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Abstract

In this paper we show how to compute the normalizing and the system matrix
terms of the EM-ML reconstruction algorithm for rotating planar detector PET
scanners. The method introduced is valid for either pixelated or continuous
scintillators. We base our computations in geometrical considerations, but
other effects of the PET process can be easily included. In this regard, the
intrinsic resolution of the detection system, the depth of interaction (DOI) of the
incident gamma rays and the efficiency of the scintillators have been modeled
in our development. The computation of the normalizing term and the system
matrix is valid for any basis function used for the discrete approximation of the
radionuclide concentration. We show that our computations are comparable to
those of a Monte Carlo method at a small fraction of the computational cost.

1. Introduction

In the process of PET imaging, the step of image reconstruction (Lewitt and Matej 2003)
is crucial for obtaining high-quality results, both qualitatively as well as quantitatively, for
accurate diagnosis and posterior analysis and processing. Vardi et al (1985) introduced an
algorithm based on expectation maximization and maximum likelihood (EM-ML) for three-
dimensional reconstruction from PET data. Over the past 20 years, much of the work in
statistically based algorithms has focused on finding alternative implementations of the EM-
ML algorithm that converge faster or offer improved resolution, contrast and/or signal-to-noise
ratio.
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Nowadays, data are manipulated in a digital form. That is, algorithms that work with
continuous magnitudes should be written so that they can handle digital images that represent
the physical magnitude. There are many ways to represent a continuous image using a discrete
set of numbers. A popular approach considers an image as being constructed by the sum of
shifted copies of a volume element (a voxel, for example), usually called a basis function. The
explicit consideration of continuous distributions for the reconstructed volume is in agreement
with the recent appearance of continuous detectors (Giménez et al 2004, Staelens et al 2004,
Tavernier et al 2005). The use of continuous scintillators instead of pixelated blocks allows
us to improve both the spatial and energy resolution, while avoiding the problems of light
collection efficiency that are related to fine pixelation of the crystals. Additionally, the cost
and complexity of the detector are reduced. The use of LSO, with high scintillation efficiency
as well as higher cross section for 511 keV gamma rays and faster decay time than NaI(T1),
prevents the light from spreading too far in the crystal and results in excellent count-rate
performance (Siegel et al 1995). The main disadvantages currently associated with the use
of these kinds of scintillators are non-uniformity and nonlinearity in the camera response, but
their effects can be minimized during the process of camera calibration (Sanchez et al 2004).
The more accurate lines of response (LORs) provided by continuous scintillator cameras are
naturally handled by list-mode versions of the EM-ML reconstruction algorithm (Rahmim et al
2005, Reader et al 1998, Reader et al 2002, Parra and Barrett 1998). List-mode reconstruction
algorithms modify the EM-ML equations so that each LOR is considered individually instead
of being grouped in discrete detector bins.

The key challenge of the EM-ML algorithm implementation is the calculation of the so-
called system matrix and normalization terms (Ortuño et al 2004, Ortuño et al 2006, Scheins
et al 2006), i.e., the probability that an emission from a given basis function is detected at a
certain LOR and the probability that an emission from a given basis function is ever detected
by the detector arrangement. For computing these probabilities, the geometry of the detectors
has to be explicitly taken into account (Levkovtiz et al 2001, Phelps and Cherry 1998, Qi et al
1998) as well as other effects that take place in the PET process such as the intrinsic resolution
and crystal thickness of the detectors (Staelens et al 2004) or the detection efficiency of the
scintillators (Levkovtiz et al 2001).

In this paper, we introduce an analytical method to compute the system matrix and the
normalization terms of the EM-ML list-mode algorithm for a rotating planar detector PET
camera with either continuous or pixelated scintillators. Our method is able to compute these
factors for any arbitrary basis function at a cost that is a small fraction of the computational
cost of sophisticated Monte Carlo simulations. We show that the system matrix and the
normalization factor computed by our method are similar to those computed by Monte Carlo
simulations.

2. Background

The mathematical development of Vardi et al (1985) assumes that positron emissions occur
according to a Poisson process in a certain region of R

3 with an unknown intensity function
λ(r) : r ∈ R

3. Therefore, the measured data set n∗(d) (the total number of coincidences in
each tube d formed by a pair of detectors) constitutes also a Poisson random variable with a
mean:

λ∗(d) =
∫

R
3
λ(r)c(r, d) dr, (1)

where d = 1, . . . , D (D being the maximum number of detector bins), and c(r, d) is the
probability that a line originated at a spatial point r is detected at the discrete tube d. When
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implementing the reconstruction algorithm described in Vardi et al (1985), it was assumed that
a fine grid of B basis functions exists such that if v(r− rb) stands for the general mathematical
expression of the basis function centered in the point rb and λ(b) is the weight of the bth basis
function, then

λ∗(d) ≈
B∑

b=1

λ(b)p(b, d), (2)

where

p(b, d) =
∫

R
3

v(r − rb)c(r, d) dr, (3)

p(b, d) is the probability that an event generated in the region defined by the bth function
is detected in the tube d. Coefficients p(b, d) can be arranged in a matrix called the system
matrix.

At this point, the activity distribution λ(r) that maximizes the probability of obtaining
the measured data n∗(d) must be found. Since the collected data follow a Poisson model, this
corresponds to the maximization of the probability function:

P(n∗) =
D∏

d=1

e−λ∗(d) λ
∗(d)n

∗(d)

n∗(d)!
. (4)

The maximization of the expression in (4) can be satisfied with many iterative schemes.
Particularly appealing is that given by the expectation maximization algorithm. The final
expression given in Vardi et al (1985) is an instance of this algorithm:

λnew (b) = λold (b)

p(b)

D∑
d=1

n∗(d)p(b, d)∑B
b=1 λold (b) p(b, d)

, where 0 < p(b) =
D∑

d=1

p(b, d) � 1.

(5)

The term p(b) is a normalization factor representing the probability of detecting a pair of
photons arbitrarily emitted from within the function b (considering all possible detectors).

There is a growing trend to use PET measurements in the so-called list-mode data. The
list-mode data are a list of coincident gamma pairs that are serially stored in the chronological
order of their registration. This mode has the advantage of a higher accuracy since photons
need not be discretized into sinograms. Reader et al (1998) and Parra and Barrett (1998)
developed an expression equivalent to (5) for the case of data sorted in the list mode:

λnew (b) = λold (b)

p(b)

N∑
n=1

p(b, dn)∑B
b=1 λold (b) p(b, dn)

, (6)

where N is the total number of measured events. As can be seen, each line is treated individually
instead of being grouped into tubes of response, and thus the measurement term n∗(d) is now
equal to one in the numerator of the summation. Moreover, for the list-mode case, the terms
p(b, dn) of the system matrix stand for the probability that an emission from the basis function
b is detected along the LOR d defined by the nth event. The list-mode reconstruction equation
is especially suited for PET systems that make use of continuous detectors, since in these
systems events are not binned into discrete detectors.

3. The system matrix and normalization term for an arbitrary basis function

As can be inferred from (5) and (6), the implementation of the EM-ML algorithm implies
mainly the implementation of two sets of terms, namely p(b) (normalizing term) and p(b, d)
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(system matrix). In the following, we introduce an analytical method to compute the
normalizing term and the system matrix for any basis function in the field of view (FOV)
of scanners with rotating planar detectors (see figure 1), either continuous or pixelated. We
perform these calculations in two steps. First, we compute the normalizing term and the system
matrix for a single emitting point in the FOV. Sections 3.1 and 3.2 describe the fundamentals
of the methodology proposed for these calculations. Second, in section 3.3 we extend the
results obtained for a single emitting point to the general case of any basis function.

3.1. Computation of the normalizing term for a single emitting point

The normalizing term for a single emitting point in the FOV of a PET scanner is the
probability that a pair of gamma photons emitted from that point is detected by the scanner.
The normalizing term has been traditionally computed as shown in (5), making use of the
discrete nature of the pixelated detectors. With the increasing number of crystals in modern
tomographs, the calculation of the individual probabilities of detection over all possible system
tubes poses a challenge from the computational cost point of view. This can be a limiting
factor, especially in an environment of design and evaluation of PET cameras, where sensitivity
calculations play a major role. Moreover, in the case of continuous detectors, no segmentation
in tubes exists, and therefore the summation in (5) must be correctly expressed as an integral.
These objections evidence the need of an analytical method to compute the normalizing term.
There already exist a few analytical calculations of this term (Reader et al 1998, Levkovtiz
et al 2001, Soares et al 2003); however, in all of these developments there exists a compression
of the two transaxial spatial variables into a radial variable (i.e. cylindrical symmetry is
assumed). A detailed discussion of the experimental importance of this factor is given in
section 4.1.1. The following analytical development does not assume cylindrical symmetry
and is independent of the continuous/pixelated nature of the scintillators.

Consider the basic scanner consisting of just two parallel planar detector heads whose
dimensions and coordinate axes are shown in figure 1. Let ϕ and γ be the polar and azimuthal
angles, respectively. If we assume a uniform distribution of the emissions over the sphere (i.e.
the joint probability density function of ϕ and γ is f (ϕ, γ ) = cosϕ/2π ), the probability that
an emission from a point r0 of coordinates (x0, y0, z0) in any plane �γ parallel to the z-axis
(see figure 1) intersects both of the planar detector heads can be computed as

p(r0,�γ ) =
∫ βϕ(r0,γ )

αϕ(r0,γ )

1

2π
cos ϕ dϕ. (7)

As can be observed in figure 1, the integration limits αϕ(r0, γ ) and βϕ(r0, γ ) are the
maximum detectable angles from r0 within the plane �γ . Closed-form expressions for
αϕ(r0, γ ) and βϕ(r0, γ ) are given in appendix A.1.

Even if a photon intersects a detector it may not interact with it. The detection efficiency
of the scintillator material, quantified through its physical attenuation constant, μ0, must be
considered. The probability of detecting a pair of gamma photons that intersect the left and
right detectors with lengths L1(r0, ϕ, γ ) and L2(r0, ϕ, γ ) respectively can be approximated
by

p(r0, ϕ, γ ) = (1 − e−μ0L1(r0,ϕ,γ ))(1 − e−μ0L2(r0,ϕ,γ )). (8)

The probability of detecting an emission from a point r0 in any plane �γ is

p(r0,�γ ) =
∫ βϕ(r0,γ )

αϕ(r0,γ )

cos ϕ

2π
p(r0, ϕ, γ ) dϕ.
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Figure 1. Geometrical characterization of the range of detectable emissions from the point r0
within the plane �γ . γ is the angle formed by the plane parallel to the z-axis �γ and the plane
x = x0. The angles αϕ(r0, γ ) and βϕ(r0, γ ) define the maximum and minimum ϕ detectable LORs
within the plane �γ . The dashed line is the intersection of z = z0 and �γ planes. The reference
axes used through this work are supposed to be centered with respect to the planar detectors but
for space reasons are shown at the lower right corner of the figure.

The expression for the probability of detection of any pair of photons emitted from r0 in
the case of the basic two parallel detector heads is then

p(r0) =
∫ βγ (r0)

αγ (r0)

p(r0,�γ ) dγ. (9)

The range of detectable planes is defined again by the angle seen by the point r0 into the
detector heads, now in the xy plane, as shown in figure 2. Appendix A.2 provides analytical
expressions for the angular limits αγ (r0) and βγ (r0).

Let us consider now the general case of a dual-head camera in which the detector heads
in figure 1 rotate at discrete steps of ψ degrees around the z-axis. If the couple of detector
heads has N possible angular positions, let us call p(r0, stepi ) the probability of detection of
a pair of photons emitted from r0 by the detector heads in position i(i = 0, . . . , N − 1). The
values of p(r0, stepi ) can be computed easily from the expressions developed above for the
unrotated case just by rotating the emitting point by −iψ degrees and leaving detector heads
on their initial positions. The probability of detecting anything emitted from r0 in this scanner
is

p(r0) =
N−1∑
i=0

p(r0, stepi )p(stepi ), (10)

where p(stepi ) is the probability that the dual head is situated at the ith angular position. For
the camera described above, the detector heads spend the same amount of time in each position
and therefore

p(stepi ) = 1

N
. (11)



1914 A Iriarte et al

Figure 2. Geometrical characterization of the range of detectable emissions from the point r0 within
the plane xy. The angles αγ (r0) and βγ (r0) define the maximum and minimum γ detectable LORs
within the plane xy.

It should be remarked that the expression in (10) is a function of the three spatial
coordinates (x0,y0,z0) of r0. No cylindrical symmetry has been assumed in the transaxial
planes. The importance of this fact can be observed in section 4.1.1, where the probability
of detection along different circumferences in the plane xy is calculated for the case of
commercially available PET systems showing that there can be fluctuations up to 300% in
the probability of detection of points located at the same radial distance. This result clearly
invalidates the cylindrical symmetry assumption.

3.2. Computation of the system matrix for a single emitting point.

As mentioned at the beginning of this section, the terms p(b, d) stand for the probability that
an emission from the region within the basis function b is detected in a tube d defined by a
pair of pixelated detectors. If continuous detectors are used, then the detector tube reduces to
a single line. Traditionally, the system matrix has been computed either by means of Monte
Carlo simulations or as the intersection of the basis function b with the event defined by d.
The former approximation has the drawback of being computationally expensive whereas the
latter is based on a too simplified model of the PET process.

Staelens et al (2004) introduced an analytical method (on which the presented development
is based) for computing the system matrix for a single emitting point that takes into account
the spatial intrinsic resolution during data formation. Due to this effect, the localization of
events in the detector heads is not perfectly defined and, therefore, spatial uncertainty exists
for the detected LORs. In section 3.2.1, it is shown how this uncertainty can be modeled
through a probability density function of the measured position dLOR centered at the actual
position of interaction in the detector head, d ′

LOR. As in Staelens et al (2004) we model this
function by a bidimensional Gaussian distribution, whose parameters are accurately defined in
section 3.2.2. Then, the likelihood of detecting an emission from r0 in dLOR is calculated.
In order to include the intrinsic resolution effect in our model, this likelihood is achieved
by integrating, over every d ′

LOR emitted by r0 in a neighborhood of dLOR, the likelihood of
detecting d ′

LOR in dLOR (given by the Gaussian density function). Finally, the probability of
detection of r0 in d required by the EM-ML algorithm must be calculated by integrating its
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Figure 3. Geometrical representation of the uncertainty of detection along the axial direction. The
plane �γ is the plane parallel to the Z-axis containing d and d ′.

likelihood over the limits that define the event d in the (continuous or pixelated) detector heads.
Section 3.2.3 shows how to perform these integrals.

Some modifications have been introduced with respect to the work by Staelens et al
(2004). First, as can be seen in section 3.2.1 we have replaced the uniform model for the
probability of detection along the photon path by an exponential model. The exponential
model, based on Lambert’s absorption law, constitutes a more accurate approximation for the
probability of interaction of gamma rays in matter. Second, as shown in section 3.2.2, we
have introduced a dependence of the Gaussian standard deviation σ with the depth of the first
interaction of the gamma ray with the crystal. This dependence is based on the fact that an
increase in detector thickness causes an increase in the positioning error (Stickel and Cherry
2005). Finally, we have added the term for the joint probability density function of γ and
ϕ (the angles that define each emitted line) in order to make the distribution of emissions
uniform over the sphere (see section 3.2.3)).

3.2.1. Uncertainty model. In this section, a model for the likelihood that a pair of photons
interacting at given positions leads to detection in another location will be introduced. The
LOR, dLOR, in which the pair of photons has been detected can be defined by two points
p1 = (x1, y1, z1) and p2 = (x2, y2, z2) on the internal surfaces of the detector head. Let us
first assume that the LOR d ′

LOR at which the event actually took place is contained in the
plane �γ (see figure 3). We denote the endpoints of this LOR by p′

1 = (x1, y1, z
′
1) and

p′
2 = (x2, y2, z

′
2). These are the intersection points of the LOR (defined by r0 and the angles

ϕ and γ ) with the internal surfaces of the detectors. Let us also assume that the probability of
detecting an event at dLOR when it actually occurred at d ′

LOR follows a Gaussian distribution
with zero mean and standard deviation σz (see figure 3). Then, the likelihood of detecting the
photons at dLOR knowing that the interaction actually occurred at d ′

LOR can be computed as

f (dLOR|d ′
LOR) = f (p1|p′

1)f (p2|p′
2) = 1

2πσ 2
z

e
− 1

2σ2
z

(z1−z′
1(r0,ϕ))2

e
− 1

2σ2
z

(z2−z′
2(r0,ϕ))2

. (12)
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Figure 4. Geometrical representation of the uncertainty of detection along the tangential direction
when this matches the X-axis. The plane �ϕ is the plane containing d and d ′.

Equation (12) models uncertainty just in the axial direction, which always fits the z-axis of the
scanner. For the case of uncertainty in the tangential coordinate of detection, the uncertainty
direction does not match with any of the reference axes shown in figure 1, but changes with
the rotation of the setup around the z-axis. Nevertheless, just by applying the appropriate
rotation, the results for the case of matching with the x-axis (figure 4 shows this uncertainty
situation) applies to any arbitrary case. Therefore, by simple combination of the axial and
tangential cases we can obtain a general result for the detection uncertainty in both directions:

f (dLOR|d ′
LOR) = 1

2πσ 2
z

e
− 1

2σ2
z

(z1−z′
1(r0,ϕ))2

e
− 1

2σ2
z

(z2−z′
2(r0,ϕ))2

1

2πσ 2
x

e
− 1

2σ2
x

(x1−x ′
1(r0,γ ))2

e
− 1

2σ2
x

(x2−x ′
2(r0,γ ))2

. (13)

Closed expressions for x ′
1(r0, γ ), x ′

2(r0, γ ), z′
1(r0, ϕ) and z′

2(r0, ϕ) can be found in
appendix A.3.

When dealing with oblique incidences on thicker crystals the depth of interaction (DOI) of
the photons also contributes to the detection uncertainty, as shown in figure 5. The coordinates
x ′

1, x
′
2 and z′

1, z
′
2 of d ′

LOR (and therefore the likelihood of detecting an emission at dLOR when
it actually took place at d ′

LOR, given by (13)) depend on the depths at which the photons
are detected on the crystal head. The uncertainty of detection when the DOI of the incident
photons is taken into account can be computed by integrating the Gaussian uncertainty given
by (13) over every possible depth weighted by the corresponding probability of interaction at
that depth:

f (dLOR|d ′
LOR)DOI = 1

2πσxσz

∫ L1(r0,ϕ,γ )

0
ew1(r0,ϕ,γ,l1)f (l1) dl1

1

2πσxσz

∫ L2(r0,ϕ,γ )

0
ew2(r0,ϕ,γ,l1)f (l2) dl2 (14)

wi(r0, ϕ, γ, li) = −
{

[zi − z′
i (r0, ϕ, li))]2

2σ 2
z

+
[xi − x ′

i (r0, γ, li)]2

2σ 2
x

}
, i = 1, 2.
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(a) (b)

Figure 5. (a) Effect of the depth of interaction (DOI) on the detection uncertainty. The depth li
at which the photon actually interacts with the detector head defines the position of the Gaussian
density function that gives the probability of detecting d ′

LOR in dLOR, f (d/d ′)i . (b) Dependence of
the spatial resolution with the DOI of the first interaction of the gamma photon on the scintillator.
If the first interaction takes place at pa , the error positioning is bigger than if it occurs at pb as the
crystal width the photon ‘sees’ is thicker at pa than at pb . Therefore the standard deviation of the
Gaussian that models detection uncertainty should be bigger at pa than at pb: σa > σb .

The integration variable li , i = 1, 2, is the depth at which the photons enter each detector
(right or left) in the direction of d ′

LOR (given by ϕ and γ ), L1 and L2 are the intersection lengths
of d ′

LOR with the detector heads, and f (l) stands for the probability that the first interaction
of the photon occurs at that depth. We model the detection probability of 511 keV photons
through an exponential approximation:

f (l) = μ0 e−μ0l . (15)

As has been mentioned, this exponential model represents a more accurate approximation
than the uniformity assumption made by Staelens et al (2004) for the most currently used
scintillation materials. The integration of this probability density function over the intersection
length of the photon across the detector leads, as expected, to the expression for the detection
probability of the photon across the crystal given by (8).

3.2.2. Gaussian characterization. In this section, we provide a characterization of the
Gaussian distribution that models the likelihood of detecting d ′

LOR in dLOR. Our model takes
into account the influence of the DOI of the interacting photons on the final event positioning.
The two main interactions that a 511 keV photon can undergo in detector materials are
Compton scattering and photoelectric absorption. A Compton scattering interaction results in
a scattered photon and a recoil electron. Photoelectron absorption results in a photoelectron
and in a characteristic x-ray. The x-ray produced in photoelectric absorption and the Compton
scattered photon may interact again at some distance from the original interaction site or
alternatively they may escape from the detector. Therefore, each 511 keV gamma photon
emitted can cause interactions at different points in the scintillator crystal. The position of
the final event depends on the particular detector readout and signal processing of the system.
Independently of the positioning method, the increase in the number of interactions in the
scintillator leads to an increase in the error of the location of the initial photon interaction. As
Stickel and Cherry (2005) show, the number of events that undergo multiple interactions (and
therefore the degradation of the spatial resolution) increases with detector thickness. Based on
this relationship between the crystal thickness and the positioning error, we propose a model
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in which the detection uncertainty changes with the DOI of the first interaction of the photon
in the crystal (the integrating variable l in (14)). From the above statements it follows that
the uncertainty should be maximum for the interactions occurring at l = 0 and that it will
decrease as the photon interacts more deeply. The parameter that quantifies the uncertainty
in the detection is the standard deviation (σx and σz) of the Gaussian probability distribution.
Therefore, we have chosen to decrease the value of σ with the value of the crystal thickness the
gamma photon ‘sees’ after its first interaction (in the following t (l)). Based on the experiments
that will be shown in section 4.2, this dependence has been approximated by a linear function:

σ(l) = mt(l) + b, i = z, x. (16)

Without loss of generality, it has been assumed that the uncertainty model in the z- and
x-coordinates is the same. As has been mentioned, t (l) stands for the crystal thickness that
remains for the gamma photon after its first interaction with the detector (see figure 5(b)).
Appendix A.4 explains how to compute the value of this parameter. The values of the
parameters m and b depend on the particular resolution features of the scanner being considered.
As shown in Stickel and Cherry (2005), the main sources of resolution loss are the positron
physics, the detector design, and the readout and signal processing of the particular scanner.
Therefore, in order to obtain an accurate estimation of the intrinsic resolution, the parameters
m and b should be obtained experimentally from the scanner for which the system matrix has to
be computed. The available Monte Carlo simulators still do not provide the tools to faithfully
reproduce many of the current positioning methods (Tavernier et al (2005) shows some of
these complex algorithms for position determination). Section 4.2 provides an experimental
methodology to obtain the linear parameters m and b.

This l-dependent uncertainty model can be easily included in the previous model for the
likelihood that an emission in d ′

LOR leads to dLOR just by substituting in (14) the fixed σ by
the l-coordinate-dependent value. The final expression for the probability density function
f (dLOR|d ′

LOR)DOI is

f (dLOR|d ′
LOR)DOI =

∫ L1(r0,ϕ,γ )

0

1

2πσ(l1)2
ew1(r0,ϕ,γ,l1)f (l1) dl1∫ L2(r0,ϕ,γ )

0

1

2πσ(l2)2
ew2(r0,ϕ,γ,l2)f (l2) dl2 (17)

wi(r0, ϕ, γ, li) = −
{

[zi − z′
i (r0, ϕ, li))]2

2σz(li)2
+

[xi − x ′
i (r0, γ, li)]2

2σx(li)2

}
i = 1, 2.

3.2.3. Integration. In this section, we provide expressions for the system matrix terms based
on the integration of the results obtained in sections 3.2.1 and 3.2.2. First, the likelihood that
an emission from r0 leads to an event detected in dLOR must be computed by integrating (17)
over every d ′

LOR that intersects the detectors:

f (r0, dLOR) =
∫ βγ (3σH ,L)

αγ (3σH ,L)

∫ βϕ(3σH ,W)

αϕ(3σH ,W)

f (dLOR|d ′
LOR)DOI

cos ϕ

2π
dϕ dγ. (18)

Each d ′
LOR emitted from r0 has been characterized by the angles ϕ and γ . As has been

mentioned, the inclusion of the term for the joint probability function of these angles
(cos ϕ/2π) is one of the features that distinguish our development from previous ones. When
implementing the integral in (18) numerically, the integration limits can be approximated
to those including just the LORs d ′

LOR whose intersection points in the crystal are in a
neighborhood of dLOR intersection points. This neighborhood has been chosen to be limited
by the minimum of three times the maximum standard deviation σH (given by the evaluation
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of (16) in th(l = 0) = H ) and the detector limits. Closed-form expressions for the integration
limits are given in appendix A.5.

Once the likelihood that an event originated at r0 is detected in dLOR has been calculated
in (18), the second step is to compute the system matrix terms for an emitting point r0. From
this point on, our development makes a distinction between pixelated and continuous crystals
(results until here apply to both cases). For the case of pixelated scintillators, the terms
p(r0, d) stand for the probability that an emission from r0 is detected in a tube dtube, defined
by a pair of pixelated detectors. These system matrix terms (in the following p(r0,dtube)) can
be computed by integrating (18) over every possible LOR defined within the tube dtube:

p(r0,dtube) =
∫

STUBE1

∫
STUBE2

f (r0, dLOR) ds1 ds2

=
∫

C1x

∫
C1z

∫
C2x

∫
C2z

f (r0, dLOR(x1, z1, x2, z2) dx1 dz1 dx2 dz2, (19)

where STUBE1 and STUBE2 define the surfaces of the pixelated detectors in each (left or right)
detector head. In this case, each line dLOR has been parametrized by its intersection points
p1(x1, y1, z1) and p2(x2, y2, z2) on the internal surfaces of the detector heads. In order to cover
every pair of points p1 and p2 within the limits imposed by the pair of pixelated detectors that
define dtube, the integration limits are defined by the intervals:

C1x = [C1xl, C1xh] = l[x1c − C/2, x1c + C/2] (20a)

C1z = [C1zl, C1zh] = [z1c − C/2, z1c + C/2] (20b)

C2x = [C2xl, C2xh] = [x2c − C/2, x2c + C/2] (20c)

C2z = [C2zl, C2zh] = [z2c − C/2, z2c + C/2], (20d)

where (xc1, yc1, zc1) and (xc2, yc2, zc2) are the coordinates of the crystal centers and C is the
crystal size. The subscript l is used to define the lower limit and the subscript h for the upper
limit of the integral.

If continuous detectors are used, then the detector tube dtube reduces to a single line,
which in the list-mode EM-ML is defined by the nth event dn. When integrating (18) for the
computation of the system matrix for continuous scintillators, the integration limits must be
those imposed by the resolution of the detection system, which measures how closely the line
dn can be resolved. For the case of pixelated scintillators, the resolution limits are imposed
by the size of the pixelated crystals because the measured LOR positions are approximated
by the center of the crystals where the pairs of photons were detected. However, for the case
of continuous scintillators, no artificial grouping of the LORs within a region into a single
detection exists, and thus the resolution limits are those imposed by the intrinsic resolution
of the detecting system. Due to the Gaussian nature of the positioning error an appropriate
measure of the spatial resolution is the full width at half maximum (FWHM = 2.35σ) of the
wider of the Gaussian distributions that model the uncertainty (given by the evaluation of (16)
in th(l = 0) = H ) in (16)). The expression that computes the system matrix terms for the
case of continuous detectors (in the following p(r0,dn)) is given by

p(r0,dn) =
∫

SFWHM1

∫
SFWHM2

f (r0, dLOR ds1 ds2

=
∫

C1x

∫
C1z

∫
C2x

∫
C2z

f (r0, dLOR(x1, z1, x2, z2) dx1 dz1 dx2 dz2, (21)
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where SFWHM1 and SFWHM2 define the surfaces imposed by the Gaussian resolution limits in
each detector head and therefore

C1x = [C1xl, C1xh] = [x1c − FWHM/2, x1c + FWHM/2] (22a)

C1z = [C1zl, C1zh] = [z1c − FWHM/2, z1c + FWHM/2] (22b)

C2x = [C2xl, C2xh] = [x2c − FWHM/2, x2c + FWHM/2] (22c)

C2z = [C2zl, C2zh] = [z2c − FWHM/2, z2c + FWHM/2]. (22d)

Note that (22) requires to integrate both in SFWHM1 and SFWHM2 . A single integration
will provide the probability of detecting an emission produced in r0 in SFWHM1 , but leaving
undetermined the position of the second detection. Appendix A.6 shows a thorough
development of (19) and (21) as a function of the expressions given by (18) and (17).

3.3. Generalization to arbitrary non-negative basis functions

It is necessary to extend the results for an emitting point r0 proposed in sections 3.1 and 3.2
to the general case of emissions from a basis function b. Let us interpret the basis function
v(r − rb) centered at the position rb as the probability density function of emitting points
within a certain region of space (for this it is necessary that the basis function is non-negative
and that it integrates to 1). Then, the probability of emitting a pair of photons within the region
defined by the basis function b and the likelihood that these pairs of photons are detected by
our detector head is

p(b) =
∫

R
3
p(r)v(r−rb) dr. (23)

Similarly, an expression can be obtained for the terms of the system matrix for any basis
function based on the results for an emitting point:

p(b, d) =
∫

R
3
p(r, d)v(r−rb) dr. (24)

As has been already mentioned the terms p(b, d) have traditionally been computed analytically
by estimating the intersection of the function b along the event defined by d (a tube dTUBE for
pixelated scintillators and a LOR dn for the continuous case) (Reader et al 2002). These line-
function intersection methods can be justified on the basis of our method (defined by (19) and
(21)). If the intrinsic uncertainty associated with the detection system is not considered then
the probability p(r, d) in (24) is zero everywhere except at the points of the event d. Moreover,
the probability of all points r0 along the LOR is constant and, therefore, the probability can
go out of the integral, yielding that the probability of detection of a pair of photons emitted in
a basis function b in d is proportional to the integral of the basis function along the event (tube
or line) d.

4. Validation

The analytical methods that have been developed in sections 3.1 and 3.2 to compute
the normalizing term and the system matrix have been implemented and subsequently
evaluated. The well-known Monte Carlo simulator GATE (the Geant4 applications for
emission tomography) (Jan et al 2004) has been used to validate our mathematical model and
its implementation. In addition to the algorithm validation, some conclusions and contributions
obtained after the algorithm implementation are pointed out in sections 4.1.1 and 4.2.1.
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Figure 6. Normalizing term along sectors of 45◦ of circumferences of different radius in the
central transaxial plane (xy). The radius is given in millimeters.

(This figure is in colour only in the electronic version)

4.1. Validation of the normalizing term

For the validation of the normalizing term, the proposed analytical scheme has been adapted
for the experimental small animal PET described in Gimenez et al (2004). This PET scanner
consists of two continuous lutetium oxyorthosilicate (LSO) detector heads. The dimensions of
the setup (as defined in figure 1) are W = 42 mm, L = 42 mm,H = 10 mm and S = 82 mm,
and the angular step of rotation around the z-axis is 22.5◦.

The normalizing terms along the points of a circumference in the central transaxial plane
(plane xy) placed in the center of the scanner and for a grid of points in the yz plane have
been computed. For both experiments, the normalized mean-square error, NMSE (defined as
NMSE = 1

N

∑i=N−1
i=0 [(Xani

− XMCi
)2/X̄anX̄MC], where Xan contains the points obtained by

our analytical method, XMC contains the points obtained by the Monte Carlo simulator, N is
the total number of computed points (i.e. the size of Xan and XMC) and X̄an and X̄MC are the
means of Xan and XMC) is in the order of 10−3. With regard to the computational time, for
the yx plane simulations, one million gamma-pair emissions from 120 different point sources
have been simulated using the Monte Carlo method. The execution time was around 500 h.
The results achieved by means of the analytical method have been obtained in less than 40 s
on the same computer.

4.1.1. Cylindrical symmetry. One of the features that all the previous analytical
implementations of the normalizing term share is the assumption of cylindrical symmetry
with respect to the rotation axis (the z-axis in the scheme shown in figure 1). Figure 6
plots the normalizing term computed by means of the proposed analytical method along 45◦

(note that given the scanner rotation symmetry, the normalizing term must be periodic with a
periodicity no greater than 22.5◦) of different radius circumferences in the central transaxial
plane centered in the z-axis. A simple look at this plot shows that the normalizing term along



1922 A Iriarte et al

a circumference centered in this axis is not a constant, and therefore it can be concluded that
the cylindrical symmetry condition is not always fulfilled. To better illustrate this fact, the
percentages of variation (computed as the ratio of the peak-to-peak difference to the mean
value) of the normalizing term along some of these circumferences have been computed, and
it has been seen that the larger radius circumferences show fluctuations that reach 40% of
variation.

The periodical behavior that can be observed in figure 6 is caused by the rotation step of
the scanner (the angular distance between two consecutive peaks corresponds to the rotation
angular step). This means that the cylindrical symmetry assumption is appropriate for the
case of scanners with continuous rotation around the z-axis, and it is even reasonable for
the case of stepped rotation in very small angular steps. However, as the angular rotation
step gets larger, this assumption can give rise to important inaccuracies in the computation
of the normalizing term. This statement can be corroborated through a set of simulations for
one of the commercially available small animal PET systems, the YAP-PET (Guerra et al
2000). The YAP-PET is a rotating planar detector PET scanner whose computer controlled
rotation allows us to perform rotation angular steps of 0.7, 1.4, 2.8, 5.6, 11.2, 22.5, 45 and
90◦. Figure 7 shows, for several of these rotation configurations, the values of fluctuation of
the normalizing term (computed by means of the analytical method proposed here) along a
circumference in the central transaxial plane as a function of its radius. As has been pointed
out before, the percentage of variation gets more and more important as the rotation angle
increases, reaching values of more than 300% in the 90◦ case.

4.2. Validation of the system matrix

For the continuous scintillator case, the experimental scheme proposed by Gimenez et al
(2004) (W = 42 mm, L = 42 mm,H = 10 mm and d = 82 mm) has been implemented. For
the pixelated case, a discretized version of the continuous setup has been chosen to perform
the system matrix validation. The 42 mm × 42 mm detector heads have been divided into
square detector elements of size C = 6 mm (the factor somewhat higher compared to reality).

Regarding the uncertainty estimation, as has been pointed out, the detector readout and
signal processing involved in the event positioning depend strongly on each scanner design.
Therefore, in order to perform high-quality reconstructions, the value of the Gaussian standard
deviation (σ ) that estimates the positioning error should be directly obtained from the scanner
for which the system matrix is going to be computed. In this paper, for demonstration purposes,
the value of σ has been computed by means of the Monte Carlo simulator. Nevertheless, the
procedure to experimentally estimate the value of this parameter is similar to that followed in
the Monte Carlo simulations: a narrow 511 keV gamma-ray beam must be generated normally
incident on the center (x = 0, z = 0) of the detection module. A 22Na point source with
electronic collimation and a precision X–Y stage can be used to perform the experiment. List-
mode data must be generated to give the (x, y, z) location of each detection. Then, for each
uncertainty direction, (x and z), the sample standard deviation can be estimated by applying
the following expression:

σk =
√√√√ 1

N − 1

N∑
i=1

(ki − μk)2, k = x, z, (25)

where {k1, k2, . . . , kN } is the sample of detected positions in each direction, and μk is the
mean of each sample, which should match the detector center (μx = μz = 0) in this case.

In order to estimate the dependence of σ with the DOI (see section 3.2.2), the experiment
must be carried out with different thickness scintillators. For each thickness, it will be
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Figure 7. Fluctuation of the normalizing term (computed as the ratio of the peak-to-peak difference
to the mean value) along a circumference as a function of its radius for the different rotation
configurations (rotation angular steps of 11.2 (c), 22.5 (d), 45 (e) and 90◦ (f)) of the YAP-PET
scanner. The variation is negligible for the smallest rotation steps but can reach values of more
than 300% for the 90◦ rotation case.

considered that the maximum positioning error is due to those photons that interact in the
internal surface of the detector (l = 0). It will be therefore assumed that the standard
deviation obtained for a given thickness defines the detection uncertainty for a gamma photon
seeing that crystal thickness after its first interaction. The parameters m and b that define (16)
can be extracted by fitting the σ -thickness curves obtained to a linear polynomial.

The standard deviations σ have been estimated applying the described procedure to the
two scanners (continuous and pixelated) for which the system matrix is going to be computed.
One million normally incident emissions from a point source located at the center of the
setup were simulated for five different detector thicknesses. The histograms for the z position
detected are shown in figure 8 for both continuous and pixelated LSO detectors with a thickness
of H = 10 mm. Figure 9 shows the standard deviation as a function of the crystal thickness
for four different detector materials. These graphs provide a visual demonstration of the
statements made in section 3.2.2; the detection uncertainty can be fitted to a Gaussian profile
and the dependence of σ with the thickness can be approximated by a linear function.
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Figure 8. Histograms of the z position detected after one million normally incident emissions from
a point source positioned at (0, 0, 0): histogram for a continuous detector of thickness H = 10 mm
(a), and histogram for a pixelated detector of thickness H = 5 mm (b).

Figure 9. Standard deviation as a function of the crystal thickness for four different crystal
materials.

Once the σ -thickness dependence has been estimated, the system matrix for a grid of
points in the yz plane has been calculated for two different lines of response (oblique and
perpendicular to the detector planes) and compared with the Monte Carlo results. The first line
of response, perpendicular to the detector planes, is defined by the detection coordinates (in
millimeters): (0,−41, 0) and (0, 41, 0), and the second one, oblique, by: (12,−41, 12) and
(−12, 41,−12). In all cases, the NMSE is in the order of 10−2. Regarding the computational
cost, for each of the lines of response the grid of points in the yz plane was composed of
120 point sources. With regard to the Monte Carlo method, ten million gamma-pair emissions
for 20 different point sources (just the sources in z = 0 had to be computed as the rest were
obtained by moving the reference LOR with respect to this axis) have been simulated. The
execution time was 80 h. Simulations with the analytical approach have been obtained in less
than 2 min for each line.

4.2.1. Contributions. Table 1 summarizes the improvement achieved, in terms of NMSE,
with respect to the Monte Carlo simulations. For both continuous and pixelated scintillators,
the column labeled ‘Analytical’ contains the NMSE obtained with the method introduced in
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Table 1. Quantification, in terms of the NMSE with respect to the Monte Carlo results of the
improvement obtained by means of the addition of the uniform distribution term, the exponential
model for the probability of interaction through the crystal and the DOI variability of the uncertainty.

NMSE
Continuous scintillator

Analytical No cos ϕ Uniform Constant-sigma

Perpendicular 0.05 4.50 0.69 0.15
Oblique 0.05 3.83 0.79 0.13

Pixelated scintillator

Analytical No cos ϕ Uniform Constant-sigma

Perpendicular 0.03 4.56 0.68 0.11
Oblique 0.08 4.92 1.10 0.18

this paper, the column ‘No cos ϕ’ contains the NMSE obtained without introducing the term for
the uniform distribution of the LORS; ‘Uniform’ contains the results with an uniform model
for the probability of interaction through the crystal and ‘Fixed sigma’ contains the error for
the results with a constant value of sigma. The value of the fixed sigma has been chosen to be
the maximum standard deviation σH (given by the evaluation of (16) in t (l = 0) = H ).

5. Discussion

We have developed analytical methods to compute both the normalizing and the system matrix
terms for the EM-ML based algorithms that are based strictly on their statistical definitions
and that are valid for the continuous detector case. Our development comprises two well-
differentiated steps. First, the normalizing term and the system matrix for a single emitting
point are computed. It is in this first step that the geometry of the planar detector scanner, the
uniform distribution of emitted lines in the sphere, the DOI of the incident gamma rays, the
efficiency of the scintillators, the interactions of the gamma rays with matter, and the intrinsic
resolution of the readout and signal processing are taken into account. Moreover, the method
can be easily expanded to take into account further refinements in the image formation process
in PET. In the second step, the results for a single emitting point are extended to the case of
an arbitrary basis function as long as it can be reduced to a probability density function. This
conversion from a point to a basis function explicitly relates the continuous quantity that we
want to measure (concentration of tracer distribution) with its discrete representation without
the heuristic approximations made by other methods.

Within the limitations of the Monte Carlo simulations, the new analytical method provides
similar results at a small fraction of the computational cost. Therefore, it is a convenient
framework to model the PET process and to quantify the significance of different physical
factors that take place in it. In this regard, the method developed could be thought of as an
excellent tool for the design and evaluation of PET cameras.

In addition to the already-cited properties, the new developed method for the computation
of the normalizing and system matrix terms deviates from previous works in that:

(i) It can use directly list-mode data produced by continuous detectors. That is, no data
rebinning is needed. Therefore, all the information contained in the raw data is accessible
to the reconstruction method.

(ii) Regarding the normalizing term, it does not assume cylindrical symmetry. All the
alternative analytical calculations of point sensitivity valid for the case of continuous
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detectors assume cylindrical symmetry. Nevertheless, the results obtained by our method
show that dual-head PET cameras do not always present exact cylindrical symmetry.

(iii) Regarding the system matrix, it explicitly takes into account the uniform distribution
of emitted lines in the sphere, it assumes an exponential model for the probability of
detection along the photon path and it models the dependence or the uncertainty in the
detection with the depth of the first interaction.
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Appendix A.

A.1. Derivation of the terms αϕ(r0, γ ) and βϕ(r0, γ )

In this section, we provide an analytical derivation of the terms αϕ(r0, γ ) and βϕ(r0, γ ) used
in section 3.1.

The angles of view from the point r0 of coordinates (x0, y0,z0) into each detector within
the plane �γ (see figure A1) are

αϕ1(r0, γ ) = � (Dr0F) (A.1a)

βϕ1(r0, γ ) = � (F r0C) (A.1b)

αϕ2(r0, γ ) = � (Er0B) (A.1c)

βϕ2(r0, γ ) = � (Ar0E). (A.1d)

The analytical expressions for the points A,B,C,D,E and F are

A =
(

x0 −
(

S

2
+ y0

)
tan γ,−S

2
,
W

2

)
(A.2a)

B =
(

x0 −
(

S

2
+ y0

)
tan γ,−S

2
,−W

2

)
(A.2b)

C =
(

x0 +

(
S

2
− y0

)
tan γ,

S

2
,−W

2

)
(A.2c)

D =
(

x0 +

(
S

2
− y0

)
tan γ,

S

2
,
W

2

)
(A.2d)

E =
(

x0 −
(

S

2
+ y0

)
tan γ,−S

2
, z0

)
(A.2e)

F =
(

x0 +

(
S

2
− y0

)
tan γ,

S

2
, z0

)
. (A.2f )
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Figure A1. Geometrical characterization of the range of angles of view from the point r0 into the
detector heads within the plane �γ .

The total area of detectable lines emitted by r0 in the plane �γ is limited by αϕ(r0, γ )

and βϕ(r0, γ ):

αϕ(r0, γ ) = min(αϕ1(r0, γ ), αϕ2(r0, γ )) (A.3a)

βϕ(r0, γ ) = min(βϕ1(r0, γ ), βϕ2(r0, γ )). (A.3b)

A.2. Derivation of the terms αγ (r0) and βγ (r0)

In this section, we provide an analytical derivation of the terms αγ (r0) and β(r0) used in
section 3.1.

The expressions for the angle values seen by the point r0 in the XY plane (as shown in
figure A2) are

αγ 1(r0) = arctan

(
L
2 + x0

S
2 − y0

)
(A.4a)

βγ 1(r0) = arctan

(
L
2 − x0

S
2 − y0

)
(A.4b)

for the right side detector, and

αγ 2(r0) = arctan

(
L
2 − x0

S
2 + y0

)
(A.5a)

βγ 2(r0) = arctan

(
L
2 + x0

S
2 + y0

)
(A.5b)



1928 A Iriarte et al

Figure A2. Geometrical characterization of the range of angles of view from the point r0 into the
detector heads within the plane XY.

for the left side detector.
The total area of detectable lines emitted by r0 in the plane XYγ is limited by αγ (r0) and

βγ (r0):

αγ (r0) = min(αγ 1(r0), αγ 2(r0)), (A.6a)

βγ (r0) = min(βγ 1(r0), βγ 2(r0)). (A.6b)

A.3. Intersection points

In this section, we provide expressions for the intersection points p′
1(x

′
1, y

′
1, z

′
1) and

p′
2(x

′
2, y

′
2, z

′
2) mentioned in section 3.2. As has been previously noted p′

1 and p′
2 correspond

to the two points defining the line d ′
LOR at which the event actually took place instead of in the

detected LOR (defined by the positions p1 and p2). As uncertainty is considered just in the X
and Z directions, it follows that

y ′
1 = y1, (A.7a)

y ′
2 = y2. (A.7b)

Integration variables z′
1(r0, ϕ) and z′

2(r0, ϕ) are the z positions of the d ′
LOR ends in the left

and right detectors (planes y = y1 and y = y2, respectively), as a function of the inclination
angle with respect to z = z0. The expression for this variable in terms of r0 position is

z′
1(r0, ϕ) = z0 + d(r0, E) tan ϕ (A.8a)

z′
2(r0, ϕ) = z0 − d(r0, F ) tan ϕ. (A.8b)

As r0, F and E all belong to the plane z = z0, distances between them are

d(r0, E) =
√

(x0 − x1)2 + (y0 − y1)2, (A.9a)

d(r0, F ) =
√

(x0 − x2)2 + (y0 − y2)2. (A.9b)
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Expressions for E and F have already been developed to compute the integration limits.
Integration variables x ′

1(r0, γ ) and x ′
2(r0, γ ) turn out to be

x ′
1(r0, γ ) = x0 + d(r0, E

′) tan γ, (A.10a)

x ′
2(r0, γ ) = x0 − d(r0, F

′) tan γ. (A.10b)

Finally, distances from E′ and F ′ to r0 are

d(r0, E
′) =

√
(z0 − z′

1)
2 + (y0 − y ′

1)
2, (A.11a)

d(r0, F
′) =

√
(z0 −′ z2)2 + (y0 − y ′

2)
2. (A.11b)

Expressions for E′ and F ′ have been computed to obtain the integration limits.

A.4. Crystal thickness after first photon interaction

As shown in figure 5, in (16), t (l) is the crystal thickness that the photon ‘sees’ after an
interaction at l units of crystal in the d ′

LOR direction (i.e., the direction defined by the point r0

and the angles γ , ϕ). The value of t (l) is given by

t (l) = H

2
− |(l cos ϕ cos γ )|. (A.12)

A.5. Integration limits

In this section, we provide closed form expressions for the integration limits ϕmin, ϕmax, γmin,,

γmax used in section 3.2.3.
In a similar way to what has been done in the previous section for the normalizing term,

the integration limits ϕmin , ϕmax and γmin, γmax can be calculated as the angles of view from
the point r0 into the detector heads in the plane �γ (axial uncertainty) and in the plane �ϕ

(tangential uncertainty), respectively (see figures 3 and 4 for the continuous case). But now,
as mentioned in section 3.2, the limits are restricted by the resolution of the scintillator. This
restriction corresponds in each direction of uncertainty to the minimum of three times the
maximum standard deviation (σ(l = 0)) from the detected points and the detector limits. The
expression and methodology needed to compute the maximum standard deviation (σ(l = 0))

have been provided in section 4.
Let us consider first the uncertainty in the axial direction. For the continuous scintillator

situation, the limits imposed by three times the standard deviation from the detected points
p1(x1, y1, z1) and p2(x2, y2, z2) in this direction are given by the points A,B,C,D (see
figure A3):

A =
(

x1, y1, min

(
z1 + 3σz(l = 0),

W

2

))
(A.13a)

B =
(

x1, y1, max

(
z1 − 3σz(l = 0),−W

2

))
(A.13b)

C =
(

x2, y2, max

(
z2 − 3σz(l = 0),−W

2

))
(A.13c)

D =
(

x2, y2, min

(
z2 + 3σz(l = 0),

W

2

))
. (A.13d)
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Figure A3. A, B, C and D are the points located at three times the standard deviation in the axial
direction from the detected points p1 and p2.

Figure A4. Angles of view from r0 within the Gaussian limits and plane �γ .

The angles seen by r0 into the detector heads restricted to these limits are (see figure A4)

αϕ1 = � (Br0E) (A.14a)

βϕ1 = � (Ar0E) (A.14b)

αϕ2 = � (Dr0F) (A.14c)

βϕ2 = � (Cr0F). (A.14d)

Points E and F are the ends of the segment resulting from the intersection of the plane
z = z0 with the rectangle given by ABCD. The analytical expressions (valid for both the
continuous and pixelated detector cases) for E and F are

E = (x1, y1, z0) (A.15a)
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Figure A5. A′, B ′, C′ and D′ are the points located at three times the standard deviation in the
tangential direction from the detected points p1 and p2.

F = (x2, y2, z0). (A.15b)

Finally, integration angles αϕ , βϕ in the axial direction will be given by

αϕ = min(αϕ1, αϕ2) (A.16a)

βϕ = min(βϕ1, βϕ2). (A.16b)

Similar reasoning follows for the computation of the limits regarding the tangential
uncertainty. Therefore, for the continuous detector case, the limits imposed by three times the
standard deviation are given by points A′, B ′, C ′,D′ (see figure A5):

A′ =
(

max

(
x1 − 3σx(l = 0),−L

2

)
, y1, z1

)
(A.17a)

B ′ =
(

min

(
x1 + 3σx(l = 0),

L

2

)
, y1, z1

)
(A.17b)

C ′ =
(

min

(
x2 + 3σx(l = 0),

L

2

)
, y2, z2

)
(A.17c)

D′ =
(

max

(
x2 − 3σx(l = 0),−L

2

)
, y2, z2

)
. (A.17d)

The angles of view from r0 into detector heads within these limits, for both pixelated and
continuous detectors are (see figure A6)

αγ 1 = � E′r0B
′ (A.18a)

βγ1 = � A′r0E
′ (A.18b)

αγ 2 = � D′r0F
′ (A.18c)
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Figure A6. Angles of view from r0 within the Gaussian limits in the plane �ϕ .

βγ 2 = � C ′r0F
′, (A.18d)

where E′ and F ′ are the ends of the intersection of the plane x = x0 with the rectangle given
by A′B ′C ′D′:

E′ = (x0, y1, z1) (A.19a)

F ′ = (x0, y2, z2). (A.19b)

Integration limits in the tangential direction are

αγ = min(αγ 1, αγ 2) (A.20a)

βγ = min(βγ 1, βγ 2). (A.20b)

A.6. Development of p(r0,dtube) and p(r0,dn)

Substituting in (19) the value of f (r0, dLOR) by the expression given by (18), and then replacing
the value of f (dLOR|d ′

LOR)DOI by the expression in (17) and rearranging terms leads to

p(r0,dtube) =
∫ βγ (3σH ,L)

αγ (3σH ,L)

∫ βϕ(3σH ,W)

αϕ(3σH ,W)

{∫ L1(r0,ϕ,γ )

0
[p1(r0, γ, ϕ, l1)f (l1)] dl1

∫ L2(r0,ϕ,γ )

0
[p2(r0, γ, ϕ, l2)f (l2)] dl2

}
cos ϕ

2π
dϕ dγ, (A.21)

where

p1(r0, γ, ϕ, l1) = p(C1x |x ′
1(r0, γ, l1))p(C1z|z′

1(r0, ϕ, l1) (A.22)

p2(r0, γ, ϕ, l2) = p(C2x |x ′
2(r0, γ, l2))p(C2z|z′

2(r0, ϕ, l2) (A.23)

and
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p(C1x |x ′
1(r0, γ, l1)) = 1√

2πσ(l)

∫
C1x

e− 1
2σ(l)2

(x ′
1(r0,γ,l1)−x1)

2

dx1 (A.24a)

p(C1z|z′
1(r0, ϕ, l!)) = 1√

2πσ(l)

∫
C1z

e− 1
2σ(l)2

(z′
1(r0,ϕ,l1)−z1)

2

dz1 (A.24b)

p(C2x |x ′
2(r0, γ, l2)) = 1√

2πσ(l)

∫
C2x

e− 1
2σ(l)2

(x ′
2(r0,γ,l2)−x2)

2

dx2 (A.24c)

p(C2z|z′
2(r0, ϕ, l2)) = 1√

2πσ(l)

∫
C2z

e− 1
2σ(l)2

(z′
2(r0,ϕ,l2)−z2)

2

dz2. (A.24d)

The integrals in (A.24) can be analytically solved. Replacing in each of these four
expressions 1√

2σ(l)
(xi − x ′

i (r0, γ, l))i = 1, 2 and 1√
2σ(l)

(zi − z′
i (r0, ϕ, l))i = 1, 2 by u we

obtain the following:

p(C1x,x
′
1(r0, γ, l1)) = 1√

π

∫
C1xu

e−u2
du (A.25a)

p(C1z,z
′
1(r0, ϕ, l1)) = 1√

π

∫
C1zu

e−u2
du (A.25b)

p(C2x,x
′
2(r0, γ, l2)) = 1√

π

∫
C2xu

e−u2
du (A.25c)

p(C2z,z
′
2(r0, ϕ, l2)) = 1√

π

∫
C2zu

e−u2
du, (A.25d)

and the integration limits become

C1x =
[

1√
2σ(l)

(C1xl − x ′
1),

1√
2σ(l)

(C1xh − x ′
1

]
(A.26a)

C1z =
[

1√
2σ(l)

(C1zl − z′
1),

1√
2σ(l)

(C1zh) − z′
1

]
(A.26b)

C2x =
[

1√
2σ(l)

(C2xl − x ′
2),

1√
2σ(l)

(C2zh − x ′
2)

]
(A.26c)

C2z =
[

1√
2σ(l)

(C2zl − z′
2),

1√
2σ(l)

(C2zh − z′
2)

]
. (A.26d)

The integrals in (A.26) can be analytically expressed as a function of the erf function
erf(z) = 1√

π

∫ z

0 e−t2
dt :

p(C1x,x
′
1(r0, γ, l1)) = erf

(
1√

2σ(l)
(C1xl − x ′

1)

)
− erf

(
1√

2σ(l)
(C1xh − x ′

1)

)
(A.27a)

p(C1z,z
′
1(r0, ϕ, l!)) = erf

(
1√

2σ(l)
(C1zl − z′

1)

)
− erf

(
1√

2σ(l)
(C1zh − z′

1)

)
(A.27b)

p(C2x,x
′
2(r0, γ, l2)) = erf

(
1√

2σ(l)
(C2xl − x ′

2)

)
− erf

(
1√

2σ(l)
(C2xh − x ′

2)

)
(A.27c)

p(C2z,z
′
2(r0, ϕ, l2)) = erf

(
1√

2σ(l)
(C2zl − z′

2)

)
− erf

(
1√

2σ(l)
(C2zh − z′

2)

)
. (A.27d)
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