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Abstract

Segmentation of image regions based on their texture is a standard problem in image analysis. Once a set of texture

features is selected, several algorithms can be applied to segment the image into regions. This paper presents an ex-

tension of the watershed algorithm using a vector gradient and multivariate region merging methods. The algorithm

uses a set of texture images, and it only depends on an adjustable parameter. Results are presented on a standard set of

synthetic images and on textured medical ones, using different texture parameters and merging criteria.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Texture is an important feature in the visual

perception of natural images and its description

and regional analysis are basic stages of many
image analysis applications, that include the iden-

tification of regions with a homogeneous texture,

or image segmentation based on texture. This task

is usually achieved by region classification: every

pixel in the image is assigned to a class based on

different parameters previously selected, computed

on a window around the pixel. Much work has

focused on finding texture parameters adequate
for classification such as cooccurrence matrices

(Haralick, 1979), histogram based features, wave-

lets (Unser, 1995), Gabor filtering (Weldon et al.,

1996), Gaussian Markov random fields (Chellappa

and Chatterjee, 1985) and recently signed gray-

level differences and local binary patterns (Ojala
et al., 2001). A comparative review of filter based

methods can be found in (Randen and Husoy,

1999). Classification is usually carried out, for

example, by multivariate coefficient thresholding

(Corneloup et al., 1996), supervised classifiers

(Randen and Husoy, 1999) or relaxation algo-

rithms (Muzzolini et al., 1993). Ojala and Pieti-

k€aainen (1999) used a split and merge approach.
Texture classification usually involves the pro-

cessing of several features to adequately charac-

terize each region texture, and this multichannel

nature of texture information creates difficulties in

the applicability of most segmentation tools, usu-

ally defined for intensity-based single value images.
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However, several authors have adopted mathe-

matical morphology tools for segmenting textures.

One of the main gray-level segmentation tools, the

watershed, allows for an intuitive initial image

splitting, dependent on the selection of significant

initial image minima, which can be accompli-
shed using morphological algorithms (dynamics,

waterfall). Jones (1994) used a watershed like al-

gorithm for segmentation applied to a specifically

designed texture difference map. In (Marcotegui

et al., 1995) a texture parameter, signal to noise

ratio, was used to improve the merging process

starting from a flat zone splitting of the image. The

use of the watershed algorithm for color images
can be seen as a three channel extension of the

algorithm. Shafarenko et al. (1997) presented a

watershed algorithm for color images, based on a

gradient in color space which, due to the multi-

channel nature of color images, can be considered

as an antecedent of texture multichannel segmen-

tation. Recently, Hill et al. (2002) have proposed a

watershed based segmentation for texture analysis,
using wavelet filter banks and the addition of each

channel gradient. They avoid oversegmentation by

selecting a marker for each region.

This paper presents a straightforward extension

of the watershed algorithm to make use of infor-

mation in all texture channels. In the technique

proposed, several texture channels are computed

from the original image. A vector gradient is used
to compute the edges of the multichannel image.

After an automatic selection of significant minima,

a watershed transform is applied. Finally, a mul-

tivariate region merging step is carried out to ob-

tain the final segmentation. The steps of the

algorithm are shown in Fig. 1.

The complete segmentation procedure consists

on the following steps:

• Texture analysis: A set of n channels is obtained

from the original image by computing n texture

features on every pixel. This procedure uses the

most discriminant texture features that have

previously been selected by statistical analysis.

• Gradient computation: Considering each point

of the image as an n-valued vector, a gradient
image of all the channels is obtained by com-

puting the gradient of the vector field.

• Minima selection: According to some measure

of local minima importance, some minima are

selected from which the watershed process will

begin. The topographic surface will then only

be pierced in those points to start the immersion

process.

• Watershed segmentation: Starting from the se-

lected minima, the image is flooded by extend-
ing their zone of influence in higher gray

levels. When two regions come into contact a

watershed line is erected.

• Region merging: Watershed regions are itera-

tively merged, according to a similarity crite-

rion, to obtain the final segmentation.

The whole procedure is automatic except for a
minima selection threshold that will be described

in Section 4.

The rest of the paper is structured as follows.

Section 2 defines the vector gradient used. Section

3 reviews the watershed transform and the main

Fig. 1. Steps of the segmentation algorithm.
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segmentation steps. Section 4 describes the minima

selection step. Section 5 describes the multivariate

region merging approach. Section 6 presents ex-

perimental results on real texture images and a

conclusion is presented in Section 7.

2. Edge detection: vector-valued edges

To apply edge based segmentation algorithms

to multichannel data, a gradient of the multi-

channel image must be defined. Instead of sepa-

rately computing the scalar gradient for each

channel, some authors have proposed solutions
using tensor notation. This framework was first

suggested in (DiZenzo, 1986) and extended in

(Cumani, 1991). Lee (1991) also proposed to use

the vector gradient to detect boundaries in mul-

tidimensional images (specially color images),

proving that, when the attribute components are

highly correlated, vector gradients are less sensitive

to noise than the sum of the squares of scalar
gradients in each channel. As this is also the case

with multichannel texture images, this will be the

approach used in this paper.

A multichannel image can be seen as a vector

field f : S ! Rm, defined on a subset S of Rn. Let fk
denote the kth component of f (if f is a three color

image, then f1, f2, and f3 might represent the red,

green and blue components of the image). It can be
proved Lee (1991) that the first-order Taylor ex-

pansion takes the form

f ðxþ aÞ ¼ f ðxÞ þ ½f 0ðxÞ�ðaÞ þ kakeðx; aÞ

where eðx; aÞ ! 0 as a ! 0 and f 0ðxÞ is now an
m
 n Jacobian matrix DðxÞ:
f 0ðxÞ ¼ DðxÞ

¼

D1f1ðxÞ D2f1ðxÞ � � � Dnf1ðxÞ
D1f2ðxÞ D2f2ðxÞ � � � Dnf2ðxÞ

..

. ..
. ..

.

D1fmðxÞ D2fmðxÞ � � � DnfmðxÞ

2
6664

3
7775

being Djfk the first partial derivative of the kth
component of f with respect to the jth component

of x.
It can be proved (Cumani, 1991) that the ex-

trema of DðxÞ are obtained in the directions of its

eigenvectors h� and the values attained there are

the corresponding eigenvalues k�. A first approx-

imation of edges for vector-valued images, should

be a function g ¼ f ðkþ; k
Þ. We will use the simple

form g ¼ kþ 
 k in this work.

3. The watershed transform

The watershed transform is the main segmen-

tation technique in mathematical morphology.

Since its introduction in (Beucher and Meyer,

1993) and (Vincent and Soille, 1991), it has been

widely studied in several image segmentation
problems. It has been applied successfully to 2D

(Haris et al., 1998) as well as to 3D images (Sijbers

et al., 1997). It is a connected (it divides the image

into sets of connected pixels) and complete (it as-

signs every pixel to one of the classes) method.

The watershed concept comes from the field of

topography: in a topographic surface, the water-

sheds are the lines dividing two catchment basins.
Each basin is associated to a local minimum. If we

were to drop water on the surface, every drop

would fall into a single catchment basin and would

follow a downward path until it reached a mini-

mum of the surface. Other way of visualizing the

concept is by analogy to immersion. Starting from

every minimum, the surface is progressively floo-

ded until water coming from two different minima
meet. At this point a watershed line is erected.

Efficient algorithms have been proposed to simu-

late the immersion process (Vincent and Soille,

1991; Beucher and Meyer, 1993).

Homogeneous regions in a gray-level image can

be segmented by applying the algorithm to the

gradient image, where borders between objects

correspond to high gray levels (peaks) and the
inside of objects correspond to valleys. We have

used the algorithm by Vincent and Soille (Vincent

and Soille, 1991), which is a recursive simulation

of the immersion process:

• All local minima are assigned a different label,

which is propagated to all adjacent pixels at a

certain level h.
• All levels from the minimum to the maximum

gray level are processed. At every level h:
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� Every pixel at a certain level with an already

labeled neighbor receives its label. Labels are

propagated from these to all pixels in that

level.

� Pixels having two or more neighbors with
different labels are labeled as watershed

points.

� Remaining pixels are considered as new min-

ima, and are assigned a new label.

In all watershed algorithms, both eight and four

neighbour connectivity can be used. We have used

four neighbour connectivity in the experiments
presented in this work.

As the transform starts from every minimum,

the result is an oversegmented image if a minima

selection procedure or a merging step are not used.

Both methods are applied in this work.

4. Minima selection

Several algorithms have been proposed for

minima selection. The simplest way is interactive

selection by the user. A second approach is the

automatic selection of minima using a priori

knowledge of the image (Beucher and Meyer,

1990). Another approach is to hierarchically

order all minima and to select only those above a
threshold. The dynamics (Najman and Schmitt,

1996) and waterfall (Beucher, 1994) algorithms fall

into this category.

We have used dynamics as the criterion for

minima reduction, as it provides an intuitive se-

lection scheme controlled by a single parameter.

The concept is easily visualized using the immer-

sion simulation. The deepness of a basin would be
the level the water would reach, coming in through

the minimum of the basin, before the water would

overflow into a neighbor basin. That is, the height

from the minimum to the lowest point in the wa-

tershed line of the basin. The dynamics of a basin is

a similar concept, but referring to a neighbor basin

with a lower minimum than the actual one.

It can be computed using morphological re-
construction (Vincent, 1993). Given two gray-scale

images f and g, where g is smaller than or equal to

f in all points, the morphological reconstruction

by erosion of f over g is the result of the following

iterative procedure as follows:

f kþ1ðpÞ ¼ maxðgðpÞ; f kðpÞHBÞ
where H denotes the gray-level erosion of the

function using a structuring element B.
It can be proved that if the morphological re-

construction (Vincent, 1993) of the image g from
an image f ¼ g þ d is computed, the resulting

function will have a watershed transform in which

the regions with dynamics lower than d, have been
eliminated by joining them to the neighbor region

with the lower minimum gray-level value. The pa-

rameter d serves as a minima selection threshold.

The dynamics algorithm is applied to the gra-

dient of the image. We can expect the regions that
are due to noise to be surrounded by a smaller

gradient, and therefore, to have a smaller dynamics

than regions formed by objects in the image. The

value of the dynamics is automatically selected

depending on the dynamic range of the image. Fig.

2 shows the results of the final watershed after

minima selection using two different values of dy-

namics, before the merging step.

5. Region merging

To obtain the final segmentation, regions re-

sulting from the watershed need to be merged to

reduce the number of regions. This section ex-

plains the region merging criteria and methods
employed. All regions resulting from the water-

shed transform are ordered into a region adjacency

graph (RAG) in which nodes correspond to re-

gions and arcs to the frontier between two regions.

The aim of the merging step is to reduce the RAG

until the desired number of nodes remains. Several

merging criteria have been proposed in the litera-

ture: mean, normalized mean (Haris et al., 1998),
T test (Sijbers et al., 1997), minimum description

length (Maes et al., 1995). Here we extend three of

these criteria to our multichannel framework:

Mean difference: The difference on the mean

value of all the channels in the two regions is

computed as the sum of the squared roots of the

individual differences:
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Diff ¼
Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2j 
 l1j

p

where n is the number of channels and lij is the

mean value of channel j in region i.
Weighted mean criterion: In (Haris et al., 1998)

a dissimilarity function for gray-level images was

proposed, by normalizing the difference of means
between regions by the number of points in them.

For several channels the following dissimilarity

function is used:

Diff ¼ n1n2
n1 þ n2

Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2j 
 l1j

p

being n1 and n2 are the number of pixels in regions

1 and 2, respectively.

Hotelling T 2 test: Assuming a multivariate nor-

mal distribution of gray levels in a region, we can

apply Hotelling�s T 2 test to compare the means of

two populations. The applied statistic is given by:

T 2 ¼ ðl1 
 l2Þ
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

s
S

" #
1

ðl1 
 l2Þ

where l1 and l2 are the vector means of each re-

gion, respectively, and S is a pooled covariance

matrix of the form:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1R1 þ n2R2

n1 þ n2

r

being R1 and R2 the covariance matrices of each
region.

When the number of regions is high, a full

search for the most similar neighboring regions

can be a computationally intensive task. We can

make the assumption that very small regions are

due to noise in the image. A faster sub-optimum

merging scheme consists in joining in every itera-

tion the smallest region with the most similar
neighbor. We have used a combined scheme as in

(Sijbers et al., 1997). The merging process starts by

merging the smallest region in every iteration, until

a certain number of regions is obtained. This

process assumes desired regions are of a certain

size, and very small regions are due to noise. From

there on, a complete search for the two most

similar regions is carried out in every iteration.

Fig. 2. (a) Satellite image showing different terrain textures. (b) Watershed of the gradient using 8 cooccurrence feature channels. (c)

Watershed with minima selection with dynamics d ¼ 8. (d) Watershed with minima selection with dynamics d ¼ 12. Final merging step

is not performed to show the effect of different dynamics values.
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This allows a considerable reduction in computing

time, while maintaining a correct result.

6. Results

The proposed methodology has been tested

with a standard set of synthetic texture images that

was originally proposed by Randen and Husoy

(1999) to review filtering-based texture analysis

methods. The images are available on the internet

at http://www.ux.his.no/�tranden/data.html.

The first three images were used to evaluate the

merging strategies and the effect of changing the
dynamics parameter. Histogram and cooccurrence

matrix features (Haralick, 1979) were used to clas-

sify the different textures. The most discriminant

features were selected using a stepwise F test and

the vector gradient was computed using the

channels obtained. The watershed segmentation

was applied with the three different merging cri-

teria and different values of the dynamics, using a
vector gradient image computed from the same set

of features. The percentage of correctly segmented

pixels was used as the quality factor. Fig. 3 shows

the results of applying the different methods on the

segmentation of the three images.

As mentioned in the methods section, in order

to decrease computing time, a combined merging

approach was also evaluated. In Table 1, the result
of using the full and combined search strategies are

compared. Table 1 also shows computing time of

each approach on a Pentium III at 500 MHz.

From these experiments, it can be seen that

merging with mean value provides worse results,

while weighted mean and Hotelling T 2 both have

similar performance. The influence of dynamics is

not critical as far as it is low enough. Only when
important minima are lost, the classification per-

formance decreases.

Results in Table 1 also show that a great im-

provement in merging speed can be achieved with

the mixed-merging approach, without losing seg-

mentation accuracy.

Examples of segmentation results are presented

below. Minima pre-selection was performed in all
cases using a dynamics of 8% of the dynamic range

of the image and merging with Hotelling T 2 test.

In the first example, images 10 and 11 from the
test set (two-texture images) are segmented. An

initial training for parameter selection was carried

out, in which 12 regions of interest (whose sizes

were 16
 16 pixels) from each texture were se-

lected, and cooccurrence matrix (Haralick, 1979)

Fig. 3. Results of segmentation of mosaics #1, #2 and #3 with

different values of the dynamics parameter. Merging based on

the mean (a), the weighted mean (b) and Hotelling�s test (c).

Table 1

Segmentation results and computing times of full vs. partial

search merging schemes

Full

search

results (%)

Full

search

times (s)

Partial

search

results (%)

Partial

search

times (s)

Mean 21.44 90 21.85 17

Weighted

mean

7.76 51 9.72 19

Hotelling

T 2 test

9.88 26 10.67 7

1550 N. Malpica et al. / Pattern Recognition Letters 24 (2003) 1545–1554

http://www.ux.his.no/~tranden/data.html
http://www.ux.his.no/~tranden/data.html


as well as the histogram parameters were com-

puted for each of them. A stepwise F test was

performed to select the most discriminant param-

eters. For these texture channels, the vector gra-

dient and the watershed were computed. Region

merging using the combined method described
above was performed until only two regions were

left. The result is shown in Fig. 4.

Another experiment has been carried out to

analyze the effect of the number of texture chan-

nels. Fig. 5 shows the segmentation of mosaic #1

(five-texture image) also cooccurrence matrix tex-

ture features, all computed on a 16
 16 window.

The three results shown were obtained using the
first 4, 6 and 10 channels obtained in the stepwise

F test feature selection.

Fig. 4. Results of segmentation of test images #10 and #11.

Fig. 5. Results of mosaic #1 in test set. Original image (a) and result using 4 channels (b), 6 channels (c) and 10 channels (d).

N. Malpica et al. / Pattern Recognition Letters 24 (2003) 1545–1554 1551



Table 2 shows the percentage of incorrectly

classified pixels on the whole test set. For com-

parison purposes, the best results and the results

on similar features (cooccurrence matrix based)

published in (Randen and Husoy, 1999) are also
shown. It can be seen that the proposed multi-

channel algorithm provides better classifica-

tion results in almost every case. It should be

noted, however, that both results are not directly

comparable, as Randen and Husoy (1999) uses a

learning vector quantizer supervised classifier.

We have also tested our algorithm on real im-

ages. In (Santos et al., 2001) a method was pro-
posed to discriminate regions of dead and of live

cells in epithelial cell cultures based on visual

texture differences. Live cells are bigger, while dead

cells loose their original shape. Segmentation was

carried out by discriminant analysis of fixed-size

(32
 32 pixels) regions. Each square region was

classified into one of the classes. We have tested

the watershed-based segmentation using eight-

texture parameters based on the histogram and the

cooccurrence matrix, computed on a window of

size 9
 9 pixels. Results of watershed segmenta-

tion and merging are shown in Fig. 6. The multi-
channel approach allowed to reduce the window

size, providing a segmentation with better spatial

resolution.

7. Conclusions

We have proposed an algorithm based on the
watershed transform which allows a connected

segmentation approach using several texture chan-

nels. A preselection of minima and final merging is

performed, allowing for very efficient segmenta-

tions. Of the three multivariate merging criteria

tested, the best results were obtained using Hotell-

ing�s T 2 test. Merging of the smallest region until an

Fig. 6. Segmentation of dead cells in a cell culture image. (a) Original image and (b) image with border of region superimposed.

Table 2

Classification errors for the proposed algorithm and results published in (Randen and Husoy, 1999) using cooccurrence parameters

and best results with any parameter

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10 Im 11 Im 12

Proposed algorithm 7.1 10.7 12.4 11.6 14.9 20.0 18.6 12.0 15.3 1.2 1.1 1.7

Cooccurrence in

(Randen and Husoy,

1999)

9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 1.9 4.8 3.3

Best result in (Randen

and Husoy, 1999)

7.2 18.9 20.6 16.8 17.2 34.7 41.7 32.3 27.8 0.7 0.2 2.5
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intermediate number of regions is obtained gave

the same segmentation accuracy while allowing a

meaningful decrease in computing time.

The quality of the segmentation depends on the

classification efficiency of the texture features used.

Although we have tested the method using histo-
gram and cooccurrence matrix parameters only,

the method can be applied with any feature ex-

traction algorithm. The segmentation resolution

depends on the window size used to compute the

texture feature maps. The optimum size can be

determined in the feature selection phase.

Apart from the final number of regions, the

only parameter of the process is the value of the
dynamics for minima selection. It can be chosen

automatically as a function of the dynamic range

of the image, and results have shown to be robust

with respect to this selection.
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