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A B S T R A C T

An imaging biomarker is a biologic feature in an image that is relevant to a patient's diagnosis or prognosis. In
order to qualify as a biomarker, a measure must be robust and reproducible. However, the usual scalar measures
derived from diffusion tensor imaging are known to be highly dependent on the variation of the acquisition
parameters, which prevents their possible use as biomarkers. In this work, we propose a new set of quantitative
measures based on diffusion magnetic resonance imaging from single-shell acquisitions that are designed to be
robust to the variations of several acquisition parameters (number of gradient directions, b-value and SNR) while
keeping a high discrimination power on differences in the diffusion characteristics of the tissue.

These new scalar measures are analytically obtained from a generic diffusion function that does not require
the calculation of a diffusion tensor. This way, on one hand, we avoid the use of a specific diffusion model and,
on the other hand, we make easier the statistical characterization of the measures. Accordingly, the analysis of
the measures bias is carried out and it is used to minimize their dependency with respect to the acquisition noise
for different SNRs. The robustness and discrimination power of the measures are tested for different number of
gradients, b-values and SNRs using a realistic phantom and three real datasets: (1) 13 control subjects and
different acquisition parameters; (2) a public data set from a single subject acquired using multiple shells and (3)
32 schizophrenia patients and 32 age and sex-matched healthy controls with a varying number of gradient
directions.

The proposed quantitative measures exhibit low variability to the changes of the acquisition parameters,
while at the same time they preserve a discrimination power that is able to detect significant changes in the
anisotropy of the diffusion.

1. Introduction

Diffusion magnetic resonance imaging (DMRI) is an imaging tech-
nique that allows the quantification of the diffusivity of water mole-
cules within the tissue in vivo. With different acquisition schemes and
employing different models, it has been commonly used for the study of
the properties of diffusion within tissues all throughout the body, with
special relevance in abdominal organs and brain studies [1]. In the
brain, particularly, DMRI has attracted extraordinary interest among
the scientific community over recent years due to the relationships
found between a number of neurological and neurosurgical pathologies

and alterations in the white matter as revealed by an increasing number
of studies [2-4].

From the clinical research point of view, white matter studies using
DMRI often rely on the comparison of scalar measures that describe the
diffusion within a voxel. The most common measures based on the
diffusion tensor (DT) model are the fractional anisotropy (FA), which
measures to what extent a diffusion direction is dominant over the
others, and the mean diffusivity (MD), which quantifies the total
amount of diffusion. Other important scalar measures include the axial
and radial diffusivity (AD, RD). However, and despite their popularity,
these scalar measures show a high dependency with the acquisition
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parameters that may produce different output values under different
acquisition conditions. This effect makes them unfit to be used as a
reliable clinical biomarkers.

An imaging biomarker is a biologic feature detectable in an image
that is relevant to a patient's diagnosis. Opposite to traditional radi-
ological diagnosis based on a qualitative assessment via visual inspec-
tion, Quantitative Imaging Biomarkers (QIBs) are quantifiable (nu-
merical) features extracted from medical images which are able to
assess the severity, change, or status of a disease, injury, or chronic
condition relative to normal [5]. The key point is that a QIB is an ob-
jectively measurable characteristic, in contrast to a qualitative ob-
servation.

To qualify as a valid biomarker, a measure must fulfill the following
requirements [5-7]:

1. Accuracy: it must show a small estimation bias or, at least, a constant
bias for all measures.

2. Precision: the measurement must be repeatable for the same subject
and between subjects, in the same session and between sessions.

3. Robustness: the measurement must be insensitive to acquisition
parameters, platform and estimation algorithms.

4. Reproducibility: it must show low variability across sites and plat-
forms.

5. Clinical utility: it must demonstrate an important role in diagnosis or
treatment monitoring.

Following these criteria, we can state that the usual measures de-
rived from the DT in DMRI present some serious drawbacks that limit
their use as a QIB:

1. The inaccuracy of the diffusion model: the Gaussian assumption for
the diffusion is unable to describe situations such as fiber crossings
or fanning, which are known to be present, to a great extent, in the
white matter.

2. Confounding and external factors, including changes in the acqui-
sition parameters, noise, motion, etc.

3. Estimation and analysis techniques: the variability of the algorithms
used for estimation [8], postprocessing [9] and analysis [10-13] is a
factor in the variability of the results.

Among these issues, in this paper we will focus on the dependency
of DT-derived measures with the acquisition parameters. It is well-
known that the variation of the acquisition conditions produces dif-
ferent values on the estimated scalar measures. The parameters that
most importantly affect the variability of the scalar measures are as
follows:

1. The number of scan repetitions (NEX): an increase on the NEX
produces an augmentation on the signal-to-noise ratio (SNR).
Decreases in the FA values have been found in this situation [14].
The variation of the measures due to the reduction of the SNR has
been reported in [15] and [16].

2. The diffusion sensitivity b-value: an increase of the b-value sig-
nificantly decreases MD, AD and RD [17-20]. Small variations of the
FA have also been reported [17, 21], especially in low SNR acqui-
sitions [22].

3. Resolution: a smaller voxel size increases the values of FA [20, 23,
24]. Note that a smaller voxel size produces a lower SNR and also
influences the population of fiber bundles that are present within
the voxel.

4. Number of acquired gradient directions: decreases of the FA values
have been reported when increasing the number of gradients [15,

16, 20, 24], together with a decrease in their variance [20, 25].

Other factors that can be a source of intra-session variability are the
MR signal variation, subject physiological noise, motion and posi-
tioning [14, 26], the nonlinearity of diffusion gradients [27] or even the
number of shells in a multi-shell acquisition [28]. In [20], we showed
that, in addition, there is also a dependency with the area of the brain
(bundle) and the specific analysis carried out.

Different approaches have been proposed to cope with this varia-
bility assuming an underlying tensor model. Vollmar et al. [29] pro-
posed the use a global scaling factor to reduce the coefficient of var-
iation inter- and intra-site, after parcellation. Similarly, in [30]
and [31] the authors proposed the weighing of the datasets acquired in
different sessions and/or scanners based on their variability. In [32], it
was found that inter-scanner and field-strength effects over the scalar
measures can be reduced with linear correction factors specific to the
different regions of interest. The study in [33] employed statistical
models that include as covariate factors some sources of variability,
such as scanner manufacturer, magnetic field strength and number of
gradient directions. Pohl et al. [34] also proposed a harmonization of
the measures to cope with inter-scanner variability based on human-
phantom data. Finally, an alternative solution to multi-source data
harmonization is the representation of the diffusion signal an alter-
native space, like a Spherical Harmonics (SH) basis. Using the SH
coefficients, Mirzaalian et al. [35, 36] compute a set of rotation in-
variant features that can be used to estimate a specific linear mapping
between the signal from different scanners.

As previously stated, one important source of variability is the in-
accuracy of the diffusion model adopted. The search for appropriate
models of diffusion beyond tensor representations has been a very ac-
tive research field the last decade. The number of degrees of freedom to
represent for these models is far larger than the traditional 6 free
components of the diffusion tensor, so a great number of diffusion
gradients needs to be acquired. Some of the most popular approaches
are diffusion spectrum imaging (DSI) [37] (which aims to completely
characterize the diffusion process by means of the sparse sampling for
all possible orientations and magnitudes of the diffusion sensitizing
gradients) and high angular resolution diffusion imaging (HARDI),
which characterizes all possible directions of the gradients for one given
magnitude using different approaches like multi-tensor models [38],
generalized tensor models [39], Q-balls [37, 40]. These techniques,
although rather experimental, have been successfully used to resolve
complex architectures of the white matter, including fiber crossing,
bending, and kissing. Many different scalar measures can be derived
from HARDI and DSI information, which can add relevant structural
information and meaningful descriptive maps of the white matter.
Among these measures some of the most popular are the generalized
anisotropy (GA) [41], generalized fractional anisotropy (GFA) [42],
return-to-origin probability (RTOP) [43,44] and the return-to-plane and
return-to-axis probabilities (RTPP, RTAP) [43]. Most of these measures
require a dense sampling of the q-space or sampling at high b-values.

In the present paper, we will stick to standard diffusion tensor
imaging (DTI) acquisitions: b-values around 1000 s/mm2 and low to
moderate number of gradients. We propose a new set of measures that
describe the characteristics of the diffusion, while at the same time they
are robust to the acquisition parameters. For the sake of simplicity, we
will confine ourselves to only three sources of variability: (1) the
number of acquired gradients; (2) the variation of the b-value and (3)
changes in the SNR. The measures proposed here are more robust to the
variation of these parameters than FA and MD, while they keep a dis-
crimination power similar to them. To show their potential, the pro-
posed new measures are validated over various experiments on a
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pseudo-synthetic phantom and three real datasets.

2. Theory

2.1. The diffusion signal

In DMRI, the probability density function (PDF) of the displacement
of water molecules in a given direction, P(R|Δ), is related to the signal
provided by the MRI scanner at each image location E(q) through the
Fourier transform

∫= = −P E E πj dR q R q q R q( |Δ) {| ( )|}( ) ( )exp ( 2 ) .
V

TF (1)

The inference of the exact information on the R-space would require
the sampling of the whole q-space to use the Fourier relationship be-
tween both spaces. In order to obtain a closed form solution from a
reduced number of diffusion-weighted imaging (DWI) datasets, a
Gaussian model for the diffusion is usually adopted. A Gaussian diffu-
sion propagator can be assumed in case all fiber bundles within the
voxel resolution are nearly identically distributed. In this case, P(R|Δ) is
a mixture of independent and (nearly) identically distributed bounded
cylinder statistics and, by virtue of the central limit theorem, their su-
perposition is Gaussian distributed:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−
P

π
R R R( |Δ) 1

| |(4 Δ)
exp

4Δ
.

T

3

1

D

D

(2)

The measured signal in the q-space is the (inverse) Fourier transform of
the PDF in Eq. (2):

= = −−E P π τq R q q q( ) { ( |Δ)}( ) exp ( 4 ),T1 2 DF (3)

which is the well-known Stejskal–Tanner equation [45]. The diffusion
tensorD is the anisotropic covariance matrix of P(R|Δ), and therefore is
a symmetric positive–definite matrix, with positive eigenvalues and
orthonormal eigenvectors. Eq. (3) is usually re-written in terms of the b-
value, under certain assumptions:

= −E bq g g( ) exp ( )TD (4)

= =b π τ τγ δq G4 ,2 2 2 2 2 (5)

where =G qπ
γδ
2 and g=G/∥G∥= q/∥q∥ is the gradient direction. For

more complex approximations to diffusion analysis beyond the DT, a
more general expression for E(q) can be used (q0= ∥q∥, θ, ϕ are the
angular coordinates in the spherical system):

= −E π τq D q θ ϕq( ) exp ( 4 ( , , )),2
0
2

0 (6)

where the positive function D is the apparent diffusion coefficient
(ADC). It is common to consider that it does not depend on ∥q∥, i.e. D
(θ,ϕ) and therefore

= −E π τq D θ ϕq( ) exp ( 4 ( , )).2
0
2 (7)

This assumption is implicitly done when considering the diffusion
tensor model, and it is also common in HARDI models [39, 40, 46]
where a marginalization along the radial component is necessary. The
acquired signal in the scanner is not directly E(q), but a scaled version
of it, S(g):

= ⋅S S Eg q( ) (0) ( ), (8)

where g= q/∥q∥ and S(0) is the so-called baseline image, i.e., the ac-
quired signal when no diffusion gradients are applied.

2.2. Scalar diffusion measures

Traditional scalar measures derived from DTs suffer from variability
due to their dependence on the acquisition parameters. The FA, for
instance, is known to highly depend on the number of gradients, on the
voxel size and on the SNR [20]. We can explicitly write this dependence
as

= x ΘFA FA( ; ), (9)

where Θ stands for the different acquisition parameters, i.e.

= N b rΘ { , , SNR, , ϒ},g

where Ng is the number of gradient directions, b is the b-value, r is the
resolution (voxel size) and ϒ represents other unaccounted factors such
as the scanner manufacturer or the strength of the magnetic field. As
discussed in Section 1, here we will restrict ourselves to three para-
meters: the number of gradients, b and the SNR:

= N bxFA FA( ; , , SNR).g

Other scalar measures also depend on the acquisition parameters, al-
though in a possibly completely different manner. For instance, changes
in the MD are considerable when the b-value varies, but not so no-
ticeable for changes in the number of gradients [20].

2.3. Robust scalar diffusion measures

Our purpose is to define a series of new diffusion measures that (a)
do not depend on the acquisition parameters (number of gradients, b
and SNR) and (b) that are able to encode the diffusion characteristics in
such a way that differences induced by pathologies can be found. To
that end we propose a series of scalar measures designed with the fol-
lowing desirable properties in mind:

1. They can be calculated directly from the DWIs, without relying on
the tensor model.

2. They must be robust to the changes of the considered parameters.
3. The bias of the measure must not depend on the considered para-

meters.
4. The measures must be able to describe the amount and/or aniso-

tropy of diffusion.
5. They must show a discriminant power similar to that of FA and MD:

differences in white matter group studies found using FA and MD
must also be found with the new measures.

The proposed scalar measures are the following:

1) Diffusion volume (DV): the value of P(R|Δ) in the origin is related
to the volume of E(q):

∫=P E d0 q q( |Δ) ( ) .
V (10)

This value is the probability density of zero displacement (also
known as RTOP [43]), which is related to the probability density of
water molecules that minimally diffuse within the diffusion time Δ,
a measure known to provide relevant information about the white
matter structure [47-50]. Assuming a Gaussian diffusion model, we
can write Eq. (10) as

= ∝
⋅

P
π b

0( |Δ) 1
| |(4 Δ)

1
| |

.
3 3/2 1/2

D D (11)

The determinant of the tensor | |D can be seen as the volume of the
ellipsoid that represents the diffusion, and thus it can be used as a
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measure of the diffusion. Assuming that the diffusion signal D(q)
does not depend on the radial direction, we can approximate the
integral by the summation of the values sampled in a particular shell
(see Appendix A):

∫ ∑≈
=

E d π
c D

Sq q( )
2

Δ ,
V

i

N

i1 0
3/2 3/2

g

(12)

where ΔS is an increment of a sphere, c0 is a constant and Di are the
sampled diffusion values in a particular direction:

=
−

= …D
E
b

i N
qlog ( )

, 1, , .i
i

g (13)

We define the diffusion volume proportional to | |D and thus re-
lated to the volume of the ellipsoid as

= ∑ −

= −

= E

E

x q

q

DV( ) ( log ( ))

( log ( )) ,

b N i
N

i

b i

1 1
1

3/2

1 3/2

g
g

3

3 (14)

where ⟨.⟩ is the averaging operator:

∑=
=

I
N

Ix x( ) 1 ( ).i
g i

N

i
1

g

(15)

Note that the DV would depend on the parameter b. To make the
measure robust to changes in that parameter we redefine it as

= ⟨ − ⟩
b

Ex qDV( ) 1 ( log ( )) ,i3/2
3/2

(16)

Although this measure was initially derived using a Gaussian as-
sumption, note that the final equation does not consider that specific
model, but a generic diffusion.

2) Average sample diffusion (ASD): In order to obtain a measure of
the amount of diffusion we propose to calculate the integral of the
diffusion in the surface of a sphere of radius q0:

∫ D θ ϕ dS( , ) ,
Sq0 (17)

assuming that the diffusion function does not depend on the radial
coordinate. Similar to the DV, we can approximate Eq. (17) as

∫ ∑≈
=

D θ ϕ dS D S( , ) 2 Δ .
S

i

N

i
1q

g

0

Considering a uniform sampling of the sphere, i.e. ΔS ∝ 1/Ng, we
have

∫ ∑ ∑∝ = −

= =

D θ ϕ dS
N

D
b N

E q( , ) 1 1 1 log ( ).
S g i

N

i
g i

N

i
1 1q

g g

0

This value can be seen as an averaging of the sampled values of the
diffusion on a particular shell, i.e., the average sampled diffusion:

= ⟨− ⟩
b

Ex qASD( ) 1 log ( ) .i (18)

3) Diffusion energy: we can define the energy of the diffusion signal
in a specific shell:

∫ D θ ϕ dS| ( , )| .
S

2
q0

The discrete version of the measure is obtained as follows:

∫ ∑ ∑

∑

≈ ∝

=

= =

=

D θ ϕ dS D S
N

D

b N
E q

| ( , )| 2 Δ 1

1 1 ( log ( )) .

S
i

N

i
g i

N

i

g i

N

i

2

1

2

1

2

2
1

2

q

g g

g

0

This value can be seen as the sampled second order moment of the
diffusion on a shell:

= ⟨ ⟩
b

Ex qSMD ( ) 1 ( log ( )) .i2 2
2

(19)

4) Coefficient of variation of the diffusion (CVD): the FA can be seen
as the square root of the variance of the eigenvectors of the DT di-
vided by their second-order moment. Accordingly, the same idea
can be applied to the diffusion signal1:

�
=

⟨ − ⟩
E

E
x

q
q

CVD( )
( log ( ))

( log ( ))
,i

i
2 (20)

where � (.) is the sample variance defined as

� =
−

⟨ ⟩ − ⟨ ⟩I
N

N
I Ix x x( ( ))

1
[ ( ) ( ) ].i

g

g
i i

2 2

This measure can also be seen as an alternative implementation of
the generalized anisotropy [41, 51].An overview of all the proposed
measures is presented in Table 1. Note that DV, ASD and SMD2 are
designed to mainly quantify the amount of diffusion, while CVD
quantifies the anisotropy of the diffusion.

2.4. Bias and variance analysis

The measures previously defined will be subject to acquisition ar-
tifacts, and they will be corrupted with noise. The presence of noise will
introduce a bias in the estimator that depends on the amount of noise
and may also depend on other acquisition parameters. Thus, in order to
obtain robust measures, this bias must be properly corrected.

The acquired signal E(qi) is defined as an acquired T2 signal
weighted by some oriented gradient. If we define the acquired signal as
Si(x), we can define E(qi) as

= =E E S
S

q x x
x

( ) ( ) ( )
( )

,i i
i

0

where S0(x) is the baseline acquisition. For the sake of simplicity, let us
assume that the acquired signals Si(x) and S0(x) are corrupted with
Rician noise [52]:

= + = ⋯S A N σ i Nx x x( ) | ( ) ( ; 0, )|, 0, , ,i i g
2

where Ai(x) is the original signal if no noise is present and N(x;0,σ2) is a
complex additive Gaussian noise with zero mean and variance σ2. This
is a common assumption in MRI acquisitions, valid for single-coil ac-
quisitions and multi-coil parallel imaging reconstructed with a spatial
matched filter, like SENSE, for instance. In the latter, noise can become
non-stationary, i.e., the variance of noise will depend on the position
and σ must be replaced by σ(x), which does not affect to the following
study.

The analytical study of the bias and variance of the proposed
measures is described in Appendix B. Results are summarized in
Table 2. Note that the ASD is an unbiased measure, while the bias of the
other measures depends on the b-value, the variance of noise σ2 and the
original value of the baseline A0(x) and DWIs Ai(x). Consequently, a
change in the b-value or the SNR may introduce an undesired different
bias to the measure. Luckily, this bias can be easily corrected with the
proper estimation of some of the parameters: σ can be estimated from
the baseline [52] and the value of A0(x) can be obtained from a filtered
version of S0(x) or from several acquired repetitions of the baseline. To
estimate the averaged value of A x( )i

2 we can assume a high SNR

1 Note that the CV is usually defined as
�

�

�
= = −CV 1X

X
X
X

Var{ }
{ }

{ 2}
{ }2

. We have

considered an alternative definition:
�

�

�
= = −CV 1X

X

X
X

Var{ }

{ 2}

{ }2

{ 2}
to make the

measure similar to the FA.
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scenario, restrict ourselves to a second order expansion and use the
approximation

⟨ ⟩ ≈
⟨ ⟩

−A
A

x
x

( ) 1
( )

.i
i

2
2

Using the second order moment of a Rician random variable [52], we
can write

⟨ ⟩ = ⟨ ⟩ −A S σx x( ) ( ) 2 .i i
2 2 2

More accurate unbiased estimators could be achieved by using more
terms in the approximations considered.

Finally, note that the bias of the measures does not depend on the
number of gradient directions. On the other hand, their variance is
proportional to the level of noise σ2, as expected, and is inversely
proportional to the number of gradients. Thus, employing more gra-
dient directions will not affect the bias of the measures, but it will
decrease the variance of such measures.

3. Methods

In order to validate the proposed methods, a series of experiments
have been carried out using pseudo-synthetic data and real acquisitions.

3.1. DWI phantom

For the sake of comparison to a gold standard, a realistic DWI
phantom is used, specifically the one proposed in [53, 54]. The
phantom was generated from a real DWI dataset from a SENSE EPI

acquisition scanned with a 3T GE system. It consists of a
256× 256×81 volume with 8 baseline volumes and 51 gradient di-
rections and a resolution of 0.94×0.94×1.7mm3. A denoising/reg-
ularization process was carried out in order to obtain a noise-free vo-
lume:

1. Unbiased non-local means denoising for each DWI channel and
baseline average using [54].

2. Normalization of the intensities so that the baseline shows gray
values in the range [0–255].

3. Regularization of the DWI dataset across the gradient directions. To
that end, the diffusion signal D(q) is expressed in the basis of SH and
reconstructed for an arbitrary gradient directions.

4. Different b-values are simulated assuming that the diffusion signal
does not depend on the radial component and therefore

=E b E b( ) [ ( )]b b
1 0

/1 0, with b0= 1200. This approximation is only
valid for moderate variations of b, in the range where the Gaussian

Table 1
Survey of the proposed diffusion measures.

Measure Formula Equation

Diffusion volume = ⟨ − ⟩Ex qDV( ) ( log ( ))
b i

1
3/2

3/2 (16)

Average of sampled diffusion = ⟨− ⟩Ex qASD( ) log ( )
b i
1 (18)

Diffusion energy = ⟨ ⟩Ex qSMD ( ) ( log ( ))
b i2
1
2

2 (19)

Diffusion coefficient of variation �=
⟨ − ⟩

xCVD( ) E i
E i

q
q

( log ( ))
( log ( ))2

(20)

Table 2
Bias and variance of the proposed measures, assuming a Rician distribution for the composite magnitude signal.

Measure Bias Variance
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Fig. 1. Original and modified FA maps obtained from 51-gradient volume: (a) original FA, (b) modified FA, (c) absolute difference of (a) and (b), and (d) mask used
to modify the anisotropic diffusion in certain ROIs of the image.
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diffusion holds.
5. In order to change the SNR, the final data is corrupted with Rician

noise [52] with different standard deviation of noise σ.

This pseudo-synthetic phantom is used in two experiments:

1. DWI phantom - robustness test: In order to assess the robustness of
measures to the change of parameters, 50 repetitions of the volume
with individual noise realization will be considered for each set of
parameters (number of gradients, b-value and σ of noise). A T-test is
carried out pointwise to detect differences between the same volume
with different acquisition parameters for each measure. To quantify
the differences, we define the following ratio:

=
<

R p
p p

( )
Number of points with

Number of points
.0

0

(21)

Only those voxels belonging to the white matter are considered. A
value of R(p0) close to 1 indicates that most of the points in the
image are considered to be significantly different, while a value
closer to 0 indicates that differences cannot be assured. For the
experiments, we will consider p0= 0.01.

2. DWI phantom - discriminant power test: So as to test the discriminant
power of the methods, a mask delineating several white matter areas
with high FA was created. Then, the value of coefficients 2 to 4 of
the SH decomposition was reduced in those ROIs, thus decreasing
the anisotropy of the diffusion (see Fig. 1). Two different data sets
were made available this way, one with the original diffusion and
another with a reduced anisotropy. Different acquisition parameters
were considered for each set, and differences are evaluated using an
ANOVA test, similar to the previous case.

3.2. Real data

Next, three real datasets are employed to verify two desired prop-
erties of the proposed diffusion measures: their robustness to changes in
the acquisition parameters and their ability to detect differences in
white matter group studies:

1. Real dataset 1: MR images were acquired from thirteen healthy male
adults, aged between 23 and 31 (average age 27 years), as detailed
in [20]. Images were acquired in a Philips 1.5T unit. DWIs were ac-
quired using a multi-shot pseudo-3D double spin-echo echo-planar
imaging (SE-EPI) sequence with b=800 s/mm2, spatial resolution
2×2×2mm3, matrix size 256×256, a total of 66 sections,
TE=1.6ms, TR=8ms. 61 gradient directions and one baseline
volume were acquired. The gradient directions were specifically de-
signed so that they can be subsampled to 40, 21 or 6 gradient di-
rections while remaining equally spaced for each configuration. This
subsampling technique allows the measurement of the effect of using
different number of gradients with only one acquisition.

2. Real dataset 2: This is a publicly available dataset acquired from one
single volunteer using a Siemens Trio 3T unit [55]. Acquisition
parameters included the following: double spin echo DW EPI se-
quence, 33 gradient directions, 15 b-values (only three will be
considered for this experiment: b=(800, 1000 and 1200) s/mm2),

19 consecutive slices, isotropic resolution of 2.5mm, matrix size
96×96, SNR=39 at baseline.

3. Real dataset 3: MRI data were obtained from 32 schizophrenia pa-
tients (SZ) and 32 age and sex-matched healthy controls (HC;
Table 3). Acquisitions were carried out using a Philips Achieva 3T
unit at the MRI facility at University of Valladolid, including T1-
weighted and diffusion-weighted images. For the anatomical T1-
weighted images, acquisition parameters included the following:
TFE sequence, 256×256 matrix size, 1× 1×1mm3 of spatial
resolution and 160 slices covering the whole brain. With regard to
the DWIs, the acquisition parameters were 61 gradient directions,
one baseline volume, b-value= 1000 s/mm2, 2×2×2mm3 of
voxel size, 128×128 matrix and 34 slices covering the entire brain.
The scheme of 61 gradient directions is designed in such a way that
it can be subsampled into a set of valid 40 gradient directions or a
set of 21 valid gradient directions (same scheme used for Dataset 1).
More information about the clinical details of participants, as well as
inclusion/exclusion criteria, can be found in [56].

Three different experiments were carried out:

1. Real dataset 1 - robustness to number of gradients: Several regions of
interest within the white matter were automatically delineated by
projecting these regions from a white matter atlas to the native
space of each acquisition, using flirt and fnirt utilities from FSL2. The
regions of interest considered were genu of corpus callosum, body of
corpus callosum, splenium of corpus callosum, right Cingulum
(cingulate gyrus) and left Cingulum (cingulate gyrus). The average
values of the different scalar measures (FA, MD and the proposed
measures) were computed for each ROI using different configura-
tions of gradient directions and compared.

2. Real dataset 2 - robustness to b-value: Three different shells from the
Kurtosis acquisition were considered. From them, the different
scalar measures were calculated for a single slice and an error
measure was computed as

⎜ ⎟
⎛
⎝

⎞
⎠

=
−

b b
M b M b

M b
Error ,

( ) ( )
( )

,i j
i j

1000

where M(bi) is the considered measure for b-value bi, and M(b1000) is
the measure for a b-value equal to 1000 s/mm2, which is considered
as a reference.

3. Real dataset 3 - discrimination power and robustness to number of gra-
dients: data set 3 is used to test the capability of the measures to find
differences between groups. The rationale of the experiment is the
following: differences between SZ and HC using DMRI have been
extensively found in the literature [2, 56, 57], showing a widespread
reduction in FA and an increase in MD in patients with respect to
controls. Therefore, a comparison performed using a certain common
acquisition scheme should find these differences. However, if the FA
and MD are not robust with respect to changes in the number of
gradient directions, comparisons where the number of gradient di-
rections changes in different groups could yield misleading results,
overestimating the differences, underestimating them or even finding
differences in the opposite direction. On the contrary, if the proposed
new scalar measures are robust with respect to these changes, then
the results will be stable across different comparisons. On top of that,
for the new measures to be useful it is also necessary that they are
sensitive to pathological conditions, that is, they are able to find
differences between patients and healthy controls.
Following this idea, a group study was performed using TBSS (tract-
based spatial statistics) [58, 59] in order to discover differences be-
tween the SZ and HC groups. Data with different number of gradients
were employed in each group (SZ and HC), yielding several

Table 3
Demographic data for the employed dataset shown as mean (standard devia-
tion).

Schizophrenia Healthy controls

N=32 N=32

Age 36.62 (8.86) 35.00 (10.44)
Sex (M:F) 22:10 21:11

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
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combinations: for instance, using 61 gradient directions for the sub-
jects in the SZ group and 21 gradient directions for the subjects in the
HC group, using 40 gradient directions for the subjects in the SZ

group and 61 gradient directions for the subjects in the HC group, and
so on. The combination of 61 gradient directions for both the SZ and
HC groups was considered to be the golden standard, and the other
combinations (included in Table 4) were compared to this one. In
order to focus on the performance of the diffusion measures and not
in other factors such as the registration process performed in TBSS,
registrations to a common template were performed only for the
golden standard and then applied to other combinations.
TBSS was the method of choice in this experiment because of two
reasons. First, for being a popular and commonly used white matter
analysis method. Second, most of other alternatives, such as tracto-
graphy-based methods, for instance, inherently depend on multiple
factors that we wish to avoid as much as possible. The implications and
possible limitations of the choice of TBSS are discussed in Section 5.

Table 4
The combinations of gradient directions used for experi-
ments on real data.

Schizophrenia Healthy controls

40 40
21 40
40 21
21 21
21 61
61 21

Fig. 2. Diffusion scalar measures obtained from axial slice of a realistic phantom with 51 gradients: (a) FA, (b) GFA, (c) MD× b, (d) DV× b3/2, (e) ASD× b, (f)
(SMD2)1/2× b, and (g) CVD.

Fig. 3. Ratio R(p0) of points assumed to be different in the pseudo-synthetic phantom for variable number of gradients when compared to the Golden Standard (51
gradient directions). Two levels of noise are used: σ=5 (black) and σ=10 (blue). For all the cases b=1200 s/mm2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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4. Results

4.1. Pseudo-synthetic phantom

For the sake of visual understanding of the proposed measures,
those are depicted in Fig. 2 together with the FA, GFA and MD. We have
added FA and MD for being the most used scalar values in DTI analysis.
We have also added a non-tensor-based measure, GFA, which calculates
the anisotropy using the SH components. The measures in Fig. 2 have
been scaled to make them visually comparable. Note that the DV and
the sample moments of the diffusion produce results visually similar to
the MD, while the CVD shows the anisotropy structure, as expected.

Results of the DWI phantom - robustness test (robustness of the pro-
posed measures with respect to changes in the parameters using the

pseudo-synthetic phantom) in terms of the ratio R(p0) defined in Eq.
(21), are presented in Figs. 3 (number of gradients), 4 (b-value), and 5
(SNR).

With regard to the traditional scalar measures, results show that the
FA is greatly variant with respect to the three parameters, most sig-
nificantly when changing the number of gradients. GFA shows a greater
performance than FA, but it still shows a great variation for small
number of gradients. MD, on the other hand, is rather stable for changes
in the number of gradients, but not that robust when the b-value
changes.

Results in Fig. 3 indicate that the new measures are significantly
more robust than FA and GFA. Even the worst results (the CVD with 6
gradient directions and σ=5 for different number of gradients) show a
ratio R(p0)= 0.09, whereas the FA results reach almost 1 and GFA 0.38.

Fig. 4. Ratio R(p0) of points assumed to be different in the pseudo-synthetic phantom for variable b-value when compared to the Golden Standard (b=1000 s/mm2).
For CVD the biased and unbiased versions are depicted. In all the cases 41 gradient directions have been used and σ=3.

Fig. 5. Ratio R(p0) of points assumed to be different in the pseudo-synthetic phantom for variable SNR, expressed in terms of σ, when compared to the Golden
Standard (σ=3). For DV, SMD2, and CVD the biased and unbiased versions are depicted. In all the cases 41 gradient directions have been used and b=1000 s/mm2.
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It is necessary to use 38 gradient directions in the FA or 18 in the GFA to
achieve similar results to the CVD with only 6 gradient directions. On
the other hand, DV and ASD show a similar behavior than MD for this
comparison.

As shown in Fig. 4, FA presents a heavy variability with respect to
the b-value. Although more robust, all the other measures also present
some variation. In any case, the variation is similar to the one provided
by the MD and, in some cases (SMD2) slightly smaller for high b-values.
It is important to point out that the CVD, since it takes into account the
variance of the diffusion, is inherently greatly influenced by the b-value,
as also happens with FA and GFA. Therefore, it is imperative to employ
the unbiased version (shown in Fig. 4 together with the original ver-
sions). Note that GFA shows a similar behavior to the biased CVD. It is
precisely the use of the unbiased version that improves the behavior of
CVD.

Finally, in Fig. 5, FA shows a major dependency to changes in the
SNR. The unbiased versions of CVD, although also encoding anisotropy
information, present a superior performance. MD, on the other hand,
shows a relatively low variation, which is also achieved by DV, ASD and
SMD2 (note that ASD and SMD2 also convey some anisotropy

information). This last figure shows one important feature of the new
measures: due to their formulation, the bias analysis is feasible and
noise-related bias can be easily removed. Once more, the GFA shows a
poor result, very similar to that of CVD but without the capability to
unbiased the measure.

All in all, these three experiments show that, in general, the new
measures show a more robust behavior with respect to the variation of
acquisition parameters than the FA and GFA, and similar to that of MD.

We next show results for experiment DWI phantom - discriminant
power test, where we analyze another fundamental feature of a good
diffusion feature: its ability to discriminate differences in the diffusion.
In this experiment, these differences have been designed to mainly re-
flect a change in the anisotropy of the diffusion. Figs. 6 and 7 show
qualitative results of the T-test carried out over two sets, considering 50
realizations of each set. Different acquisition parameters are considered
for each test: different number of gradients (Fig. 6(a)–(b)), different b-
values (Fig. 6(c)–(d)), different SNR (Fig. 7(a)), and variation of more
than one parameter (Fig. 7(b)–(d)). For each experiment, significant
differences detected with p<0.01 are highlighted. The top figures
(labeled as TRUE) show areas in which differences in diffusion are
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72.5% 46.5% 66.3% 48.9% 78.0% 92.5%

93.2% 9.1% 10.1% 9.1% 10.8% 12.1%

ASD SMD2 CVD

97.6%
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92.2% 40.5% 58.4% 39.9% 68.6% 90.5%

28.1% 5.2% 6.1% 5.2% 6.5% 6.8%
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87.4%

7.2%

a

b

Fig. 6. Points of a single slice where the T-test (50 realizations) detects significant differences with p< 0.01 for various scalar measures and different configurations:
(a) Ng={10, 41}, b={1000, 1000} s/mm2, σ={4, 4}, (b) Ng={30, 45}, b={1000, 1000} s/mm2, σ={4, 4}, (c) Ng={30, 30}, b={1000, 800} s/mm2,
σ={3, 3}, and (d) Ng={30, 30}, b = {1500, 800} s/mm2, σ={3, 3}. Top figures (TRUE): yellow color denotes the area of modified diffusion that is detected by
the T-test and red color denotes the area of modified FA that is not detected (and it should). Bottom figures (ERROR): red color denotes the area of the non-modified
white matter FA that is detected as different by the T-test (and it should not). The percentage written below the row labeled as TRUE illustrates the ratio of correctly
detected differences, while below the row labeled as ERROR indicates the ratio of points incorrectly detected as different. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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present. Yellow color denotes the area of modified diffusion that is
correctly detected by the T-test, and the red color indicates the area of
modified diffusion that is not detected but should have been. The per-
centage written below the images indicates the ratio of correctly de-
tected differences (100% would be a perfect score). Bottom figures,
labeled as ERROR, show the areas in which there are no differences,
and thus the test should not detect them. Red color denotes points in
which, wrongly, differences have been detected. Here, the percentage
under the images indicates the ratio of points incorrectly detected as
different (the lower, the best).

These results indicate the FA to be specially sensitive to changes in
the number of gradient directions and in the SNR, as expected in sight
of the results from the previous experiment. Even for variations of the b-
value, its performance is not as good as that of the other measures. On
the contrary, the MD can be seen as an upper bound for robustness,
showing always the lowest errors. However, it is not able to properly
detect the differences between groups. This is also expected, as the
experiment consisted of an alteration of the anisotropy of the diffusion,
for which the MD is very insensitive. The new measures, on the other
hand, show a compromise between detecting the differences in aniso-
tropy and keeping a reduced error outside the modified area. For a
reduction in the number of gradients (Fig. 6(a)–(b)), CVD shows a great
discrimination power (over 85%) while having a moderately small
error. For a change in the b-value (Fig. 6(c)–(d)), they show similar

discrimination to the FA with similar error. SMD2 shows also some
robustness in this case. Moreover, when more than one parameter is
changed, the FA behaves erratically, wrongly detecting differences in
most of the white matter. See, for instance Fig. 7(b), where the number
of gradients and the b-value are changed. The FA shows almost a 90% of
error, while the proposed measures are in the range of the MD level
while showing nearly a 90% of discriminant power. In addition, note
that the GFA performs better than the FA (and worse than CVD) for
different number of gradients, but it is highly affected by changes on
the b-value and the SNR.

Finally, note that we have restricted ourselves to a minimum
number of gradients of 6, to make the measures compatible with those
derived from the DT. However, there is no restriction in the number of
gradients for the measures in Table 1. On the other hand, according to
the results in Table 2, the variance of the proposed metrics decreases
with the number of gradients. A small number of directions will imply a
very high variance in the measures, specially in CVD. As an illustration,
the measures previously depicted in Fig. 2 for 51 gradient directions are
now recalculated for 3 directions in Fig. 8. Note that the anisotropy
structure of the brain can still be found with CVD using only 3 gra-
dients. In addition, results for DV, ASD and SMD2 are very similar to the
51 counterpart.
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Fig. 6. (continued)
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4.2. Real datasets

Results for experiment real dataset 1 - robustness to number of gra-
dients are depicted in Fig. 9. As expected, there is a great variation in
the FA values when the number of gradients changes. For this dataset,
the average FA decays from 0.6 for 6 gradient directions to under 0.4
for 61 directions. On the other hand, MD, DV, ASD and SMD2 show a
robust behavior when changing the number of gradients. On the other
hand, the CVD confirms the results in the synthetic experiments
showing a small variation (0.43 to 0.45) with a smaller range than the
FA and even better than the GFA.

With regard to experiment real dataset 2 - robustness to b-value, re-
sults are presented in Fig. 10. This figure shows the error of the mea-
sures for a central slice. Note that most of the measures show a reduced
error, similar to the MD, and smaller than that of the FA. Similar to
what we have seen in the synthetic experiments, the GFA shows no
robustness to the changes of b, with the worst results. On the other
hand, the CVD, which also conveys anisotropy information, presents a
much more robust behavior to the change of acquisition parameters
than FA and GFA.

Finally, results for experiment real dataset 3 - discrimination power
are presented in Fig. 11. The results corroborate the FA showing little
robustness to changes in the number of gradient directions, since when
the HC and SZ groups are acquired with different numbers of gradient
directions, differences between groups are either greatly over or un-
derestimated. On the other hand, MD shows great robustness, as also
found with the pseudo-synthetic phantom. With regard to the new
measures, DV, ASD and SMD2, show increased robustness with respect
to FA and even with respect to MD. At the same time, the new measures
show a high discriminative power, as the number of voxels with sig-
nificant differences remains very similar to that of FA or MD. The CVD
parameter, which incorporates anisotropy information, is less sensitive
to differences than FA, but more robust with respect to changes in the
number of gradient directions.

5. Discussion and conclusions

New quantitative measures of diffusion based on DWIs have been
proposed in this paper and their performance, robustness and dis-
criminant power have been evaluated on a pseudo-synthetic phantom
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Fig. 7. Points of a single slice where the T-test (50 realizations) detects significant differences with p<0.01 for various scalar measures and different configurations:
(a) Ng={41, 41}, b={1200, 1200} s/mm2, σ={3, 2}, (b) Ng={41, 11}, b={1200, 1000} s/mm2, σ={3, 3}, (c) Ng={41, 41}, b={1000, 1200} s/mm2,
σ={3, 2}, and (d) Ng={10, 41}, b={800, 1200} s/mm2, σ={4, 2}. Top figures (TRUE): yellow color denotes the area of modified diffusion that is detected by
the T-test and red color denotes the area of modified FA that is not detected (and it should). Bottom figures (ERROR): red color denotes the area of the non-modified
white matter FA that is detected as different by the T-test (and it should not). The percentage written below the row labeled as TRUE illustrates the ratio of correctly
detected differences, while below the row labeled as ERROR indicates the ratio of points incorrectly detected as different. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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and real data. The experiments have emphasized the two main features
of these new indexes: First, they are more robust to the changes of the
acquisition parameters than the FA, specifically to changes in the
number of gradients, b-value and level of noise. Second, they have
confirmed the ability to accurately detect changes in the characteristics
of diffusion. The use of a phantom allowed us to numerically grade
these positive features.

On the other hand, one of the initial requirements of these new mea-
sures was to be directly calculated over the diffusion signal. This re-
quirement was grounded on the purpose to define measures independent
of a particular model and also to allow a deep analysis of their behavior
under different conditions. This idea was reflected on the proposal:

1. The new indexes are based on different sample moments of the
DWIs, which avoids the middle step of a DT estimation. Thus, the
variability due to the diffusion tensor estimation step is reduced and
the selection of a specific diffusion model is avoided.

2. The definition of the measures allows a total characterization of
their bias and variance assuming a Rician noise distribution. The
noise analysis carried out in this paper has been eased due to the
structure of the new measures. Accordingly, unbiased versions of the
same measures have been proposed to make them robust to changes
in the SNR.

3. Since they are not based on the DT model, the measures are not
limited to a minimum of 6 gradient directions. Diffusion metrics can

Fig. 7. (continued)

Fig. 8. Diffusion scalar measures obtained from axial slice of a realistic phantom with only 3 gradient directions: (a) DV× b3/2, (b) ASD× b, (c) (SMD2)1/2× b, and
(d) CVD.
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be obtained with only 3 gradient directions, although the cost to pay
is to seriously increment the variance of the estimators.

The measures also present some limitations that must be con-
sidered:

• First, for the sake of simplicity, the measures rely on the assumption
of an equally spaced sampling of one shell in the q-space. Although
it is a reasonable assumption, if it is not fulfilled, the immediate
solution would be the use of alternative calculation of the integrals
via Spherical Harmonics. However, since one of the initial require-
ments was to keep the measures simple, we have opted for the
discretization here suggested.

• The biological interpretation of the proposed measures is also an
issue. These new indexes range from completely focused on the
amount of diffusion (DV, ASD) to completely focused on anisotropy
(CVD), while SMD2 incorporates information from both features. On

the other hand, although many years of usage of FA and MD have
provided the researchers with intuition about the nature of their
findings using these measures, it is important to note that the re-
lationship between changes in these measures and microstructural
changes in the white matter is not straightforward at all. For in-
stance, a decrease in FA can be caused by different factors, such as
demyelination, lower packing density or different membrane per-
meability [60]. In any case, any new measure will initially suffer
from this problem, and clinical studies over different pathologies
will be needed to correctly interpret the measures in relation with
physical processes. Previous experiments already carried out, point
out that the behavior of these indexed is not far from traditional
ones, and interpretation will be very similar, with the advantage of
more robust results.

• It is important to note that experiment real dataset 3 - discrimination
power was performed employing a specific tool, TBSS. This choice
has some relevant implications. On the one hand, TBSS relies on a

Fig. 9. Robustness test to variation of gradient directions with real data set 1: boxplot of the average values inside 5 regions (genu, body and splenium of corpus
callosum; right and left Cingulum) for 13 patients for different number of gradient directions. (For the sake of visual comparison, SMD2

1/2 and CVD1/2 are shown,
instead of the original measures).

Fig. 10. Robustness test to variation of b-value with real data set 2: error between the same slice for three different b-values.
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registration process followed by the extraction of a skeleton of the
white matter from the FA volumes. If the dataset in a group study
originates from acquisitions with different numbers of gradient di-
rections, then the TBSS will need to register and obtain the skeleton
from heterogeneous FA volumes. Although in principle this could
negatively impact the results, we performed experiments (not shown
for the sake of space) that mimic a realistic scenario where this re-
gistration process is performed on heterogeneous FA volumes.
Results indicated TBSS to be robust, in this sense, to the use of FA
volumes with different number of gradient directions. On the other
hand, the conclusions and interpretations of the results obtained
must also take into account the nature of the performed experi-
ments. The behavior, for instance, of the proposed measures as
metrics in tractography or connectomics-based analyses cannot be
easily inferred, as these methods depend on a high number of factors
before the application of any metric.

All in all, the new measures here proposed are a solid alternative to

standard scalar measures derived from DTI and they can alternatively
be used in group studies that combine acquisitions with different ac-
quisition parameters.
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Fig. 11. Results from experiment real dataset 3 - discrimination power and robustness to number of gradients. Graphs show the number of voxels where significant
differences were found in a TBSS group study between schizophrenia patients (SZ) and control subjects (HC), using different combinations of number directions for
both groups (see description of the experiment in Section 3.2 for further details).
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Appendix A. Derivation of the diffusion volume

Assuming a Gaussian diffusion model, we can infer that the value of P(R|Δ) in the origin is related to the volume of signal E(q) as seen in Eq. (11).
To calculate the integral we use spherical coordinates and a generic diffusion D(q) instead of the tensor model:
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∫ ∫ ∫
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with q0= ∥q∥ and c0= 4π2τ. We assume that the diffusion D(q) does not depend on the radial direction q0, and therefore D(q)=D(θ,ϕ):

∫ ∫ ∫

∫

=

=
⋅

⋅

E d dθ dϕ θ

dS

q q( ) sinV
π π π

c D θ ϕ

S
π

c D θ ϕ

0
2

0 4( ( , ))

4( ( , ))

0 3/2

0 3/2

i.e., the integral in the surface of the sphere S. We approximate now the integral by the sum of the sampled values

∫ ∑≈E d π
c D

Sq q( ) 2
4

Δ ,
V

i i0
3/2 3/2 (22)

where ΔS is an increment of a sphere on unitary radius and Di are the sampled diffusion values. The value 2 comes to the fact that the samples are
taken only over half of the sphere. If we drop the constants, we can write

∫ ∑∝
−=

E d
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q q
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( ) 1
( log ( ))V g i

N
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g

and from Eq. (11):
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Thus, after some algebra we finally have
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We define now Diffusion Volume as
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⎣
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⎦
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b
N E q

DV 1 1
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(24)

Since the inverse of the logarithm can produce numerical instability, an approximation is needed, using the following expansion:

�
� �

= + + …{ }X X X
X1 1

{ }
1

{ }
Var{ }3 (25)

Considering the average operator as an estimator of the sample mean and using the first order approximation we can write
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With this approximation, Eq. (24) becomes
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q
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b N i
N

i

b i

1 1
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3
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Appendix B. Noise analysis of the diffusion measures

B.1. Bias of ASD

We calculate the expectation of the ASD in Eq. (18):

� �

� �

= ⎧
⎨⎩

− ⎫
⎬⎭

= − ⟨ ⟩ −

b
S
S

b
S S

x
x

x x

{ASD} 1 log ( )
( )

1 ( { log ( )} { log ( )})

i

i

0

0

The term � S x{log ( )}i is the mean of a logRician random variable, which is [8]

� ⎜ ⎟= + ⎛
⎝

⎞
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S A
A

σ
x x

x
{ log ( )} log ( ) 1

2
Γ 0,

( )
2i i
i
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2
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where Γ(n,x) is the upper incomplete Gamma function that, for the particular case of n=0 equals the exponential integral function

=x xΓ(0, ) E ( ).1

which fulfills the following property for x>0:

⎜ ⎟< ⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎞
⎠

x x
x

E ( ) exp log 1 1 .1

If we choose any positive x0> 0, the monotonicity of +( )log 1 x
1 assures that the bias of logRician signals is bounded by − +( )xexp( )log 1 x

1
0

for
x> x0 i.e., it decreases exponentially, hence faster than any negative power of x. Thus, the bias of the measure
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2
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1

2

2 1
0
2
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decreases fast for high SNR. A clearer look can be obtained from a series expansion of log Si(x). If we assume a high SNR we can write
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From this, the expectation of log Si(x) is calculated as
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Since � ± ⋅ =N j N{( ) } 0r i
n (see Appendix C), for high SNR we can conclude that

� ≈S Ax x{log ( )} log ( )i i (27)

and therefore

� = −
b

A
A

x
x

{ASD} 1 log ( )
( )

,i

0 (28)

i.e. the measure is unbiased.

B.2. Bias of SMD2

We calculate the expectation of the SMD2 in Eq. (19):
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�

= ⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

= − ⟨ + − ⟩

b
S
S

b
S S S S

x
x

x x x x

{SMD } 1 log ( )
( )

1 {( log ( )) (log ( )) 2 log ( )log ( )}

i

i i

2 2
0

2

2
2

0
2

0

and using the approximation for high SNR in Eq. (27) and a series expansion
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we can write
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and therefore
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σ
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σ
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2
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B.3. Bias of DV

The expectation of the DV is

� �= ⟨ − ⟩
b

S Sx x{DV} 1 { ( log ( ) log ( )) }.i3/2 0
3/2

In order to calculate the expectation, we calculate the Taylor series of (log Si(x)− log S0(x))3/2 for high SNR and truncate at order two:
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and therefore
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B.4. Bias of CVD

For the sake of simplicity, we will calculate the bias of CVD2 instead of CVD. Let us define two variables:
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so that CVD2= X/Y. The expectation of CVD2 can be written as [61]
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If we assume a high SNR we can make a first order simplification and then
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Note that the bias here is not additive, as in the previous cases.

B.5. Variance of ASD

For the variance of the sum of N random variables Xi the following relation holds
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Simplifying our considerations, we can define the variance of ASD as follows:
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Given the approximations of expectations for high SNRs, we conclude that
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B.6. Variance of SMD2

Following a similar reasoning we can write
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To resolve this, let us define series expansion of the expectations � S{(log ) }i
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and from this, we obtain the variance of SMD2:
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B.7. Variance of DV

Once again we will employ a similar strategy as previously presented:
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B.8. Variance of CVD

For the sake of simplicity, we will again follow the assumptions made for calculation the bias of CVD measure. To calculate the variance of the
ratio X/Y the following approximation can be used:
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Assuming a high SNR, we make a first order simplification leading to
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We need to calculate the variance in the numerator:

� ∑ ∑

∑

∑

⎜ ⎟ ⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

=
⎧
⎨
⎩

−
⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

− ⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

⎫
⎬
⎭

≈
−

⎧
⎨⎩

− ⎫
⎬⎭

+
−

⎧
⎨
⎩

⎛

⎝
⎜ − ⎞

⎠
⎟

⎫
⎬
⎭

= =

=

=

S
S b

N
N N

S
S N

S
S

b N
S S

b N N
S S

x
x

x
x

x
x

x x

x x

Var log ( )
( )

Var 1
1

1 log ( )
( )

1 log ( )
( )

1 1
( 1)

Var ( log ( ) log ( ))

1 1
( 1)

Var ( log ( ) log ( )) .

i g

g g i

N
i

g i

N
i

g i

N

i

g g i

N

i

0
2

1 0

2

1 0

2

4 2
1

0
2

4 2 2
1

0

2

g g

g

g

The first part of the equation has been already derived as a part of the variance for SMD2 measure. In order to calculate the variance of the second
part, we will use the following approximation:
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From this, we obtain the variance of the measure
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Appendix C. Calculation of expectations

Let us assume that N1(x;0,σ2) and N2(x;0,σ2) are two IID Gaussian random processes with zero mean and variance σ2. Thus
� ± ⋅ =N j N{( ) } 0.n

1 2 (1)

Let us see the demonstration for the “+” case, being the one for “−” similar.
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with δ[M] the Kronecker delta, i.e. the solution is only different from zero only if M=0. Then, we can conclude that
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1 2
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