

∑ n 
i =1 (x i − x̄ ) 2 

)2 
− 3(n − 1) 2 

(n − 2)(n − 3) 
. 

(3) 

Under null hypothesis “H 0 : The data follows a Gaussian distribu-

ion”, this statistic follows a zero-mean Gaussian distribution with
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Table 2 

Statistical test for the skewness | G 1 | and kurtosis G 2 statistics considering the null hypothesis “H 0 : The data follows a Gaussian distribution” for different significance levels 

( H 1 : p -value < 0.05, H 1 
∗: p -value < 0.01, H 1 

∗∗: p -value < 10 −3 , H 1 
∗∗∗: p -value < 10 −4 ). Note that the skewness for tissues associated with lower density values shows a 

very strong evidence of asymmetric behavior. Additionally, the null hypothesis is always rejected for a positive excess of kurtosis. 

Skewness B31f exp B31f insp B45f exp B45f insp STD exp STD insp BONE exp BONE insp 

Tissue | G 1 | Hyp. | G 1 | Hyp. | G 1 | Hyp. | G 1 | Hyp. G 2 Hyp. G 2 Hyp. G 2 Hyp. G 2 Hyp. 

1 0.011 H 0 0.021 H 0 0.031 H 0 0.042 H 1 
∗ 0.020 H 0 0.011 H 0 0.001 H 0 0.003 H 0 

2 0.016 H 0 0.023 H 0 0.005 H 0 0.033 H 1 0.012 H 0 0.005 H 0 0.002 H 0 0.030 H 0 
3 0.003 H 0 0.014 H 0 0.005 H 0 0.012 H 0 0.011 H 0 0.058 H 1 

∗∗ 0.004 H 0 0.013 H 0 
4 0.025 H 0 0.001 H 0 0.024 H 0 0.007 H 0 0.009 H 0 0.025 H 0 0.010 H 0 0.004 H 0 
5 0.014 H 0 0.004 H 0 0.018 H 0 0.003 H 0 0.012 H 0 0.024 H 0 0.029 H 1 

∗ 0.003 H 0 
6 0.021 H 0 0.015 H 0 0.019 H 0 0.017 H 0 0.009 H 0 0.010 H 0 0.005 H 0 0.024 H 0 
7 0.008 H 0 0.008 H 0 0.011 H 0 0.011 H 0 0.008 H 0 0.066 H 1 

∗∗∗ 0.019 H 0 0.023 H 0 
8 0.003 H 0 0.083 H 1 

∗∗∗ 0.004 H 0 0.058 H 1 
∗∗ 0.005 H 0 0.079 H 1 

∗∗∗ 0.011 H 0 0.026 H 0 
9 0.434 H 1 

∗∗∗ 0.071 H 1 
∗∗∗ 0.810 H 1 

∗∗∗ 0.437 H 1 
∗∗∗ 0.199 H 1 

∗∗∗ 0.079 H 1 
∗∗∗ 0.706 H 1 

∗∗∗ 0.359 H 1 
∗∗∗

Kurtosis B31f exp B31f insp B45f exp B45f insp STD exp STD insp BONE exp BONE insp 

Tissue | G 1 | Hyp. | G 1 | Hyp. | G 1 | Hyp. | G 1 | Hyp. G 2 Hyp. G 2 Hyp. G 2 Hyp. G 2 Hyp. 

1 −0 . 007 H 0 0.004 H 0 0.009 H 0 0.004 H 0 −0 . 035 H 0 0.056 H 0 −0 . 009 H 0 0.062 H 0 
2 0.007 H 0 −0 . 002 H 0 0.081 H 1 0.034 H 0 0.012 H 0 0.132 H 1 

∗∗∗ 0.009 H 0 0.059 H 0 
3 0.079 H 1 0.073 H 1 0.083 H 1 0.063 H 1 0.045 H 1 0.084 H 1 

∗ 0.024 H 0 0.165 H 1 
∗∗∗

4 0.061 H 0 0.030 H 0 0.068 H 1 −0 . 018 H 0 −0 . 033 H 0 0.060 H 0 0.003 H 0 0.071 H 1 
5 0.081 H 1 0.053 H 0 0.044 H 0 0.018 H 0 −0 . 027 H 0 0.073 H 1 0.030 H 0 0.088 H 1 

∗

6 0.091 H 1 
∗ 0.011 H 0 0.070 H 1 0.0 0 0 H 0 0.027 H 0 0.041 H 0 0.035 H 0 −0 . 012 H 0 

7 0.057 H 0 0.049 H 0 0.053 H 0 0.030 H 0 −0 . 013 H 0 0.051 H 0 0.044 H 1 0.012 H 0 
8 0.038 H 0 0.151 H 1 

∗∗∗ 0.047 H 0 0.110 H 1 
∗∗ 0.062 H 1 

∗ 0.232 H 1 
∗∗∗ 0.068 H 1 

∗ 0.096 H 1 
∗

9 −0 . 151 H 0 −0 . 065 H 0 0.326 H 1 
∗∗∗ −0 . 128 H 0 −0 . 165 H 0 0.009 H 0 0.215 H 1 

∗∗∗ −0 . 170 H 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Skewness-Kurtosis plots for the most extreme cases of each device. Low at- 

tenuation levels are represented in brighter blues, whereas higher attenuation lev- 

els are represented in darker blues. The regression line constrained to the Gaussian 

convergence is represented in red and its confidence interval as a dashed line. The 

green line represents the loci of the Gamma distribution defined as y = 1 . 5 x + 3 . 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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variance ( Groeneveld and Meeden, 1984; Joanes and Gill, 1998 ): 

Var { G 2 } = 

24 n (n − 1) 2 

(n − 3)(n − 2)(n + 3)(n + 5) 
−−−→ 

n →∞ 

24 

n 

. (4)

Thus, for a large number of samples –as it is the case under

study– we can assume that 
G 2 √ 

24 /n 
∼ N (0 , 1) . We can now calculate

the p -values to contrast the null hypothesis for all tissue types.

The results obtained for the excess of kurtosis are also shown in

Table 2 . In this case, the conclusion is more subtle than in the

previous case but still useful. Note that all the cases where the null

hypothesis can be rejected are due to a positive excess of skewness

(shown in bold letters). This means that the data behaves as a

leptokurtic distribution whose excess of kurtosis converges to 0 as

the mean value increases. This tendency would suggest that the

kurtosis-skewness relationship could show a monotonic relation-

ship that may be efficiently described by a family of distributions. 

Relationship between Kurtosis and Skewness. The way the empirical

distributions converge to a Normal one as the attenuation levels

increase can be studied by analyzing the relationship between kur-

tosis and skewness. The Skewness-Kurtosis plot ( Cullen and Frey,

1999 ) is a representation of the locus of skewness-kurtosis pairs

(specifically, kurtosis vs. skewness 2 ) and allows us to compare the

empirical behavior of the data with theoretical distributions. In

general, theoretical distributions may be represented as points,

lines or surfaces as the parameters of the distribution vary and

depending on the kurtosis-skewness relationship. This way, the

Gaussian distribution (with null skewness and kurtosis = 3 ) would

be represented as a point at location (0, 3), while the Gamma

distribution is represented by the line y = 1 . 5 x + 3 . 

In Fig. 5 , we show the Skewness-Kurtosis plot for the most

extreme cases of each device (soft kernel+HD, sharp kernel+LD),

the other ones are similar and were omitted for brevity. The dif-

ferent tissues of the phantom are represented with different colors

(darker corresponds to higher attenuation levels). Note that the

overall behavior of samples seems to increase linearly and there is

a clear convergence to the Gaussian distribution –represented at

location (0, 3)– as attenuation levels increase. This result confirms
he already mentioned convergence of the skewness to 0 and

urtosis to 3. 

Additionally, the leptokurtic behavior of the data is also

onfirmed by the overall linear increase shown in the figure.

o see if this linear increase is significant, we performed a

inear regression analysis of the Skewness-Kurtosis pairs con-

trained to the convergence to (0, 3) previously mentioned. The

egression line is also represented in Fig. 5 as the red contin-

ous line and its confidence interval is shown as dashed red

ines. The results obtained for the regression analysis are shown
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Table 3 

Regression analysis for Kurtosis-Skewness pairs constrained to the Gaussian 

convergence. The evidence of a linear relationship is clear due to the p -value 

< 10 −4 for all the cases. The � behavior of Kurtosis-Skewness pairs cannot be 

discarded for almost all the cases, obtaining an increment of the total sums 

of squares of less than a 1%. 

Reg. line R 2 H 0 H � �TTS% 

STD LD y = 1.47 x + 3 0.1063 < 10 −4 0.7650 < 10 −3 % 

STD HD y = 1.58 x + 3 0.3129 < 10 −4 0.1331 0.12 % 

BONE LD y = 1.56 x + 3 0.1295 < 10 −4 0.4841 0.03 % 

BONE HD y = 1.46 x + 3 0.2469 < 10 −4 0.4795 0.03 % 

B31f LD y = 1.56 x + 3 0.2142 < 10 −4 0.4128 0.03 % 

B31f HD y = 1.65 x + 3 0.3360 < 10 −4 0.0024 0.42 % 

B45f LD y = 1.59 x + 3 0.2310 < 10 −4 0.1520 0.10 % 

B45f HD y = 1.61 x + 3 0.3125 < 10 −4 0.0323 0.21 % 
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n Table 3 . The p -values for the null hypotheses H 0 : “There

s no linear relationship between kurtosis and skewness 2 ” and

 � : “The Skewness-Kurtosis are distributed as y = 1.5 x + 3” are 

lso given jointly with the increment of variance ( �TTS) due to

he approximation of the Gamma Skewness-Kurtosis distribution

alculated as: 

TTS = 

∑ n 
i (y i − 1 . 5 x − 3) 2 ∑ n 
i (y i − ̂ m x − 3) 2 

− 1 , (5) 

here ̂ m accounts for the slope estimation of the regression

ine. 1 Results in Table 3 show that the null hypothesis H 0 can

e discarded with a strong evidence ( p -values < 10 −4 ) for all the

ases and the regression lines obtained are close to the one that

epresents the Gamma distribution. Actually, the test for hypothe-

is H � shows that there is a very low evidence for discarding the

ypothesis for almost all the cases. The only case where the slope

ignificantly differs is the case of B31f HD. However, it is impor-

ant to note that the increase of error due to the approximation

 . 5 x + 3 is 0.42%. 

.3. Proposal 

According to the results obtained in the descriptive analysis

f data, a proper family of distributions that model the statistical

ehavior of tissue/noise in CT scans should meet the following

eatures: 

1. Positive skewness for low attenuation levels that gradually

decreases. 

2. Leptokurtic behavior for low attenuation levels that gradually

normalizes for higher attenuation levels. 

3. Linear relationship between mean and variance. 

4. Linear relationship between kurtosis and skewness 2 with

convergence to the Gaussian distribution. 

In the light of these characteristics, we propose the non-

entral Gamma (nc- �) distribution defined as a three-parameter

istribution: 

f X (x | α, β, δ) = 

(x − δ) α−1 

βα�(α) 
e −

x −δ
β , x ≥ δ and α, β > 0 , (6)

here �( x ) is the Euler Gamma function defined as �(x ) =
 ∞ 

0 t x −1 e −t dt, for x > 0; α is the shape parameter, β is the scale

arameter, and δ is defined as the least attenuation level (typically

round −10 0 0 HUs). 2 This distribution meets the whole set of

haracteristics observed in the exploratory analysis: 
1 Note that �TTS ∈ [0, 1] since ̂ m = arg min 
m 

∑ n 

i =1 
(y i − mx + 3) 2 . 

2 For the sake of brevity and without introducing confusion, we will apply the 

ame notation �( ·) to the following concepts depending on the parameters used: 

uler Gamma �( x ), central Gamma distribution �( x | α, β), central Gamma random 

ariable �( α, β), non-central Gamma distribution �( X | α, β , δ), and non-central 

c  

a  

G

r

l

1. It has a positive skewness defined as: 

Skewness { �(α, β, δ) } = 

2 √ 

α
> 0 for α > 0 (7) 

2. The excess of kurtosis is positive and gradually converges to a

Gaussian distribution as the mean increases: 

Excess Kurtosis { �(α, β, δ) } = 

6 

α
> 0 for α > 0 (8) 

3. The variance and mean of the nc- Gamma variable (i.e.

μX = αβ + δ and σ 2 
X = αβ2 ) shows a linear relationship: 

σ 2 
X = βμX − βδ (9) 

4. The linear relationship between kurtosis and skewness 2 is the

same as the observed data: 

Kurtosis { �(α, β, δ) } = 

3 

2 

Skewness 
2 { �(α, β, δ) } + 3 (10) 

In Fig. 3 we show the nc-Gamma distributions (continuous

ines) fitted with the maximum likelihood method. Additionally, in

able 4 we show the improvement obtained in the fitting when

he Gaussian and a nc-Gamma are compared by means of the

olmogorov–Smirnov distance of their cumulative distribution 

unction (CDF) calculated as: 

 ks (F , F X ) = max 
x 

| ̂  F (x ) − F X (x ) | (11)

here ̂ F (x ) is the empirical CDF and F X is the theoretical distribu-

ion fitted to the data. The improvement was calculated as D ks ( F,

 Gamma )/ D ks ( F, F Gaussian ). These results show the better performance

f the nc-Gamma distribution even for higher levels of attenuation

here the empirical distribution shows an increasing convergence

o the Gaussian distribution. Note that the there is always an

mportant improvement which, in some cases, reaches 70%. 

. Localized mixture model for CT images 

The limited resolution of CT scans and the heterogeneous

ature of some tissues cause the so-called partial volume ef-

ect. This effect is shown as an average attenuation level of

he different compounding tissues within the pixel resolution.

o model properly the combined effect of different tissues a

uitable combination of probabilistic models should be applied.

e propose to model the partial volume effect as a Mixture

odel of Probabilistic distributions. This model generalizes the

tatistical description of noise when the partial volume effect is

onsidered ( Vegas-Sanchez-Ferrero et al., 2014 ). 

As CT scans provide normalized units of the linear attenuation

oefficients (Hounsfield units), one can expect some average atten-

ation levels in clinical scans such as air, fat, water, muscle, blood,

one, etc. These tissues are well characterized and the calibration

f CT scans involve the tuning of some of these attenuation levels

ccording to a calibration phantom such as the one shown in Fig. 2 .

The prior knowledge about the preexisting tissues in clinical

T scans lead to a more realistic definition of the heterogeneous

omposition of tissues and can be incorporated in the mixture

odel. Therefore, attending to the statistical properties of noise for

he attenuation levels studied, we propose a mixture model whose

omponents follow nc- � distributions and their mean values are

ocated at the average attenuation levels of the expected tissues

f clinical CTs (i.e. air, fat, water, muscle, blood, bone, etc.). In our

ase, and without loss of generality, we will consider those nine

ttenuation levels shown in Fig. 1 . Thus, the nc-Gamma mixture
amma random variable �( α, β , δ). Additionally, the notation used from here forth 

efers to random variables in capital letters and samples of random variables in 

ower case letters. The expectation operator is denoted as E { · }. 
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Table 4 

Improvement of the goodness of fit for the nc-Gamma distribution with respect the Gaussian distribution calculated as the ratio of the Kolmogorov–Smirnov distance, 

D ks ( F, F Gamma )/ D ks ( F, F Gaussian ), and represented as mean (standard deviation). 

B31f LD B31f HD B45f LD B45f HD STD LD STD HD BONE LD BONE HD 

1 0.7621 (0.1968) 0.6223 (0.2342) 0.7526 (0.2299) 0.7036 (0.1999) 1 0.7047 (0.2140) 0.4744 (0.1841) 0.7720 (0.1845) 0.7238 (0.1899) 

2 0.7193 (0.1851) 0.6558 (0.2303) 0.7641 (0.2128) 0.7714 (0.1870) 2 0.6776 (0.2117) 0.4661 (0.1885) 0.7670 (0.2002) 0.7157 (0.2316) 

3 0.7176 (0.1811) 0.6297 (0.2411) 0.7366 (0.2028) 0.7149 (0.2134) 3 0.6377 (0.2057) 0.4575 (0.2046) 0.7471 (0.1978) 0.7099 (0.1940) 

4 0.6847 (0.2206) 0.5911 (0.2054) 0.7205 (0.2165) 0.7348 (0.2055) 4 0.7138 (0.2085) 0.5041 (0.2052) 0.7896 (0.2207) 0.7294 (0.1999) 

5 0.7344 (0.2048) 0.5497 (0.2293) 0.7506 (0.2197) 0.7088 (0.2309) 5 0.7009 (0.2172) 0.4723 (0.2156) 0.8079 (0.2194) 0.6916 (0.2140) 

6 0.6441 (0.2385) 0.4450 (0.1791) 0.7279 (0.2287) 0.6277 (0.2074) 6 0.6737 (0.2211) 0.4583 (0.2137) 0.7622 (0.2182) 0.6987 (0.2180) 

7 0.6378 (0.2226) 0.3955 (0.1850) 0.7160 (0.2162) 0.5907 (0.2186) 7 0.6403 (0.2273) 0.3965 (0.1834) 0.7622 (0.2054) 0.6429 (0.2317) 

8 0.6131 (0.2011) 0.4218 (0.1663) 0.7389 (0.2451) 0.6905 (0.2005) 8 0.6163 (0.2238) 0.4542 (0.1951) 0.7509 (0.2374) 0.6497 (0.2287) 

9 0.5996 (0.1610) 0.4057 (0.1830) 0.8123 (0.0572) 0.6107 (0.1529) 9 0.4965 (0.1937) 0.3033 (0.1538) 0.9604 (0.0400) 0.7534 (0.1506) 
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model (nc- �MM) proposed is comprised of a maximum of nine

components. 

We pursue a localized statistical model that may provide

the probability of belonging to each of the considered tissue

classes per pixel. To estimate this localized model, we propose a

global-local approach that allows: 

First, to fit the overall statistical behavior using the Expectation-

Maximization method to establish suitable priors that can be used

for the local refinement; Second, use the global priors as an initial

condition for the local approximation, in which a mixture model

is used to describe the contribution of each tissue class per pixel. 

An additional and important characteristic of the localized

mixture model is that it allows removing components whose im-

portance within a local neighborhood becomes negligible. This is

a critical issue since otherwise a component which is not present

in the local neighborhood would try to fit the histogram even

though there is no presence of that tissue in it, giving rise to a

non-realistic description of the heterogeneous nature of tissue. 

3.1. Global estimate 

Let X = { x i } , 1 ≤ i ≤ N be a set of samples (pixel intensities)

of a given region of the CT image. We assume that these samples

are independent and identically distributed (IID) random variables

(RVs). 

The nc- �MM considers that these variables result from the

contribution of J distributions: 

p(x | �) = 

J ∑ 

j=1 

π j f X (x | � j ) , (12)

where �j are the parameters of the PDF. The nc-Gamma PDF is

defined as in Eq. (6) . We set the values δ j = δ HUs for each j

where δ is the minimum value received in the image (usually

around -10 0 0 HUs). 

Under these conditions and without loss of generality, we

will consider the transformation Y = X − δ. This change of variable

transforms, by virtue of the formula for the change of random vari-

ables ( Kendall and Stuart, 1969 ), a �( α, β , δ) random variable into

its central counterpart with same parameters �( α, β). Therefore

the nc- �MM, in its turn, becomes a central �MM with PDF: 

p(y ) = 

J ∑ 

j=1 

π j f Y (y | � j ) , (13)

where � j = { α j , β j } and 

f Y (y | α j , β j ) = 

y α j −1 

β
α j 

j 
�(α j ) 

e 
− x 

β j . (14)
So, considering the set of samples Y = { y i } = { x i − δ} , 1 ≤ i ≤
 , the joint distribution of IID samples is given by: 

p(Y | �) = 

N ∏ 

i =1 

p(y i | �) , (15)

here � is a vector of the parameters of the �MM { π1 , ���, π J ,

1 , ���, �J }. 

The Expectation-Maximization method ( Moon, 1996 ) is applied

ere to maximize the log-likelihood function when certain hidden

iscrete random variables, Z = { Z i } , are introduced into the model.

hese RVs take values in {1, ���, J } and they reference the mem-

ership of each sample, i.e. Z i = j means sample y i belongs to the

 th distributions with parameters � j = { α j , β j } . 
Now, let �( n ) be an estimate of the parameters of the mix-

ure at the n th iteration, the expectation step is performed by

alculating the expected value of the log-likelihood L (�| Y , Z ) : 

 

(
�| �(n ) , Y 

)
= E Z | �(n ) , Y {L (�| Y , Z ) } . (16)

In the maximization step, the new estimate �( n ) is ob-

ained by maximizing the expectation of the likelihood function

 (�| �(n ) , Y ) . These steps are iterated until a stop criterion such

s || �(n +1) − �(n ) || < TOL for some pre-established threshold

TOL) is reached. 

The expectation of the likelihood function with respect to

he hidden RVs when data Y and the previous estimate �( n ) are

nown is: 

 (�| �(n ) , Y ) = E Z| �(n ) , Y {L (�| Y , Z ) } 

= 

N ∑ 

i =1 

E Z i | �(n ) ,y i 
{ log p(y i | �z i , Z i = z i ) + log p(Z i = z i | �) } 

= 

N ∑ 

i =1 

J ∑ 

j=1 

p(Z i = j| y i , �(n ) ) 
(
log p(y i | � j ) + log π j 

)
= 

∑ N 

i =1 

∑ J 

j=1 
γi, j log p(y i | � j ) ︸ ︷︷ ︸ 

�α,β

+ 

∑ N 

i =1 

∑ J 

j=1 
γi, j log π j ︸ ︷︷ ︸ 

�π

, 

(17)

here p(Z i = j| �) is the probability of y i to belong to the j th class,

enoted as π j , and p(Z i = j| y i , �(n ) ) is the posterior probability

enoted as γ i, j and derived by the Bayes theorem: 

p(Z i = j| y i , �(n ) ) = 

p(y i | �(n ) 
j 

) p(Z i = j| �(n ) ) 

p(y i | �(n ) ) 
, (18)

here, as in Eq. (12) : 

p(y i | �(n ) ) = 

J ∑ 

j=1 

p(Z i = j| �(n ) ) p(y i | �(n ) 
j 

) = 

J ∑ 

j=1 

π j f Y (y i | �(n ) 
j 

) . (19)

Since Eq. (17) is composed of the convex sum of two indepen-

ent terms with the same sign, �α, β and �π , the maximization
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Algorithm 1 Implementation of the nc- �MM. 

{ y i } N i =1 
← { x i − δ} � Centering the data 

J ← Number of components 

�(0) ≡ { π j , α j , β j } J j=1 
� Initial guess of paramters 

γ (0) 
i, j 

← p(Z i = j| y i , �(0) ) � Eq. (18) 

maxIter ← Maximum number of iterations 

Tol ← Tolerance 

Err ← ∞ 

n ← 0 � Iteration counter 

while Err > Tol and n < maxIter do 

n ← n + 1 

for j = 1 to J do 

α(n ) 
j 

← log (α j ) − ψ(α j ) = 

∑ N 
i =1 γi, j 

y i 
μ j ∑ N 

i =1 γi, j 

−
∑ N 

i =1 γi, j log 

(
y i 
μ j 

)
∑ N 

i =1 γi, j 

− 1 

β(n ) 
j 

= μ j /α
(n ) 
j 

π(n ) 
j 

← 1 /N 

∑ N 
i =1 γ

(n −1) 
i, j 

γ (n ) 
i, j 

← p(Z i = j| y i , �(n −1) ) � Eq. (18) 

end for 

Err ← || �(n ) − �(n −1) || / || �(n −1) || 
end while 

return �(n ) 

fi  
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tep can be performed independently for each term. In the case

f �π , the optimization is performed via Lagrange Multipliers to

ntroduce the constraint 
∑ J 

j=1 
π j = 1 , which ensures the result is a

ell-defined probability. The Lagrange method of multipliers guar-

ntees a necessary condition for optimality in this problem. The

ew Lagrange function with the Lagrange multiplier, λ, reads: 

π (λ) = 

N ∑ 

i =1 

J ∑ 

j=1 

γi, j log π j + λ

( 

J ∑ 

j=1 

π j − 1 

) 

. (20) 

The optimization with respect π j gives: 

N 
 

i =1 

γi, j = −λπ j . (21) 

By summing both terms of the equation over j , we obtain

= −N. Finally, the values of ˆ π j that maximize the Lagrange

unction (and the likelihood term) are: 

ˆ j = 

1 

N 

N ∑ 

i =1 

γi, j = 

1 

N 

N ∑ 

i =1 

p(Z i = j| �) . (22)

For the optimization of the second term, �α, β we impose

he condition of a constant average μj for each tissue class, i.e.

{ Y | � j } = α j β j = μ j . This way the term to be maximized reads: 

α,β = 

N ∑ 

i =1 

J ∑ 

j=1 

γi, j 

(
(α j − 1) log y i −

y i 
β j 

− α j log β j − log �(α j ) 

)
(23) 

ubject to E{ Y | � j } = α j β j = μ j . 

The maximization of Eq. (23) can be obtained by plugging

j = μ j /β j and setting the derivative equal to zero. Therefore,

fter some algebra, the maximization of Eq. (23) with respect to

j gives the following result: 

og (α j ) − ψ(α j ) = 

∑ N 
i =1 γi, j 

y i 
μ j ∑ N 

i =1 γi, j 

−
∑ N 

i =1 γi, j log 

(
y i 
μ j 

)
∑ N 

i =1 γi, j 

− 1 . (24) 

here ψ( x ) is the digamma function defined as ψ(x ) =
′ (x ) / �(x ) . 

This expression has no closed solution. However, it

an be obtained by numerical methods since the function

f (x ) = log (x ) − ψ(x ) is well behaved. 

From the estimated value ̂ α j that maximizes the log-likelihood,

he estimate of ̂ β is directly obtained from the constraint

j β j = μ j . 

The method can be summarized in the Algorithm 1 . 

.2. Local estimate 

The local estimation of parameters per pixel location, r , requires

 more subtle analysis of the spatial dependence of α( r ) and β( r ) .

e assume that the image X : � → R follows a non-stationary

c- �MM of J components with centrality parameter δ HUs (usually

round −10 0 0 HUs), known averages { μ j } J j=1 
and spatially variant

hape and scale parameters. In order to simplify the notation, the

entered image Y ( r ) = X( r ) − δ will be considered hereafter. 

We also assume that the spatial variation of both parameters is

moother than the random fluctuation of noise. This assumption

llows us to consider that X( r ) is locally stationary and, thus, the

stimation of parameters could be performed with samples in a

ocal neighborhood, η( r ) , of location r ∈ �. 

Under these conditions, the parameters α j ( r ) can be efficiently

alculated by considering the first conditioned moment and the
rst conditioned logarithmic moment of the normalized image

 ( r ) /μ j as follows: 

 

{
Y ( r ) 

μ j 

∣∣∣∣Z( r ) = j 

}
= 1 , (25) 

 

{
log 

(
Y ( r ) 

μ j 

)∣∣∣∣Z( r ) = j 

}
= ψ(α( r )) − log α( r ) . (26) 

The expected values can be approximated by their respective

ample conditioned local moments (denoted with the operator

 

· | Z( r ) = j 〉 ) as: 

Y ( r ) 

μ j 

∣∣∣∣Z( r ) = j 

〉
= 

∑ 

s ∈ η( r ) 

P (Z( r ) = j| Y ( r )) Y ( s ) /μ j ∑ 

s ∈ η( r ) 

P (Z( r ) = j| Y ( r )) , (27) 

log 

(
Y ( r ) 

μ j 

)∣∣∣∣Z( r ) = j 

〉
= 

∑ 

s ∈ η( r ) 

P (Z( r ) = j| Y ( r )) log (Y ( s ) /μ j ) ∑ 

s ∈ η( r ) 

P (Z( r ) = j| Y ( r )) . 

(28) 

Note that the posterior probability P (Z( r ) = j| Y ( r )) plays the

ame role as the posterior probability γ i, j of Eq. (18) with an

xplicit reference to the location r . Thus, for brevity, we will

enote it as γ j ( r ) . 

We are interested in those values of α( r ) for which both

qs. (25) and (26) hold. So, considering that log(x ) − ψ(x ) is an

lways positive and monotonic decreasing function, and �k π k x k ≥
k π k log x k holds for any set of positive weights { π i } and positive

amples { x i }, we can subtract Eq. (25) from (26) and we get the

ollowing well-defined equality: 

og (α j ( r )) − ψ(α j ( r )) = 

∑ 

s ∈ η(r) 

γ j ( s ) 
Y ( s ) 

μ j ∑ 

s ∈ η(r) 

γ j ( s ) 
−

∑ 

s ∈ η(r) 

γ j ( s ) log 

(
Y ( s ) 

μ j 

)
∑ 

s ∈ η(r) 

γ j ( s ) 
− 1 . 

(29) 
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This result is the local counterpart of the result obtained in

Eq. (24) . The same result could be obtained by applying the

Expectation-Maximization methodology employed in the previous

section with the assumption of local stationarity. In this case, we

preferred this equivalent derivation to provide an explicit reference

to location r in the derivation. 

The β j ( r ) and π j ( r ) parameters can be estimated in the same

way as for the global estimate as: 

β j ( r ) = μ j /α j ( r ) (30)

π j ( r ) = 

1 

| η( r ) | 
∑ 

s ∈ η(r) 

γ j ( s ) (31)

In conclusion, the local estimation of parameters can be

obtained by following an iterative implementation shown in

Algorithm 2 . 

Algorithm 2 Implementation of the local nc- �MM. 

Y ( r ) ← X( r ) − δ � Centering the data

J ← Number of components 

�(0) ( r ) ≡ { π j ( r ) , α j ( r ) , β j ( r ) } J j=1 
� Initial guess of paramters

γ j ( r ) 
(0) ← p(Z( r ) = j| Y ( r ) , �(0) ( r )) � Eq. (18)

maxIter ← Maximum number of iterations 

Tol ← Tolerance 

Err ← ∞ 

n ← 0 � Iteration counter

while Err > Tol and n < maxIter do 

n ← n + 1 

for j = 1 to J do 

α(n ) 
j 

( r ) ← log (α j ( r )) − ψ(α j ( r )) = 

∑ 
s ∈ η( r ) γ j ( s ) 

Y(s) 
μ j ∑ 

s ∈ η( r ) γ j ( s ) 
−

∑ 
s ∈ η( r ) γ j ( s ) log 

(
Y ( s ) 
μ j 

)
∑ 

s ∈ η( r ) γ j ( s ) 
− 1 

β(n ) 
j 

( r ) = μ j /α j ( r ) 

π(0) 
j 

( r ) ← 1 / | η( r ) | ∑ 

s ∈ η( r ) γ
(n −1) 
j 

( r ) 

γ (n ) 
j 

( r ) ← p(Z( r ) = j| Y ( r ) , �(0) ) � Eq. (18)

end for 

Err ← || �(n ) − �(n −1) || / || �(n −1) || 
end while 

return �(n ) 

4. Variance stabilization 

The variance-stabilizing transformation (VST) has been histor-

ically applied to simplify the analysis of variance of some certain

random variable whose variance is related to the mean level of

the measurements ( Bartlett, 1947 ). The main goal of a VST is

to compensate the change of the variance with respect to the

change of the mean value –whenever this relationship is known–

to provide a constant variance. 

In our case, the VST formulation can be used to seek a

transformation of the signal that transforms the process from

non-stationary to stationary. This is achieved without an explicit

knowledge of the reconstruction geometry or the attenuation

medium of the X-ray. 

The derivation of the VST is commonly associated with the

so-called delta method , which links the central limit theorem with

the convergence of the transformed random variable Y = f (X ) by

a differentiable function f . Formally speaking, let X n be a sequence

of random variables that satisfies 
√ 

n (X n − μ) 
d −→ N (0 , σ 2 ) (i.e.

convergence in distribution). Then the first order Taylor expan-

sion of f ( X n ) around μ is f (X n ) = f (μ) + f ′ (μ)(X n − μ) which,
eordering terms, gives: 
 

n ( f (X n ) − f (μ)) = f ′ (μ) 
√ 

n (X n − μ) . (32)

Since X n converges in distribution to a constant, X n 
d −→ μ, it also

onverges in probability and the Slutsky’s Theorem ( Billingsley,

995 ) can be applied to ensure convergence in distribution as

f ′ (μ) 
√ 

n (X n − μ) 
d −→ N (0 , σ 2 ( f ′ (μ)) 2 ) . Thus, we conclude: 

 

n ( f (X n ) − f (μ)) 
d −→ N (0 , σ 2 ( f ′ (μ)) 2 ) . (33)

Now, let us suppose that the variance depends on the mean

alue, σ 2 = Var (μ) . We are interested in finding a transformation

f stab (·) such that σ 2 ( f ′ 
stab 

(μ)) 2 is a constant. For that purpose,

he following differential equation can be set: σ 2 ( f ′ 
stab 

(μ)) 2 = C 2 ,

hose solution provides the expression commonly used to calcu-

ate the VST ( Bartlett, 1947 ): 

f stab (x ) = 

∫ x C √ 

Var (μ) 
dμ, (34)

here C is arbitrary constant. 

.1. Goals of the proposed methodology 

Attending to the main characteristics of the signal studied in

he exploratory data analysis section, the methodology we pursue

hould meet the following features: 

1. Same average measures . The average attenuation levels should

remain unaltered in order to describe a meaningful measure

for quantitative purposes. 

2. Homogeneous variance . The variance should get stabilized

throughout the entire image. 

3. Information from just one slice . The non-isotropic sampling of

CT scans and the particular interpolation schemes of different

devices may provide different noise characteristics depending

on the location in the longitudinal axis. The methodology

developed should be able to stabilize from just one axial slice. 

.2. Variance-stabilizing transformation for Gamma variates 

For the case of Gamma distributions (we assume that the data

s already centered to its central parameter δ; i.e. for X ∼ �( α, β ,

) we have Y = X − δ, so Y ∼ �( α, β) with PDF f �(y | α, β) (see

q. (14) ), the functional relationship is clear: σ 2 = βμ. Thus, the

ariance-stabilizing transformation derived from Eq. (34) trivially

ecomes: 

f stab (y ) = C 

√ 

y 

β
+ K, (35)

here K and C are arbitrary constants. This result is closely related

o the transformation proposed by Box and Cox (1964) to ensure

aussianity in the transformed variable by means of a power

ransformation. Actually, this Gaussian behavior can be shown if

he square root is carefully analyzed. Note that the transformation

 = 

√ 

Y leads to a generalized Gamma distribution ( Stacy, 1962 )

ith PDF: 

f W 

(w ) = 2 w · f �(w 

2 | α, β) = 2 

w 

2 α−1 

βα�(α) 
e 
−w 

2 

β , with α, β > 0 . 

(36)

This new variable shows a quadratic exponential decay that

ontributes to decreasing the kurtosis observed in the exploratory

ata analysis. Additionally, the exponential term w 

2 α−1 increases

he order of the derivative in the origin. Thus, the resulting
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DF is more symmetrical and the skewness is consequently de-

reased. So, after this transformation, the resulting variate shows

 Gaussian-like distribution. 

Finally, considering that the moments of the generalized

amma distribution ( Vegas-Sanchez-Ferrero et al., 2012 ) of

q. (36) are: 

{ W 

r } = β r/ 2 

J ∑ 

j=1 

�(α + r/ 2) 

�(α) 
, (37)

he variance of W = C 
√ 

Y/β is ( Tricomi and Erdélyi, 1951 ): 

ar { W } = C 2 α − C 2 
(

�(α + 1 / 2) 

�(α) 

)2 

−−−→ 

α→∞ 

1 

4 

C 2 + O 

(
1 

α2 

)
, (38)

o, if our purpose is to get a constant variance Var { W } = 1 and we

an assume high values of α, we can set C = 2 to get the desired

tabilization. Conversely, for lower values of α, an estimate α̂
hould be applied in Eq. (38) to get the normalization of variance. 

.3. Variance-stabilizing transformation for �MMs 

The case of stabilizing a Mixture Model of nc-Gamma distribu-

ions cannot be directly derived from eq. (34) as was done before

ue to the many parameters involved in the mean value of a mix-

ure model. However, the stabilization of each of its components

i.e. Gamma distributions) can be used for this purpose as follows:

Let us suppose the image X : � → R is distributed as a nc-

MM with central parameters δ j = δ and Y ( r ) = X( r ) − δ the

entered Gamma mixture model. If we apply the same trans-

ormation derived for Gamma random variables, W ( r ) = 

√ 

Y ( r ) ,

y virtue of the formula for change of random variables, the

ew variable will follow a mixture model of generalized Gamma

istributions whose PDF now reads: 

f W 

(w ) = 2 w ·
J ∑ 

j=1 

π j f �(w 

2 | � j ) = 

J ∑ 

j=1 

π j f W 

(w | � j ) , (39)

here f W 

( ·) is the generalized Gamma distribution derived in

q. (36) . Now, we can define a similar transformation as the one

btained for Gamma random variables, Eq. (35) , with the following

esired features: 1) it should transform each component of the

ixture model into its corresponding stabilized counterpart, 2)

he resulting variable should show the same average value, 3) the

ariance should be stabilized to a constant value. 

The following transformation meets those features: 

f stab 

(Y ( r )) = C ·

√ 

Y ( r ) − E 

{ √ 

Y ( r ) 
} 

√ 

Var 

{ √ 

Y ( r ) 
} + E{ Y ( r ) } , (40)

here C accounts for the homogeneous level of variance desired

nd the moments of 
√ 

Y can be estimated taking advantage of

he local tissue characterization introduced in Section 3.2 as the

perator 〈 · | Z( r ) = j 〉 in a neighborhood η( r ) of the sample at

ocation r . Therefore, the local moments are approximated as: 

{ Y ( r ) k } = 

J ∑ 

j=1 

π j E{ Y (r) 
k | Z (r) = j} ≈

J ∑ 

j=1 

π j 

〈 
Y (r) 

k | Z (r) = j 

〉 
, (41)

here, as in Eqs. (27) and (28) , the sample conditioned local

oments are: 

 

Y (r) 
k | Z (r) = j 

〉 
= 

∑ 

s ∈ η( r ) 

y ( s ) k γ j ( s ) ∑ 

s ∈ η( r ) 

γ j ( s ) 
. (42) 
Note that the stabilizing transformation proposed in Eq. (40) is

ssentially an affine transformation of the resulting generalized

amma mixture model. This transformation stabilizes the samples

ccording to their belonging for each tissue class and, therefore,

eneralizes the stabilization derived for the Gamma variate in

ection 4.2 . The stabilization method is shown in Algorithm 3 . 

lgorithm 3 Stabilization for CT scans. 

Y ( r ) ← X( r ) − δ � Centering the data

� ← Statistical Characterization � Algorithm 2 

γ j ( r ) ← p(Z( r ) = j| Y ( r ) , �( r )) � Eq. (18)

C ← Homogeneous standard deviation 〈 √ 

Y (r) | Z (r) = j 

〉 
← 

∑ 

s ∈ η( r ) 

√ 

y ( s ) γ j ( s ) / 
∑ 

s ∈ η( r ) γ j ( s ) � Eq. (42)

〈 Y (r) | Z (r) = j 〉 ← 

∑ 

s ∈ η( r ) y ( s ) γ j ( s ) / 
∑ 

s ∈ η( r ) γ j ( s ) � Eq. (42)

̂ Var { √ 

Y ( r ) } ← 〈 Y (r) | Z (r) = j 〉 −
〈 √ 

Y (r) | Z (r) = j 

〉 2 
Y stab ( r ) ← C 

√ 

Y ( r ) −
〈 √ 

Y (r) | Z (r) = j 
〉 

√ ̂ Var { √ 

Y ( r ) } 
+ 〈 Y (r) | Z (r) = j 〉 � Eq. (40)

return Y stab ( r ) 

. Results 

In this section we validate the performance of the proposed

ethod to enable comparison between different kernels, doses,

nd devices from three different scenarios: First, we study the

ffect of stabilization in the local variance of the phantom. Addi-

ionally, we provide an analysis of the sensitivity of prior mean

alues in the stabilization. We also study the effect of the stabi-

ization in the spatial resolution. The second scenario analyzes the

eduction of the inhomogeneities in local variance for common

hest CT scans acquired from the same subject. The third scenario

onsiders Low-dose iterative reconstruction compared to high-dose

econstructions. 

.1. Phantom stabilization 

In this first experiment, we evaluate the performance of the

tabilization method for all the different configurations of the

hantom. The stabilization was performed separately in each

f the axial slices to get a homogeneous standard deviation of

0 HUs. The local standard deviation was calculated across the

ongitudinal direction. The results are depicted in Fig. 6 for each

f the devices (General Electric and Siemens) where the variance

f the stabilized images (lower row) shows a more homogeneous

attern than the observed in the original data (top row). 

The stabilization of noise in images should provide same

verage attenuation levels and same variance. This effect can be

onfirmed by observing the behavior of the histogram of the phan-

om in Fig. 7 . Note that the histogram shows important differences

n the variance of the histograms, not only between tissues but

lso between reconstructions and devices. On the contrary, the

tabilized images show homogeneous variance along tissues, re-

onstructions, and devices. These results demonstrate that the at-

enuation levels are now comparable between kernels and devices.

.2. Sensitivity of prior mean values 

During statistical characterization of tissues (such as bone,

lood, muscle), their mean values are assumed to be known. This

s a reasonable assumption since these tissues are well character-

zed and the calibration of CT scans involve the tuning of some

f these attenuation levels as previously mentioned. Some other

issues, however, do not necessarily fit the attenuation levels of
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Fig. 6. Standard deviation of the stabilized data for different kernels and doses to 
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3 ISO 15708-2, “Non-destructive testing–Radiation methods–Computed tomogra- 

phy. Part 2: Examination practices”, www.iso.org/iso . 
any of the mean values established and, therefore, the stabilization

of variance could be negatively affected. 

Our method circumvents this problem by calculating the local

moments, Eq. (41) , considering the effect of different tissues

within the local neighborhood, and heterogeneous compositions

that may deviate from the previously established mean attenuation

of tissues. The normalization of weights according to the posterior

probabilities in Eq. (42) provides a convex weighting of sample in-

tensities, which results in an effective anisotropic estimate of local

moments. Even in the cases with intensities significantly deviated

from the prior mean values, the local weights will contribute for

the anisotropic estimation of local moments. In the worst-case

scenario, the differences between tissues will be negligible, and
he local weighting would become more isotropic. This situation

ould be only possible if the prior means are too close and the

issues within the local neighborhood show a poor contrast. 

For the sensitivity analysis, we considered the GE phantom ac-

uisitions with the configuration with the highest variance (BONE

D) to enhance deviations from the ideal result. We intentionally

ntroduced a bias in the prior mean value for the substrate of the

hantom (designed as region 4 in Fig. 1 because it is the tissue

ype showing more dynamic range in the local variance and it is

lso in contact with all the rest tissue types. Five different biases

 −50% , −20% , 0%, 25%, and 50%) were considered in terms of the

istance with its next or previous prior mean. The stabilization of

he standard deviation was set to C = 10 HU. The results depicted

n Fig. 8 clearly show the robustness even for strong deviations

rom the expected value and the suitability of the estimation of

ocal moments proposed in Eq. (42) . 

.3. Influence of the Stabilization on the Spatial Resolution 

We study the effect of the stabilization technique on the spa-

ial resolution by measuring the line-spread function (LSF) of the

ystem, or equivalently, by its frequency transformation, the modu-

ation transfer function (MTF) ( Judy, 1976 ). The MFT is the standard

ay to assess a scanner resolution according to ISO 15708-2. 3 

We employed the same phantom studied in the exploratory

nalysis since it fits the requirements of the standard ISO 15708-

. We considered the edge profile of the bigger cylinder (region 4)

nd background as indicated in Fig. 9 (left column). The image was

tabilized with C = 0 , which is the worst-case scenario in which

he stabilized image is the estimated signal and, thus, the edges

re more prone to smoothing effects. The edge response function

s computed as the average of the whole set of samples in the z -

xis as suggested in the standard ISO 15708-2 and it is shown in

ig. 9 for the case of GE (the Siemens case showed similar results

nd was omitted for brevity). We superimposed the intensities for

hich the 10% and 90% of the edge response is reached. These

argins serve as a robust measure to compare the differences be-

ween modulation transfer functions quantitatively. At first glance,

he differences between the 10% − 90% margins are indistinguish-

ble and clearly evidence the good preservation of resolution af-

er the stabilization. The LSF, calculated from the edge response

unction by the absolute value of finite differences, shows a simi-

ar support in the edge location in all the cases. Finally, the MTF,

alculated as the normalized discrete Fourier transform of the LSF,

xhibits the high similarity between non-stabilized and stabilized

http://www.iso.org/iso


G. Vegas-Sánchez-Ferrero et al. / Medical Image Analysis 40 (2017) 44–59 55 

Stabilized

Non-stabilized

Pixel Location Pixel Location Pixel Location Pixel Location

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Non−stabilized
Stabilized

0 20 40 60 80 100 120
0

200

400

600

800

1000
Non−Stabilized
Stabilized

0 20 40 60 80 100 120
−1000

−800

−600

−400

−200

0

200
Non−stabilized
Stabilized

STD HD

Pixel Location

Line pairs per cm

E
dg

e 
R

es
po

ns
e 

Fu
nc

tio
n

Li
ne

−S
pr

ea
d 

Fu
nc

tio
n

M
od

ul
at

io
n 

Tr
an

sf
er

 F
un

ct
io

n

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Non−stabilized
Stabilized

0 20 40 60 80 100 120
0

200

400

600

800

1000
Non−Stabilized
Stabilized

0 20 40 60 80 100 120
−1000

−800

−600

−400

−200

0

200
Non−stabilized
Stabilized

STD LD

Pixel Location

Line pairs per cm

E
dg

e 
R

es
po

ns
e 

Fu
nc

tio
n

Li
ne

−S
pr

ea
d 

Fu
nc

tio
n

M
od

ul
at

io
n 

Tr
an

sf
er

 F
un

ct
io

n

0 20 40 60 80 100 120
−1000

−800

−600

−400

−200

0

200
Non−stabilized
Stabilized

0 20 40 60 80 100 120
0

200

400

600

800

1000
Non−Stabilized
Stabilized

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Non−stabilized
Stabilized

BONE HD

Pixel Location

Line pairs per cm

E
dg

e 
R

es
po

ns
e 

Fu
nc

tio
n

Li
ne

−S
pr

ea
d 

Fu
nc

tio
n

M
od

ul
at

io
n 

Tr
an

sf
er

 F
un

ct
io

n

0 20 40 60 80 100 120
0

200

400

600

800

1000
Non−Stabilized
Stabilized

0 20 40 60 80 100 120
−1000

−800

−600

−400

−200

0

200
Non−stabilized
Stabilized

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Non−stabilized
Stabilized

BONE LD

Pixel Location

Line pairs per cm

E
dg

e 
R

es
po

ns
e 

Fu
nc

tio
n

Li
ne

− S
pr

ea
d 

Fu
nc

tio
n

M
od

ul
at

io
n 

Tr
an

sf
er

 F
un

ct
io

n

90%

10%

90%

10%

90%

10%

90%

10%

Fig. 9. Influence of the stabilization scheme in the spatial resolution for the GE acquisition. Top row: Edge Response Function. Mid row: Line-Spread Function. Bottom row: 

Modulation Transfer Function. The strong similarity between Modulation Transfer Functions shows that the resolution is not critically compromised after the stabilization. 

Table 5 

Distance of the 10% − 90% of the edge response in pixel units for stabilized 

images with C = 0 . The differences between both measures is always below 

0.5 pixels. 

GE Normal Stabilized Siemens Normal Stabilized 

STD LD 2.14 2.50 B31f LD 1.99 2.31 

STD HD 2.38 2.63 B31f HD 2.12 2.36 

BONE LD 1.67 1.83 B45f LD 1.36 1.54 

BONE HD 1.99 2.32 B45f HD 1.36 1.52 
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Fig. 10. CT real images acquired with different doses and kernels for a window 

level of [ −1024 , 200] HUs: a) B31f LD, b) B31f HD, c) B45f HD) and their respective 

stabilized images d) B31f LD, e) B31f HD, f) B45f HD). 
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4 The data was obtained at Brigham and Women’s Hospital (Boston, MA, USA) 

with the approval of its ethical committee and informed consent of the subject. 
mages. A slightly lower performance is, however, observed for

edium spatial frequencies (2 to 4 line pairs per cm). To analyze

he importance of this fact, we provide a more detailed analysis

n Table 5 , where we show the 10% − 90% distance in pixels. Note

hat the difference between both results is always lower than 0.5

ixels, meaning that the 10% − 90% rise differences between non-

tabilized and stabilized images are not critically compromised. 

If we consider a higher level of variance in the stabilized image,

ay C = 30 , the MTF becomes more similar to the non-stabilized

ase, and so it does the 10% − 90% distance. These results confirm

he suitability of the statistical characterization for the calcula-

ion of accurate local moments and show an excellent trade-off

etween resolution and stabilization. 

Note that the method was intentionally designed to preserve

he resolution of the original image after the stabilization. This

eans that the resolution will still depend on the reconstruction

ernel and, therefore, the comparisons between images recon-

tructed with different kernels are still limited to their differences

n spatial resolution. This fact would not remarkably affect to

tudies that analyze the evolution of the disease according to the

ttenuation levels in certain regions of interest, where the statis-

ical properties are of most importance for comparison purposes

nstead of the delineation of structures. 

.4. Clinical CT scans stabilization 

The stabilization performance was also evaluated in conven-

ional chest CT scans obtained with different doses and kernels.
he images were acquired from one subject that underwent CT

canning with two different radiation exposures (high dose and

ow dose). For the high dose, the data was reconstructed with two

ifferent kernels, one smooth (B31f) and the other sharp (B45f).

he low dose data was reconstructed with the same smooth

ernel. 4 An axial view of the volumes is shown in Fig. 10 jointly to

he stabilized images for a window level of [ −1024 , 200] HUs. Note

hat the lower dose acquisition exhibits a much higher variance of

oise due to photon starvation, especially in the lower parts of the

ungs, where bony tissues increase the noise. 

As opposed to the phantom case, we cannot directly calculate

he local standard deviation for the evaluation due to the lack

f multiple acquisitions. For this reason, we used the method

roposed by Aja-Fernandez et al. (2015) to get an estimate of the

ocal standard deviation. In Fig. 11 we show the local standard
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Fig. 11. Local standard deviation estimated from real CT images: a) B31f LD, b) B31f 

HD, c) B45f HD) and their respective stabilized images d) B31f LD, e) B31f HD, f) 

B45f HD). The contours of bony structures are over-imposed in blue for anatomical 

reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Ratio of neighborhoods with statistically indistinguishable 

distributions obtained with a two-sample Kolmogorov–

Smirnov test. 

LD B31f LD B31f HD B31f 

vs. HD B31f vs. HD B45f vs. HD B45f 

Normal 21.21% 4 8.4 8% 80.00% 

Stabilized 55.15% 72.73% 10 0.0 0% 

Table 7 

Ratio of neighborhoods with statistically in- 

distinguishable distributions obtained with a 

two-sample Kolmogorov–Smirnov test. 

LD I44f LD I44f 

vs. HD B31f vs. HD B45f 

Normal 52.12% 80.61% 

Stabilized 80.61% 96.97% 
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deviation estimated with the contours of the bony structures

over-imposed (in blue) to have an anatomical reference. Note that

the stabilized image reduces the variance of noise in those regions

leading to a more accurate comparison between low dose and

high dose images. 

The visual effect of the noise stabilization is depicted in Fig. 12 ,

were the acquisition reconstructed with a B45f kernel is repre-

sented along with its stabilized image with standard deviation

set to 20. Note that the stabilized image provides a much clearer

differentiation of soft organs that were affected by a higher vari-

ance of noise. Two different regions were zoomed to show better

this effect. Fig. 12 also includes the histogram of noise estimated

during the stabilization process. The stabilized histogram of noise

(in blue) exhibits a Gaussian shape and a much lower variance as

a result of the homogeneous response after stabilizing. Conversely,

the non-stabilized noise has a much higher variance due to the

contributions of noise with different variances. This qualitative

behavior is confirmed when the kurtosis and skewness of both

estimated noises are compared. The non-stabilized noise has a

skewness of 0.47, and a kurtosis = 6.90, confirming a clearly

skewed and leptokurtic behavior. On the other hand, the stabilized

version exhibits a skewness of −0 . 108 and a kurtosis of 3.14, which

is much closer to the desired Gaussian behavior of noise (in green).

The performance of the stabilizing method was quantitatively

evaluated by comparing local histograms with the two-sample

Kolmogorov–Smirnov distance. The comparison considered the

following configurations: dose (LD B31f vs. HD B31f), kernels (HD

B31f vs. HD B45f) and both dose and kernel (LD B31f vs. HD B45f).

For this purpose, we divided the images shown in Fig. 10 into a set

of 165 non-overlapping neighborhoods of size 31 × 31 from each

acquisition and their respective empirical cumulative distribution

functions were compared according to the Kolmogorov–Smirnov

distance introduced in Eq. (11) . This distance allows us to test sta-

tistically whether both distributions come from the same random

variable. 

The quantitative evaluation was done for a stabilized standard

deviation of C = 40 HUs (see Eq. (40) ), which is the median of the

local standard deviation of the original images. This value was set

to account for the fine details that may be missed during the es-

timation of the expected values in Eqs. (40) –(42) . The mean value

of histograms was removed to avoid potential biases non-related

to local variance. 

The results obtained for the two-sample Kolmogorov–Smirnov

distances are shown in Fig. 13 , where the boxplots correspond-

ing to the stabilized images exhibit a remarkable decrease in

the distance. This difference is statistically significant in all the
omparisons for the two-sample Welch t-test ( p -value < 10 −4 ).

he ratio of neighborhoods with indistinguishable distributions

onsidering a statistical significance of 0.001 are shown in Table 6

here the improvement becomes evident and, in some cases,

oubles the performance (from 22.21% to 55.15% in the worst

ase). The results in HD for both kernels is improved up to 100%

hich shows that the differences due to variance are avoided,

aking HD reconstructions completely comparable. 

.5. Iterative reconstruction 

The proposed methodology was also tested for images recon-

tructed with an iterative algorithm. The same low-dose acquisi-

ion considered before was reconstructed by the Siemens iterative

econstruction method SAFIRE (Sinogram Affirmed Iterative Recon-

truction) denoted as I44f. This reconstruction behaves as a sharp

ernel and the overall effect in the anatomy is comparable to B45f.

hen the nc- �MM approach was applied to the resulting image

nd stabilized. The estimated local standard deviation is shown in

ig. 14 . Although the reduction of spatial variance is less effective,

his case also shows a significant improvement in the homogeneity

f local variance. This effect was also quantified with an analysis

f histogram similitude as before (a set of 165 non-overlapping

eighborhoods of size 31 × 31 and Kolmogorov–Smirnov distance,

 = 40 HUs). The results of the histogram comparison shown

n Fig. 15 again confirm the importance of stabilization before

istogram comparison. The differences between stabilized and

on-stabilized images are statistically significant (Welch t -test,

 -value < 10 −3 for all the cases). 

The ratio of neighborhoods with indistinguishable distributions

onsidering the two-sample Kolmogorov–Smirnov statistical test

ith a significance of 0.001 are shown in Table 7 , where the

mprovement after stabilization is clearly confirmed once again.

ote that the performance of the comparison between LD and HD

45f stands out because the details provided by sharper kernels

re also preserved by the iterative reconstruction, which results in

n increase of the similarity. In the case of smooth kernels such

s B31f, some details are lost due to the low-pass filter effect of

he smooth kernel. Nevertheless, the stabilization raises this ratio

ntil 80.61%, which is more than the ones obtained for LD recon-

truction with the B31f kernel. This means that the stabilization

s also effective for iterative reconstruction and takes advantage of

he better resolution provided by iterative schemes. Besides, the

omparison between the iterative LD reconstruction and the B45f

D reconstruction reaches 96.97%. This result clearly shows the

uitability of the proposed methodology to enable comparisons

ith different reconstruction methods and different doses. 
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Fig. 12. Noise stabilization effect in clinical CT scans. The variance of noise increases dramatically in the upper and lower parts of the image (zoomed regions 1 and 2), 

causing a noticeable reduction of contrast in soft organs and lung parenchyma. The stabilized image shows a more homogeneous response of noise and increases the contrast 

between tissues. The stabilized histogram of noise shows a behavior much closer to a Gaussian distributed noise (in green). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Kolmogorov–Smirnov distance for the two-sample tests obtained from non- 

stabilized images (red) and stabilized images (blue). The improvement provided by 

the stabilization is strongly significant ( p -value < 10 −4 ). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 14. Iterative reconstruction (a) and local standard deviation estimated for iter- 

ative reconstruction before (b) and after stabilization (c). 

LD vs. HD B31F LD vs. HD B45F
0

0.05

0.1

0.15

0.2

D
ks

Normal
Stabilized

Fig. 15. Kolmogorov–Smirnov distance for the two-sample tests obtained from non- 

stabilized images (red) and stabilized images (blue) for the case of Iterative recon- 

struction. The improvement provided by the stabilization is strongly significant ( p - 

value < 10 −4 ). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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. Discussion and conclusions 

This paper analyzes the effective statistical response of at-

enuation levels in CT scans in different arrangements including,

econstruction kernels, doses, and devices. The statistical analysis

as carried out through an exhaustive exploratory data study in-

luding graphical representations, quantitative analysis up to 4-th

rder moments and their functional relationships among them.

he study showed a leptokurtic behavior of noise, with a linear

elationship between mean and variance. The noise also shows

 convergence to a Gaussian noise as the average attenuation
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level increases. Finally, the skewness-kurtosis plot of noise can be

explained by a linear regression that fits extraordinarily well to a

Gamma-like distribution. This analysis lead us to propose a para-

metric distribution –the non-central Gamma– that accurately mod-

els the statistical behavior regardless of dose, kernel or device. The

suitability of this distribution was confirmed with different statisti-

cal tests involving the moments of the observed samples and their

functional relationship (variance vs. mean, kurtosis vs. skewness). 

Having a statistical model that properly describes the data

paves the way for a more accurate treatment of the signal

properties observed in the image. In the case of CT scans, the non-

homogeneous behavior of noise is an undesired effect that depends

on several factors (dose, tissue, artifacts due to photon starvation,

etc.). These factors introduce serious difficulties in the comparison

of scanners when the progression of a disease or cross-sectional

studies are performed. Actually, the same acquisition reconstructed

with different kernels may show important discrepancies in the

signal due to the effect of noise with different variances. 

This work extends the proposed statistical distribution to model

the non-homogeneous response of tissues (due to fluctuations in

the variance) with a non-central Gamma Mixture Model. This

model can cope with the partial volume effect and provides an

accurate description of the local statistical properties of noise. The

approach chosen for the estimation of local parameters is from

coarse-to-fine, providing first a global set of parameters describing

the statistics of the image that will be used for the local estima-

tion. Both the global and the local implementations are presented. 

Additionally, this characterization of noise can be stabilized

to provide a homogeneous variance with the same attenuation

levels as in the original image. As a result, the stabilized image

presents the same attenuation levels with a more homogeneous

response of noise that unveils details of soft tissues and enables

the comparison of images acquired with different protocols. The

evaluation of the proposed methodology is carried out in three

different scenarios: first, we stabilize a phantom image acquired

with different doses, reconstruction kernels, and devices. The

stabilizing method successfully transformed the heteroscedastic

image into a homoscedastic image ( Figs. 6 and 7 ). The effect of

stabilization was also tested in clinical images, for which different

images of the same subject were acquired for different doses and

reconstruction kernels. In that case, the stabilization of variance

was also achieved ( Fig. 11 ), showing a remarkable improvement in

contrast for soft tissues and a more accurate comparison between

images which is statistically significant (p-value < 10 −4 ). Actually,

in some cases, the stabilization doubles the performance of the

non-stabilized images (see Table 6 ). 

The suitability of the proposed methodology is also confirmed

for iterative reconstruction and also shows a significant improve-

ment in the statistical similitudes of images after the stabilization

( p -value < 10 −4 ). This result in especially relevant since it raises

the power of the statistical comparison up to the levels of high

dose acquisitions (from 52.12% to 80.61% in the worst case). 

Our variance stabilization method is designed to transform

the non-homogeneous nature of noise to a more treatable ho-

mogeneous and Gaussian-like distribution of noise without

compromising the signal of the original image. With this aim, the

estimation techniques used in the calculation of local moments,

Eqs. (41) and (42) , take advantage of the local statistical character-

ization to provide more accurate estimates that are not affected by

the presence of different tissue types in the same neighborhood.

Besides, our resolution experiments support that the stabilization

does not compromise the details of fine structures since the ho-

mogeneous variance factor, C , can be set to a level that preserves

any loss of detail that is not preserved in the mean image, E { Y ( r )}.

During the stabilization, we make use of local moment es-

timates according to a non-stationary noise model derived. The
ocal mean obtained from the conditioned local moments can be

een as a robust estimate of the signal level and, thus, a denoised

ersion of the original image. As a consequence, for low values

f C in Eq. (42) ( C = 0 in an extreme case), the stabilization may

e seen as a denoising methodology with some advantages. First,

he local expectation successfully preserves the spatial resolution

s was shown in Section 5.3 . Second, the preservation of details

nd structures that have been considered as noise by the local

xpectation operator can be preserved just by increasing the C

alue. Finally, the resulting homogeneous Gaussian-like noise

btained after stabilization allows other methods designed for

dditive Gaussian noise to work in optimal conditions. 

The proposed statistical characterization has shown its suit-

bility for modeling non-homogeneous tissues according to a

onsistent noise model across kernels, doses, and devices. How-

ver, it is worth mentioning that the correlation of noise has been

voided intentionally for the sake of simplicity. This simplification

oes not show significant consequences in the estimation of

osterior probability maps and, therefore, the estimation of local

oments is not affected. However, the extension of the proposed

tatistical framework to correlated noise models would benefit

ther applications such as image reconstruction (if sinograms are

rovided) or denoising. 

Our work provides methodological contributions that are

menable to be combined with preexisting reconstruction ap-

roaches. Some iterative reconstruction methods, such as DART

 Batenburg and Sijbers, 2011 ) or SAFIRE ( Grant and Raupach, 2012 ),

xploit an iterative refinement of the image in the reconstructed

omain that can be used as prior for estimating a new back-

rojection. We believe that our methodology makes use of a prob-

bilistic distribution of tissue components that could be utilized

s a probabilistic representation of the reconstructed image to

eneralize iterative approaches whenever sinograms are available. 

We believe the results provided in this paper will enable the

reprocessing of CT images before QI analysis tasks are performed

o control the precision of the extracted biomarkers due to het-

roscedastic conditions. Our results can be especially relevant to

hose studies that track the disease progression. The changes in

ransmission medium due to weight loss or gain that typically

appens in longitudinal studies or oncological situations makes

he issue of noise stabilization really important. 
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