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    Abstract– Positron emission tomography (PET) requires 
accurate timing of events in order to properly discriminate 
between coincident and non-coincident events. The traditional 
solution to timing is based on custom ASIC designs, whose cost 
may not be justified in the design of an experimental small animal 
PET scanner. The new generation of PET scanners introduces the 
idea of continuous sampling of the detected scintillation pulse, in 
substitution of the event triggered acquisition systems. This 
approach enables new options to timing based on digital 
processing of the sampled pulse signal. This work proposes a time 
stamping algorithm based on the optically matched filter and 
compares the potential performance benefits of this approach 
versus other FIR filter designs, some of which have been already 
implemented by different authors. Results show that time 
resolution of the timestamp may be as 1 ns without the need of 
expensive high-speed converters when the proper processing is 
applied. 
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I. INTRODUCTION 

HE PRECISE measurement of time between two events is 
the underlying foundation for electronic collimation in 

positron emission tomography (PET). In a PET system, a 
positron emitting radionuclide is injected into the patient and  
when the ejected positron comes into contact with an electron, 
the two particles annihilate producing two 511 keV gamma 
rays that are emitted in opposite directions, impacting almost 
simultaneously the gamma detectors placed around the body. 
A PET projection image is elaborated by identifying these time 
coincident pairs of co-linear 511 keV gamma rays among the 
noise of non-coincident single events impinging the detectors 
[1].  

Assigning a time stamp to the scintillation pulse is not a 
trivial task due to the time scale being handled and for an 
optimal performance the system may require periodic 
calibrations [2]. The classical approach to time discrimination 
relies on an mixed-signal application specific integrated circuit 
(ASIC) device designed to yield nanosecond timing accuracy 
[3-5]. However in preclinical PET systems targeted to small 
animals a solution based on digital processing of the sampled 
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signal may represent a reasonable trade-off between cost and 
performance [6, 7].  

This work presents and compares different alternatives to 
the design of a FIR filter that enables accurate real-time 
estimation of the time stamp based on the sampled energy 
pulse. In all cases the filtered signal presents an abrupt 
transition whose zero crossing is related in some sense with the 
time of occurrence of the detected signal. The motivation to 
this solution is to provide a direct implementation of a time 
stamping hardware module that is to be implemented in a field 
programmable gate array (FPGA), capable of sustaining high 
count data rates.  

The document is structured as follows: the first section 
summarizes the different timing methods that will be 
considered and the next presents the material required for the 
acquisition and processing of the experimental data. Next the 
result of applying the different filters to the experimental data 
will be presented, showing that with the proposed filtering 
approach a event time stamp resolution as low as 1.0 ns 
FWHM may be achieved for LGSO pulses at a sampling 
frequency of 65MHz, although the actual figure varies 
significantly with the scintillation crystal, the sampling 
frequency and filter type. 

II. TIMING FILTERS

A. Constant Fraction Discriminator 

The simplest solution to digital timing is implementing the 
digital equivalent of the constant fraction discriminator (CFD), 
as shown in equation 1, which is by far the most popular 
approach to timing in nuclear applications and whose main 
characteristic is the maintenance of a constant timing edge, 
since it is not affected by the input pulse amplitude. Its 
principle of operation is as follows, the analogue signal is split 
into two components, one of them is delayed D and the other is 
attenuated by the factor CF, operations that are implemented 
with an attenuator and an analogue delay line. Afterwards, 
these two signals are re-mixed and a comparator detects the 
zero-cross point, which determines the signal timing. 
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When it comes to implementing a non-integer digital delay 
D/ Ts several solutions exist, depending on the selected 
minimization criteria for the interpolation filter, whose ideal 
frequency response is: 
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Figure 1: Pulse output of the CFD with an analogue delay of 15 ns and a 
constant fraction of 0.3 and output of the digital CFD for the same pulse 
sampled at 60MHz, with an equivalent delay of 15 ns and a constant fraction 
of 0.3 

The most simple and direct approximation comes out of 
computing and truncating the inverse Fourier transform of the 
ideal frequency response (2), which results in a shifted and 
sampled version of the sinc function: 
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In order to produce realizable fractional delay filters, some 
windowed w[n] finite length approximation has to be used. 
Under these considerations, the digital CFD is expressed in 
terms of a digital FIR filter h[n] as: 
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 The time stamp of the pulse p[n] is taken as the sample 
value where the filtered signal crosses the zero level, that is: 
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B. Linear Interpolation 

 Signal linear interpolation may also be used for the 
computation of the pulse start point, based on the assumption 
that the rising edge may be linearly approximated. Despite its 
simplicity, this approach has proven to be accurate enough for 
the computation of the time stamp with LSO pulses shaped for 
75 ns rise time and sampled at 40 MHz [8] and for LSO/LGSO 
integrated signals sample at 45MHz [9].  

The linear interpolator, in the simplest case, takes into 
account two samples adjacent to the desired point. In this case, 
the sample m with the steepest slope in the vicinity of the rise 
edge is taken for the calculation of the line that passes through 
m and m+1, and the zero crossing of the interpolated line with 
the base level is computed as shown in equation (6). 
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C. Classical Matched Filter 

Another possible approach to timing is based on the 
correlation between the sampled pulse and a template of the 
reference pulse. In this situation, the criterion is that the timing 
of the pulse is the point where correlation is maximum. This 
can be formulated in terms of a FIR filter h[n]:  
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where h’[n] is the first derivative of the impulse response and 
the time stamp is computed as the point where the filtered p[n]
crosses the zero level. 

D. Optical Matched Filter 

The concept of optically matched filter comes, the same way 
the matched filter does, from communications theory [10]. 
This approach defines a family of optimal linear filters for 
filtered Poisson processes detection under Gaussian noise. The 
formulation takes into account the statistical properties and 
uncertainties of the signal being detected [10] and was firstly 
proposed for timing in PET in [11]. 

The design concept starts with the definition of an
inhomogeneous Poisson process ( ) [ ]{ }TttNN ,0: ∈≡  with 

intensity function ( ) [ ]{ }Ttt ,0: ∈−τλ , which is decomposed 

into signal and Poisson noise contributions 
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The observed signal is the sum of a filtered Poisson process 
and Gaussian noise 
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where p(t) is a known continuous and square-integrable 
function that represents the detector response to the individual 
photon. Under these definitions the linear estimator for the 
timing results from maximization of the expression:

[ ] [ ]{ }

[ ] [ ]{ }0'ˆ

maxˆ

arg

arg

=∗=

∗=

nhnp

nhnp

n

n

τ

τ
 (11) 

1930



where h[n] is a function of the underlying parameters. The 
actual value of h[n] depends on the selected member of the 
optical matched filter family, being the simplest case the given 
by: 
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where λ(t) is the reference pulse shape,  λo is the dark current 
intensity and No is the noise power spectral density. 

III. MATERIAL 

 The experimental data have been obtained with a 
reengineered version of the LGSO/GSO phoswich detector 
originally developed for the NIH ATLAS [12], whose energy 
dynode has been sampled at 625 MHz (Ts=1.6 ns) with a 
TDS5054B digital oscilloscope  (Tektronix, Beaverton, OR, 
USA). The acquired data has been processed and analyzed 
with Matlab 6.5 R13 (The Mathworks, Natick, MA, USA).  

IV. RESULTS

Up to 10.000 LGSO scintillation pulses were recorded with 
the oscilloscope and each of them was subsampled by a factor 
between 5 and 15 with a variable offset, in order to generate a 
set of pulses at different sampling frequencies with a known 
relative phase. 

The presented timing algorithms have been applied to each 
subsampled and delayed version of the original pulse and the 
error between the generated timestamp and the expected result 
has been recorded. This procedure is based on the fact that, 
albeit the actual start point of each pulse is unknown, the 
different samples of the original pulse are spaced by Ts=1.6 
ns, therefore the timing estimator is expected to grow linearly 
with the known delay. As an example Figure 2 (right) shows 
the behaviour of the matched filter and optically match filter 
for a particular pulse (left). As it shown, the estimator 
fluctuates around the expected timing value. 

Figure 2: Sample of a LGSO scintillation pulse (left) and the corresponding 
time estimates vs the introduced delay with the optical filter (*) and the 
classical matched filter (o) (right).  

 Repeating this approach for the 10.000 pulses of the set, we 
have estimated the timing resolution at full width of the half 
maximum (FWHM) for sampling frequencies ranging between 
40 MHz and 125 MHz, as it is shown in Figure 3. It seems 
obvious that the higher the sampling frequency, the finer the 
timing resolution. However, as normalized resolution in Figure 
3 (right) shows, resolution improvements are not exclusively 
due to the increasing sampling frequency but also to a better 

performance of the estimation algorithm, which provides an 
increasing refinement of the sampling.  
 One interesting observation is that timing resolution 
improves as more knowledge about the reference pulse is 
included, starting from linear interpolation that assumes very 
little about the reference pulse and ending with the optical 
filter, that includes shape and noise statistics. 

Figure 3: Absolute (left) and normalized (right) singles timing resolution with 
different algorithms: linear interpolation (+), CFD (▼), matched filter (o) and 
optical filter (*) for sampling frequencies ranging from 40MHz to 110 MHz. 

From a practical point of view, we are particularly interested 
on the expected timing resolution for sampling frequencies on 
the 50-80MHz range, where it is feasible to integrate the 
digital processing electronics into a medium-cost FPGA. Table 
1 summarizes results in this range and shows that, within these 
sampling frequencies, the optical filter outperforms other filter 
designs. 

Table 1: Timing resolution (FWHM) in the frequency range of interest 
Filter Type Resolution (ns) 

  @ 50 MHz 
Resolution (ns) 

  @ 65 MHz 
Resolution (ns) 

  @ 80 MHz 
Linear 11.80 8.71 6.77 
CFD 10.82 7.32 5.11 
Match 9.33 5.97 4.02 
Optical 6.12 3.61 2.34 
Optical (calibr) 4.75 2.52 1.55 

As it is observed in Figure 2 (right), timing estimators 
introduce systematic errors which can be estimated and 
compensated based on the acquired data, without any previous 
calibration. As a result of this compensation, the timing 
resolution of the optical filter is even further reduced, as it is 
shown in Table 1 and Figure 4. 

Figure 4: Optical Filter after self-calibration.(o) versus the non-corrected 
results (*). 

Results summarized in these plots are compatible with those 
presented by other authors in  [6, 7, 13, 14], although the 
latter represent single points of the much wider design space 
covered in this work. 
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                      @78MHz                                           @62MHz 

                    @52MHz                                                   @39MHz 
Figure 5: Self-calibrated optical filter (▼), non-calibrated optical filter (*) 
and matched filter (o) for sampling frequencies of 78 MHz (up-left), 62 MHZ 
(up-right), 52 MHz (bottom-left) and 39 MHZ (bottom-right) with shaping 
constants between 0 and 14 ns.  

Although it is commonly accepted that the lower the rise 
time of the scintillation pulse the better the time resolution, 
when it comes to timing by digital means some smoothing is 
required in order to capture more samples from the rising 
edge. Therefore we have also analyzed the benefits of further 
shaping the energy signal pulse, whose measured rising time is 
10 ns, before sampling. A Gaussian filter of variable time 
constant is applied to the same data set, before applying the 
timing algorithms hereinbefore described. Figure 5 shows the 
benefits of a slight increase on the signal rise time, that will 
introduce no significant change in the acquisition dead time 
and which additionally may provide some improvements 
regarding energy estimation. These results suggest when the 
proper smoothing is select that in all cases it is possible to 
achieve single timing resolutions below 1.0 ns (FHWM), even 
with modest sampling frequencies, when the proper filter and 
shaping time is selected.  

V. CONCLUSIONS

 This work analyzes the expected resolution of the time 
stamp when computed by digital means for LGSO pulse with a 
nominal rise time of 10 ns and decay time of 40 ns.  Different 
FIR filters are considered for the analysis; all of them derived 
from the two exponentials model, which is suitable to describe 
pulses from most scintillators. This model based approach has 
the advantage of not requiring previous pre-processing or 
calibration in order to compute the adequate filter response.  

 In all cases the time stamp is computed after filtering the 
input energy signal and finding its zero crossing through 
interpolation. The motivation to a solution of this type versus 
other more elaborated solutions is that FIR filtering and 
dividing are common operations in signal processing that are 
easily and efficiently implemented on programmable 
hardware, enabling direct real-time computation of the time 
stamp. 

Filter performance has been analyzed for a wide range of 
sampling frequencies and it has been shown that, in the 
sampling rate of interest (around 40-100MHz), results are 
promising, as most of them provide enough resolution for the 
application of a 10 ns timing window and in the particular case 
of the optically matched filter it seems feasible to apply a 5 ns 
timing window. 

However we must be aware that the presented results are 
applicable to a single detector and neglect fixed point effects 
as well as  timing variations due to component and clock jitter 
among several detectors in the ring. Some of these 
uncertainties may be compensated by calibration and some 
will not, and the impact of these on timing resolution is open 
for further investigation. 
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