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Abstract- We have studied certain properties of the OSEM
algorithm for iterative image reconstruction in PET. This
work is within the framework of our principal objective that is
the development and evaluation of a stopping criterion for this
iterative algorithm. To investigate the problem of the
deterioration of the image quality after several iterations, the
statistical properties of the pixel updating coefficients have
been studied. Preliminary results show that the values of these
coefficients for the pixels that correspond to areas in the
source with non-zero activity distribution form a histogram
composed of a peak region around to 1.0 and a tail below this
value. Given the different rate of convergence of the pixel
values within an image, this tail distribution corresponds to
those pixels that are yet far from reaching their corresponding
true values. We demonstrate that the minimum value of the
tail distribution is directly related to the quality of the
reconstructed images. The possibility of exploring this
observation in order to formulate a stopping criterion for the
OSEM algorithm is discussed.

I. INTRODUCTION

Positron Emission Tomography (PET) imaging is
presently used in a wide area ofmedical disciplines, such

as oncology, neurology, etc. The proper selection of the
image reconstruction algorithm for a particular study has a
significant impact on the quality of the images produced by
a PET camera [1]. Modern PET scanners employ iterative
image reconstruction algorithms such as the maximum­
likelihood expectation-maximization (MLEM) [2] and the
ordered subsets expectation-maximization (OSEM) [3]
algorithms as well as several of their variants [4]. Since the
images produced by the OSEM algorithm have been
observed to become noisier as iterations proceed, something
that might have negative impact on the diagnostic quality
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offered by these images, a robust stopping criterion is
essential to guarantee the stopping of the iterative process
when the reconstructed image provides optimal signal-to­
noise properties.

Several research groups in the past have proposed
stopping rules for the MLEM algorithm [5]-[8]. In this
work we have been looking for a stopping rule of the
OSEM algorithm that would be independent of the
characteristics of the object under study. To the best of our
knowledge, no known study has addressed the issue of a
stopping rule for the OSEM algorithm. This work extends
the methodology and results obtained in previous work
carried out by our group [7]-[9] for the case of the MLEM
iterative image reconstruction algorithm for PET.

II. MATERIALS AND METHODS

A. OSEM algorithm

The OSEM algorithm is an accelerated implementation
of the MLEM algorithm. In this case the projection data are
grouped into ordered subsets (OS). The EM algorithm is
then applied successively to each of these subsets. The
image obtained from this process on one subset is the initial
image for the next one, etc. It has been observed that the
image produced after one iteration of the OSEM algorithm
over n subsets is very similar to the image obtained after n
iterations of the MLEM algorithm over the complete data
set of projections.

The mathematical expression of the pixel updating
process in the OSEM algorithm is [3]:

X.(k) = X.(k-1)C.(k-l)
1 1 1

(2)

where i is the ith pixel in the image vector, X(k) is the image
vector obtained at the kth iteration, C(k-l) is the vector of the
pixel updating coefficients at the (Ie-I)th iteration, Sn is the
set of n subsets, Yj is the projected data in jth line-of­
response (LOR) and aij represents the probability that an
annihilation event generated in the area of the ith pixel is
detected in the jth LOR. All aij values form a matrix, that is
also known as the system matrix for a given scanner
configuration.



B. The PET scanner

We have modeled a single-ring PET camera with 128
scintillation crystals on the ring, a detector width of 7.36
mm and a field of view (FOV) of 200x200 mm2

• The
detector ring radius is 150 mm. The total number of LOR is
8128. Image grids with a size of 128x128 (pixel side = 1.56
mm) have been employed. Monte Carlo methods have been
used for the simulation of the activity distribution in the
source, the generation ofpositron-electron annihilations, the
production of gamma-rays, their propagation in the source
and their detection by the scintillation detectors. Ideal
conditions have been assumed (100% detector efficiency,
no Compton scattering or photoelectric effects in the source
and the detectors, no random coincidences, etc).

C. The system matrix

The system matrix depends on the geometry and
configuration of the PET scanner (image grid and scanner's
layout). In this work, the system matrix for the camera
configuration employed has been calculated using Monte
Carlo methods. In the area that corresponds to each pixel i a
sufficient number of events Ntot are generated and the
simulated gamma-rays are recorded in each line-of­
response. The probability value aij is then given by the
expression:

N.
a.. =_J (3)

IJ N
tot

where ~ is the number of those events detected within the
jth LOR. The accuracy of this method depends on the total
number of annihilation events generated in each pixel. For
this reason 107 gamma-rays have been uniformly generated
in each pixel. In that way the relative error is less than 1%.

D. Data generation

For this study the digital Hoffman brain phantom [10]
has been used. This phantom consists of 18 2-dimensional
image slices. The pixel values in each slice correspond to
the activity distribution in the area covered by each pixel in
the source. A proportional number of gamma rays have
been generated using Monte Carlo methods for this pixel
and their trajectories have been followed until they hit a
detector on the camera's ring. For each slice various
activity distributions have been simulated, ranging from
200k to 6.0M counts.

Using this procedure, data from the 18 Hoffman brain
phantom slices have been acquired at different activity
distribution levels and have been reconstructed using the
OSEM algorithm. Two and four subsets have been
employed.

For the validation of the results obtained, we have used
data acquired based on the Digimouse phantom [11] and
according to a similar procedure as the one followed with
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Fig. I. The NRMSD curve for the Hoffman brain phantom slice #9 (2.1
and 6M counts, OSEM with 2 subsets). Images with higher activity levels
produces images with lower levels of noise added along the iterative
process. (Lower values ofNRMSD).

the Hoffman brain phantom: based on the activity
distribution in the Digimouse image slices, a certain number
of counts has been generated, assuming an ideal, noise-free
case. These data have been then reconstructed using the
OSEM algorithm. The stopping criterion developed based
on the Hoffman brain phantom has been validated using the
data reconstructed from the Digimouse phantom.

E. Image quality estimators

In the OSEM algorithm an initial estimate image x(O)

(typically a uniform activity distribution for all pixels) is
used as starting point. The quality of the reconstructed
image steadily improves during the first iterations however
after a certain point in the iterative process the image
quality deteriorates due to noise. As a quantitative measure
for the image quality, the Normalized Root Mean Square
Deviation (NRMSD) [9] is employed as figure of merit
(FOM):

I I

NRMSD(k) = L(x/k
) _X;))2 / LX/ (4)

i=l i=l

where i and X(k) are the phantom image and the
reconstructed image at a given iteration k respectively.

III. RESULTS

Fig. 1 shows an example of the behavior of the NRMSD.
As it can be observed, there is an improvement ofthe image
quality during the initial iterations (NRMSD value
decreases), and a minimum is reached at the iteration in
which the image quality is closest to the phantom image.
After this point, the image quality begins to deteriorate.
An example of this is shown on Fig. 2. The Hoffman
phantom slice #9 is reconstructed using OSEM with 2



300[

30025020015010050

~~
~...

of
~

IIr
i,,

!
0.40 !
030

020

010 :

000 ....l.IL-.--..,-------r-----r-----,.------r-----,

a

060

0.80

070

0.90

c
i 0.50
u

iteration

100

for a particular image. Motivated by this observation we
have studied further the statistical behavior ofC for all non­
zero pixels of the reconstructed image versus the number of
iterations. Fig. 3 shows the histograms of the coefficients C
for the Hoffman brain phantom slice #9 at the 10th and 20th

OSEM iteration. The minimum value of the histogram
(Cmin) moves to higher values as the iteration goes on. We
define a variable Cmin = min {Ci, i=I,2, ... I}, where I is the
total number of pixels with non-zero activity distribution
levels in the image.

In other words Cmin is the minimum value of the
coefficients vector C for the non-zero pixels in the
reconstructed image at the current iteration. In this work the
dependence of Cmin of the iteration number and its
relationship to the minimum NRMSD value will be
investigated. In previous work [9] we have shown that Cmin

increases monotonically with iteration number in the case
ofMLEM algorithm. A similar behavior has been observed
in the case ofOSEM algorithm (Fig. 4).

The NRMSD is used for the comparison between the
reconstructed and phantom (initial) image. The minimum
NRMSD value corresponds to the smallest possible
difference between these two images according to equation
(4). At the iteration when the minimum NRMSD value is
reached, the Cmin value has been recorded. This has been
repeated for all slices in the Hoffman brain phantom.
Following this, the Cmin values have been averaged over all
slices and the mean Cmin values have been calculated. Fig 5
shows the mean Cmin values against the activity distribution
for 2 and 4 subsets. This figure shows that mean Cmin values
increase monotonically as a function of the activity
distribution levels, with similar shapes for both curves. In
the case of image reconstruction with OSEM with 2 subsets
these values are higher than them produced by OSEM with
4 subsets. This means that the number of subsets affects the
reconstruction process, something that correlates well with
the results shown in Fig. 1, in which it is shown that the

Fig. 4. Cmin as a function of the iterations of Hoffman slice #9. 6M
counts have been simulated.
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subsets. The reconstructed image is shown after 10, 86
(iteration which NRMSD gets its minimum value) and 380
iterations respectively.

From equation (1) it is clear that the evolution of the
values of the coefficients C represents the convergence rate

Fig. 3. Histograms show the distribution of the values of the updating
coefficients C. Each histogram has two components: a) one component
around 1.0 corresponds to those pixels for which reconstruction has been
completed and b) a tail, namely a region of values lower than 1.0
corresponds to pixels which have not yet reached convergence. For these
histograms the reconstruction was performed using two subsets.

Fig. 2. The Hoffman brain phantom slice #9 for 2.1M simulated
counts. As it is shown there is an improvement of image quality from the
beginning (loth iteration) to the iteration where minimum NRMSD occurs
(86th iteration) and after that, the deterioration phase begins (38Oth
iteration).
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A. Proposed Stopping Rule ofthe OSEM algorithm

From the above analysis it appears that a stopping rule
could be formulated based on the variable K namely from
the known total number of acquired counts, the value ofK
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Fig. 5. Mean C".;" values versus number of counts a) for 2 subsets and
b) for 4 subsets

can be calculated using equation (5) and the OSEM
algorithm can be stopped at the iteration when the Cmin

value is equal or higher to value K. In other words the
proposed stopping rule for OSEM can be expressed using
pseudo-code as:

for each iteration
ijCmin = min{Ci}~K

then
stop the reconstruction

end

A. Validation ofthe Stopping Rule

For the validation of the proposed stopping rule a
different set of images were used as phantoms. This set of
real scanned images originated from the Digimouse
phantom [11]. Using slices from Digimouse as input, the
projection data were generated. The number of counts in
each image slice was known and using the equation (5) the
values ofK were estimated. The OSEM algorithm for 2 and
4 subsets stopped when the stopping condition was met.
Here, we present the results regarding the slices #16, #33
and #106. The number of counts in each slice was 2.68,
1.25 and 6.5IM counts respectively. In the case of 2
subsets, the algorithm stopped after 123, 69 and 173
iterations respectively, while in the case of 4 subsets the
algorithm stopped after 60, 32 and 81 iterations
respectively. In Fig. 6 the phantom, the reconstructed image
and the difference for each slice are shown. The difference
images between the phantom and reconstructed show that
the images produced using the proposed stopping rule are
almost the same, suggesting that the reconstruction
algorithm works quite well.

B. Conclusions

Summarizing, these preliminary results show that a
stopping rule for OSEM algorithm might be formulated,
which produces reconstructed images very close to the
phantom images, in the case of simulation studies. This
work not only proposes a specific stopping rule for the
OSEM algorithm, but builds up further a methodology
according to which the development of a stopping rule
would be possible for any kind of PET scanner
configuration. The proposed stopping rule depends on the
projection data and camera geometry, for which the
calculation of the parameters A, a and b of equation (5)

TABLE I
PARAMETERS A, a AND b OF FITTING EQUATION

FOR EACH SUBSETS

IV. DISCUSSION AND CONCLUDING REMARKS

A a b
2

0.943 ± 0.006 0.103 ± 0.021 0.362 ± 0.037
subsets

4
0.884 ± 0.008 0.041 ± 0.016 0.618 ± 0.045

subsets

(5)
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where N is the number of counts in the image, expressed in
millions. In that way, the behavior of mean Cmin has been
expressed as a function of the number of counts N in the
image, a parameter known in all cases, including real PET
scans. The parameters A, a and b have been specified and as
it is shown in Table I are different, depending on each set of
subsets.

minimum value of the NRMSD (a FOM that in general can
be used only in case of simulation studies or phantom
acquisitions with known activity distribution in the source)
is reached at higher iteration numbers as the number of
counts increases.

In order to parameterize quantitatively the dependence of
Cmin on the number of counts, we have fitted the plots
shown in Fig. 5. A fitting method has been applied using
the weighted average and associated errors ofmean Cmin•

Different equation forms have been tested such as linear,
polynomial or Gaussian equations; however the most
efficient (according to the R2 value produced by each
fitting) had the following rational form:
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Fig. 6. The validation of stopping rule using the Digimouse slices #16, #33 and #106. The images in left column (a, b and c) have been reconstructed using

OSEM with 2 subsets, while the images in right column (d, e and t) have been reconstructed using OSEM with 4 subsets. In each set from right to left the images
are: phantom image, reconstnlcted image and difference between them. A red-green-blue color map used, so that the differences between phantom and
reconstnlcted images can be viewable.

need to be calculated. The present study has been done for
two and four subsets. Further study is needed to see how the
stopping rule parameters A, a and b, depend on the number
of subsets. In addition, it is necessary to find out whether
the stopping rule is affected by different image topologies
or not. Finally, the effect of noise coming from absorption
and scattering must be examined.
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