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Abstract—Positron emission tomography (PET) requires accu-
rate timing of scintillation events to properly discriminate between
coincident and noncoincident pairs. The traditional solution to
timing is based on custom application specific integrated circuits
(ASIC) designs, whose cost may not be justified in the design of
experimental small animal PET scanners. The new generation of
PET scanners introduces the idea of continuous sampling of the
detected scintillation pulse, replacing event-triggered acquisition
front-ends. This approach enables new options to the timing proce-
dure based on digital processing of the sampled pulse signal. This
work proposes a time stamping algorithm based on the optically
matched filter and compares the potential performance benefits
of this approach versus other FIR-based timing algorithms, some
of which have been already implemented by different authors.
Results show that the coincidence timing resolution may be as
low as 1.5 ns without the need of expensive high-speed converters
when the proper signal processing is applied.

Index Terms—Data acquisition, positron emission tomography,
signal processing.

1. INTRODUCTION

HE PRECISE measurement of the elapsed time between
T two events is the underlying foundation for electronic
collimation in positron emission tomography (PET). PET is
based on the physical properties of certain radioactive isotopes
known as positron emitters, which emit positrons when they
undergo radioactive decay. The ejected positron rapidly annihi-
lates on contact with electrons, producing, in the most common
case, two photons with energy equal to the rest energy of the
electron or positron (511 keV). Due to the conservation of
the linear momentum, the gamma rays are emitted in opposite
directions. These photons impinge almost simultaneously on a
set of gamma detectors placed around the field of view (FOV)
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and the technique relies on the detection of simultaneous events
on physically opposed detectors [1].

Time-coincident photons are usually resolved by tagging
every detected single event with a time stamp and searching for
those events whose time difference is below a certain threshold.
However, assigning a time stamp to the scintillation pulse is
not a trivial task, because the pulse start point is ill-defined
and also due to practical problems derived from the time scale
being handled. Moreover, the system may require periodic
calibrations in order to provide optimal performance [2].

The typical implementation of the PET timing module relies
on a mixed-signal application-specific integrated circuit (ASIC)
device designed to yield nanosecond timing accuracy [3]-[5].
However, solutions based on digital processing of the sampled
signal may represent a reasonable trade-off between cost and
performance in preclinical PET systems targeted to small ani-
mals [6], [7], where time-of-flight PET is not a design constraint.

This work presents and compares different algorithmic alter-
natives to the design of a hardware-timing module that provides
an accurate estimation of the time stamp in real time, based on
pulse energy samples. This paper is structured as follows. The
first section summarizes the different timing methods that will
be considered and the second section describes the material re-
quired for the acquisition and processing of the experimental
data. Next, the result of applying the different filters to the ex-
perimental data is presented, showing that with the proposed
filtering approach a coincidence timing resolution as low as 1.5
ns FWHM may be achieved for LYSO pulses at a sampling
frequency of 65 MHz. The document includes an Appendix to
show the feasibility of implementing the presented methods in
hardware.

II. TIMING FILTERS

A. Implementation Constraints

The ultimate goal of the algorithms described in this work
is to implement a hardware-timing module that computes the
time stamp for every detected scintillation pulse in real time. In
order to support high counting rates, a direct algorithm is pre-
ferred against model-fitting iterative approaches, such as those
described in [8], which may potentially yield higher accuracy at
a higher computational cost.

As part of such an implementation decision, all considered
algorithms admit similar hardware implementation blocks con-
sisting of a finite impulse response (FIR) filtering of the energy
signal plus a zero-crossing detection and some sort of signal in-
terpolation. The motivation for such a solution is twofold: on
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the one hand the resulting datapath is very predictive in terms
of latency and the number of clock cycles required to extract
the time stamp, facts that lead to easy data pipelining, and on
the other hand, FIR filters are very efficiently implemented in a
field-programmable gate array (FPGA).

The discussion contained in this work focuses on the existing
alternatives to the computation of the coefficients h[n] of the
integrated hardware FIR filter and the impact that the selected
method has on the timing resolution of the timing module.

The following equations assume an energy scintillation pulse
p(t), taken, for example, from the last dynode of a photomul-
tiplier, sampled at a fixed frequency fs. The sample pulse p[n]
is filtered pgiter[n], and is afterward interpolated back into the
continuous as Priter(t). The scintillation pulse p(t) is modeled
by a biexponential function A(¢) characterized by its rise (Tg)
and fall (77) times.

B. Constant Fraction Discriminator

The simplest solution to digital timing consists of im-
plementing the digital counterpart of the constant fraction
discriminator (CFD), which is by far the most popular approach
to timing in nuclear applications and whose main characteristic
is maintaining a constant timing edge, since it is not affected
by amplitude of the input pulse p(t). Its principle of operation,
as shown in (1), is as follows. The analogue signal is split into
two components; one of them is time delayed D and the other
is attenuated by the factor CF; afterwards, both branches are
remixed and a comparator detects the zero-cross point 77, which
determines the signal timing.

herp(t) = 6(t — D) — CF - §(t)
n= agg{p(t) * herp(t) = 0} 1)

When it comes to implementing a digital version of equation (1),
there is a need to design a noninteger digital delay 6(t — D /T5),
which admits several solutions depending on the chosen mini-
mization criteria in order to approximate its ideal frequency, as
thoroughly described in the literature [9]-[11].

herpln] = 6 [n - TB} — CF - §[n]

D o
Herpp(w) = exp <gwi> — CF =exp (ea D ) _CF
2

The most simple and direct approximation of H (w) comes from
computing and truncating the inverse Fourier transform of the
ideal frequency response H (w) (2), which is a shifted and sam-
pled version of the sinc function, as shown in (3).

sin(r(n — D))

—m—p) ~CF oln]  (3)

571 [P —CF] =

In order to produce realizable fractional delay filters, some win-
dowed w]n] finite length approximation has to be used. Under
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these considerations, the digital CFD is expressed in terms of a
digital FIR filter hcpp[n] as follows.

sin(m(n — D))

5 ~w[n] — CF-0[n]  (4)

hcrpln] =
As with the standard CFD, the time stamp of the pulse p[n] is
taken as the time point where the filtered signal crosses the zero
level, though in the digital case, where only samples at fixed
time points are available, it implies interpolating the filtered
pulse pcrp[n] in order to estimate the point 7 where the esti-
mated continuous signal pcrp () would cross the zero level.

pCFD[n] = P[n] * hCFD[n]
pcrp(t) = interpolation{pcrp[n]}
t

n= agg{ﬁCFD(t) =0} (5)

C. Linear Interpolation

Linear interpolation may also be used for the direct compu-
tation of the pulse start point, based on the assumption that the
rising edge may be linearly approximated. Despite its simplicity,
this approach has proven to be accurate enough for the compu-
tation of the time stamp with LSO pulses shaped for 75 ns rise
time and sampled at 40 MHz [12] and for LSO/LGSO integrated
signals sampled at 45 MHz [13].

The linear interpolator, in the simplest form, takes into ac-
count two samples adjacent to the desired point. In this case,
the sample m with the steepest slope p’[mn] in the vicinity of
the rise edge is considered for the computation of the line that
passes through p[m] and p[m + 1] and the zero crossing 7 of the
interpolated line p,,[n] with the base level computed as shown
in (6).

m = arg max{p'[n]}

Pm (t) = interpolation{p,,[n]}
1 = arg{pm(t) = 0} ©)

The previous expression can also be reformulated as a pulse
filter plus interpolation to compute the crossing point with the
base line, as shown in (7), taking into account that hprr[n] is a
discrete differentiator [14].

m = a:;g max{p[n] * hpr[n]}

plm]
p[n] * horr[n]]m

(N

n=m-—

D. Classical Matched Filter

Another possible approach to timing is based on the corre-
lation between the sampled pulse and a reference template of
the scintillation pulse. In this situation, the criterion is that the



GUERRA et al.: REAL-TIME DIGITAL TIMING IN POSITRON EMISSION TOMOGRAPHY

05
0 ha,
0
e
£ o5
2
g
A
A5 , . . ,
2100 0 100 200 300 400

Time(ns)

Fig. 1. Pulse output of the CFD with an analogue delay of 15 ns and a constant
MHz, with an equivalent delay of 15 ns and a constant fraction of 0.3.
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Fig. 2. Error distribution in [0,1] and the fitted 4th order polynomial.

timing of the pulse is the point where the correlation is at max-
imum. This can be formulated in terms of an FIR filter Ayr[n],
which is derived from the reference pulse A[n], either based on
experimental data or on nominal values. In the latter case

hMF[n] = )\S[’I’L]
A Ty
()
TF — TR TF
n-T;
— €exp | — TR ’
n-T
. AT, exXp{ ~ 5
hypln] = — - ( - )
TF — TR TF
oo (-22)
> (®)
TR

pur(t) = interpolation t{p[n] * hyr[n]},
1= arg max{pumr(t)},
n = arg{interpolation{p[n] * hyp[n]} = 0},
t t
©)
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where hj g [n] is the first derivative of the impulse response and
the time stamp 7 is computed as the point where the interpolated
filtered pulse pvr(t) crosses the zero level.

E. Optical Matched Filter

The last considered solution is the use of an optical matched
filter that, like the matched filter, originally comes from com-
munication theory, in particular from the design of optical re-
ceivers that are robust against uncertainty in the statistics of the
observation process in photodetection. This family of filters are
described in full detail in [15] and was first proposed for timing
in PET in [16] from a theoretical point of view, although no ac-
tual implementation is known to date.

The filter design starts with the definition of a filtered Poisson
process i4(t) for the output of the photodetector, with the addi-
tion of an independent zero-mean thermal noise process iy, ()
that corrupts the detected current signal 7(t).

Ny

L(t) = ngka(t - Tk) + ith(’r)7

=1

(10)

where IV, is an inhomogeneous Poisson counting process such
that V; is the number of photoelectrons generated during the pe-
riod [0,t], 7 is the emission time of the k*" electron and g, are
independent and identically distributed random variables that
model the number of secondary electrons generated for each
primary photoelectron with mean E{g}. Here, q is the elec-
tronic charge and the detector impulse response is assumed to
be gr6(t), where §(e) is the Dirac delta function.

The intensity A(¢) of the inhomogeneous Poisson process Ny
is related to the incident scintillation pulse p(¢) and is decom-
posed into signal As(¢) and the dark current rate from the pho-
todetector \4. (Background radiation can also be lumped into
this term).

M) = Ao() + A

t ) < t
F TR

Y
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Fig.3. Sample of a LYSO scintillation pulse (left) and the corresponding time estimates vs. the introduced delay with the optical filter (*) and the classical matched

filter (o) (right).
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Fig. 5. Optical filter after self-calibration (o) vs. the noncorrected results (¥).

The observed signal y(¢), which is a filtered version of the de-
tected current signal (), is corrupted by thermal noise that is

assumed to be white and Gaussian with a spectral density of
N, /2.

N, .
y(t) =4q nghOMF(t - Tk) + / ith(’r)hOMF(t — T)d’r
=1 o
= A(t) + w(t) (12)

The process y(t) tends to a Gaussian process in [0, 7'] with mean
1, and variance o2 equal to

T
o= //\S(t)}LQMF(T — t)dt,

o

)
Il

T
: / Dha(t) + R (D) (T — b,
No 1,
2 PE()

>

Ad, (13)
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where the term R,, incorporates the effects of dark current and
thermal noise. Within this formulation, the optical matched fil-
tering problem is obtained by the maximization of the observed
signal (y(t)) to noise ratio over all possible filter impulse re-
sponses (homr(t)), which in the case of fixed A;(¢) and R,, is
given by [15], as follows:

As(—t)
As(=t) + Ag + B2

howr(t) = (14)

Under these definitions, the linear estimator that provides the
pulse starting point results from maximizing the interpolated
filtered pulse, as shown in the following expression:

pomr(t) = interp?lation{p[n] x howmr[n]},
n=arg max{pomr(t)},
1 = arg{interpolation{p[n] * hyyeln]} = 0},
t t 15)

where honr[n], and its first derivative h' omF [n], are functions
of the underlying pulse parameters and the time stamp 7 is com-
puted as the point where the interpolated filtered pulse ponr ()
crosses the zero level.

F. Calibration

Time-stamp estimation algorithms show nonlinearities that
are susceptible to being automatically corrected. A solution to
this problem has been previously reported in [17]. This subsec-
tion details an alternative approach, which has been developed
during the course of this work.

The error of the time stamp is a function of the sampling phase
with periodicity equal to the sampling period 7. Therefore, in
order to develop a calibration method, it is enough to analyze
the estimation error within [0, 7%].

It is assumed that there is no correlation between the scintilla-
tion events and the sampling clock and therefore in the ideal case
the timing error must be uniformly distributed in [0, T]. How-
ever, experimental distributions of the time stamp error show a
nonuniform distribution of the error, which is mainly due to the
method nonlinearities. The aim of the calibration method is to
find the transformation that equalizes the histogram and to use
this transformation to correct every time stamp. This is achieved
based on an estimation of the error function that results from
sorting [N observed time stamps based on their fractional part
fract(7) and using the position k(4) of the time stamp 7 in the
sorted list to eliminate the bias on the time stamp 7 () to obtain
the linearized value 7 (¢), as it is described in the following al-
gorithm.

7 (i) = fract(7(i)) = 7(i) — |7(3)],
0<7 (i)<1 ,Vie[0o,N—1]
k(i) = sort(7 (i) <7 (k(i)) <7 (k(i +1))
Vie0,N —1]
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7o) = %Z)
(@) = |r(@)]+ T (3) (16)

Under these definitions, the estimation error &(4) associated with
each time stamp is as follows.

e(i) = = 7 (k(2) (18)
Afterwards, a polynomial function f(x) of order m is computed
to represent the nonlinear relationship between the fractional
part 7 (7) of the time stamp provided by the algorithm and the
related error £(1).

[u

m—

f(7)=>a 7

Jj=

(18)

Once the function is evaluated, the time stamp is updated as
follows:

(i) = (i) + £(7 (i)

The polynomial coefficients are restricted to satisfy the condi-
tion that the error function is periodical, thatis f(0) = f(1) and
therefore:

(18)

m—1
FO)=f1)=> a;=0. (20)
j=1

The polynomial coefficients a; are computed from the single list
through linear least squares optimization with linear constraints,
being Fig. 2 an example of such computation. This computa-
tion may be either offline, during the initial calibration steps,
or online during acquisition. In the latter case, an intermediate
memory buffer would be required to temporally store singles
while computing polynomial coefficients in a first pass and cor-
recting time stamps in a second pass. Nevertheless, the on-line
approach is presently discarded until an adequate processing
architecture that prevents an increase in the dead time of the
scanner is defined.

III. MATERIALS AND METHODS

The experimental data have been obtained with a reengi-
neered version [18] of the phoswich detector originally
developed for the NIH ATLAS [19], whose energy dynode has
been sampled at 625 MHz (Ts = 1.6 ns) with a TDS5054B
digital oscilloscope (Tektronix, Beaverton, OR, USA).

The detector consists of two 13 x 13 crystals layers, with
the front crystal layer assembled of 1.45x 1.45 X7 mm
cerium-doped lutetium-yttrium orthosilicate (LYSO) and
the back layer made of 1.45x 1.45x 8 mm cerium-doped
gadolinium orthosilicate (GSO) with a 1.45 x 1.45 pitch. The
20 x 20 mm GSO back layer is optically coupled to a Hama-
matsu R8520-C12 photomultiplier tube.
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TABLE 1
SINGLE TIMING RESOLUTION (FWHM) IN THE FREQUENCY RANGE OF INTEREST

Filter Type Resolution (ns) Resolution (ns) Resolution (ns)
@ 50 MHz @ 65 MHz @ 80 MHz
Linear 11.80 8.71 6.77
CFD 10.82 7.32 5.11
Matched (MF) 9.33 5.97 4.02
Optical (OMF) 6.12 3.61 2.34
Optical
(MF-calibr.) 4.75 2.52 1.55
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Fig. 6. Self-calibrated optical filter (%), noncalibrated optical filter (*) and matched filter (o) for sampling frequencies of 78 MHz, 62 MHz, 52 MHz and 39 MHz
with shaping constants between 0 and 14 ns. (a) @78 MHz (b) @62 MHz (¢) @52 MHz (d) @39 MHz.

The acquired data has been processed and analyzed with
Matlab R13 (The Mathworks, Natick, MA, USA). The energy
of 10 000 LYSO scintillation pulses was recorded with the
TDS5054B oscilloscope and each of these pulses was subsam-
pled by a factor between 5 and 15 with a variable offset, in
order to generate a dataset of pulses at sampling frequencies
ranging between 41 and 125 MHz with a known relative delay.

The digital CFD is configured for a 10 ns digital delay and a
CF equal to 0.8, which is the combination of values that yielded
the best results for this filter. The linear interpolation replicates
the algorithm described in [12]. The correlation template was
derived assuming a decay constant of 40 ns and a rise constant
of 10 ns. The optical filter was computed based on the same
template as before and noise estimation based on the actual data.

IV. RESULTS

The presented timing algorithms have been applied to each
subsampled and delayed version of the original pulse and the

error between the generated time stamp and the expected result
was recorded. This procedure was performed because, although
the actual start point of each pulse is unknown, the different sam-
ples of the original pulse are spaced by Ts = 1.6 ns, therefore
the timing estimator is expected to grow linearly with the known
delay. As an example, Fig. 3 (right) shows the estimated delay
versus the actual delay of the matched filter and the optically
matched filter for a fixed scintillation pulse shown in Fig. 3 (left)
as the sampling phase between the pulse and the clock varies
from O to 2 samples. As shown, the timing estimator fluctuates
around the expected value.

Repeating this approach for the 10 000 pulses of the set, we
have estimated the timing resolution at full-width-at-half max-
imum (FWHM) for sampling frequencies ranging between 40
and 125 MHz, as shown in Fig. 4. It seems obvious that the
higher the sampling frequency, the finer the timing resolution.
However, as the normalized resolution in Fig. 4 (right) shows,
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resolution improvements are exclusively due not only to the in-
creasing sampling frequency, but also to a better performance of
the estimation algorithm, which provides an increasing refine-
ment of the sampling.

One interesting observation is that the single timing resolu-
tion improves as more knowledge about the reference pulse is
included, starting from linear interpolation that assumes very

little about the reference pulse and ending with the optical filter,
that includes shape and noise statistics.

From a practical point of view, we are particularly interested
in the expected timing resolution for sampling frequencies over
the 50-80 MHz range, where it is feasible to integrate the digital
processing electronics into a medium-cost FPGA. Table I sum-
marizes interpolated results in this range and shows that, within
these sampling frequencies, the optical filter outperforms other
filter designs.

As observed Fig. 3 (right), timing estimators introduce sys-
tematic errors that can be estimated and compensated for based
on the acquired data, without any previous calibration. Because
of this compensation, the timing resolution of the optical filter
is even further reduced, as shown in Table I and Fig. 5.

The results summarized in these plots are compatible with
those presented by other authors in [6], [7], [20]-[22], but nev-
ertheless the latter represent single points of the much wider de-
sign space covered in this work.

Although it is commonly accepted that the shorter the rise
time of the scintillation pulse the better the time resolution,
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when it comes to timing by digital means, some smoothing is
required in order to capture as many samples from the rising
edge as possible. Therefore, we have also analyzed the impact
of a slightly different electronics that would introduce further
shaping on the energy signal pulse, whose measured rising time
is 10 ns, before sampling. To emulate this electronics, a new
dataset was created by filtering the original energy signals at 625
MHz with a Gaussian filter of variable time constant between 0
and 14 ns, before applying decimating data and applying again
the previously described timing algorithms.

Fig. 6 shows the benefits of a slight increase in the signal
rise time, that will introduce no significant change in the ac-
quisition dead time and which additionally may provide some
improvements regarding energy estimation. These results sug-
gest that it is possible to achieve single timing resolutions below
1.0 ns (FHWM), that is, 1.41 ns in coincidence mode, when the
proper smoothing is selected, even at modest sampling frequen-
cies, when the proper filter and shaping time are selected. How-
ever, the actual figure varies significantly with the scintillation
crystal, the sampling frequency, and filter type.

V. CONCLUSION

This work analyzes the expected resolution of the time stamp
when computed by digital means for a LYSO pulse with a nom-
inal rise time of 10 ns and a decay time of 40 ns. Different algo-
rithms with a similar hardware implementation were considered
in the analysis. In all cases, the time stamp was computed after
filtering the input energy signal and finding its zero crossing
through interpolation. The motivation to a solution of this type
versus other more elaborated solutions was that FIR filtering and
dividing are common operations in signal processing that are
easily and efficiently implemented on programmable hardware,
enabling direct real-time computation of the time stamp. As an
example case, the implementation of an optical matched filter
is described in the Appendix, including HDL simulations that
show the real time feasibility of methods. For instance, the im-
plemented hardware block is able to compute a new time stamp
every 13 clock cycles, i.e., around 5 Mcps for a 65 MHz sam-
pling clock.

Some of the presented methods, namely the matched filter
and the optical filter, require a template of the expected input
signal, in which case the reference is derived from the two-ex-
ponentials model, which is suitable for describing pulses from
most scintillators. This model-based approach has the advantage
of not requiring previous preprocessing or calibration in order
to compute the adequate filter response at the cost of potential
performance degradation when the template does not match the
actual scintillation pulse shape.

Filter performance has been analyzed for a wide range of
sampling frequencies and it has been shown that, within the
sampling rate of interest (around 40-100 MHz), results are
promising, as most of them provide enough resolution for the
application of a 10 ns timing window, and in the particular case
of the optically matched filter it seems feasible to apply a 5 ns
timing window.

However, we must be aware that the presented results are
applicable to a single detector and neglect fixed point effects
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as well as timing variations due to component and clock jitter
among several detectors in the ring. Some of these uncertain-
ties may be compensated by calibration and some not, and the
impact of these on timing resolution is open for further investi-
gation.

APPENDIX
HARDWARE IMPLEMENTATION

To show the feasibility of the presented methods for real-time
digital timing, a timing block that combines the timing algo-
rithm described in (15) and the correction methods of (20) was
described with VHDL and synthesized with ISE 8.3 (Xilinx Inc.,
San José, CA, USA) into a Virtex-II FPGA from Xilinx.

The timing module assumes that polynomial coefficients are
computed beforehand during calibration.

The implemented timing module comprises the following
subunits, as shown in Fig. 7:

* An FIR filter, which is implemented as a 16-tap distributed
filter and generated with the core generator Coregen from
Xilinx,

 aninterpolation unit, consisting of a zero-crossing (ZC) de-
tector and a nonrestoring fixed point Sweeney, Robertson,
Tocher (SRT) divider, and

* a polynomial linearization block.

The FIR filter processes the scintillation pulse energy at the
sampling frequency and, as previously explained, its output has
an abrupt transition from positive to negative values that is re-
lated to pulse timing. Fig. 8 shows the waveforms of a VHDL
simulation, where the sequence of events is highlighted. A fi-
nite state machine (FSM) monitors for the sign transition of the
filtered energy signal and performs a fixed point division to in-
terpolate the zero crossing point, based on the values of the last
positive and first the negative values of the filtered energy signal
pomr[n]. The result of this division provides the fractional part
T of the time stamp, whose value is corrected by the lineariza-
tion block in order to compensate for the method’s nonlineari-
ties.

The timing block is pipelined in such a way that a new
time stamp may be computed every 13 clock cycles, being the
limiting factor the area/performance trade-off adopted at the
SRT divider. Figure shows an VHDL simulation of the first
two blocks, where the input energy, the filtered energy and the
division output are highlighted with dashed circles.

The main complexity of the linearization block lies in the
polynomial error estimation block, which can with a look-up
table or with the datapath is shown in Fig. 9. For its develop-
ment, (18) is unrolled into two branches, one to iteratively com-
pute the powers of 7 and another to compute the summation as
a sequence of multiplication and accumulations, as follows.

yo =1
yj:iU]:«’U'yj—1
fo=ao

=" 4a;y 1)
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Fig. 10. VHDL simulation of the polynomial correction module.
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For a proper fixed point implementation of (21), the FPGA
must also deal with data scaling and with the architectural
properties of the device, particularly the presence of 18 x 18
embedded multipliers. For the discussion, we consider that the
fixed point representation of the different powers z* of x is
(1.17), that is 18 bits and a scale factor of 2=~ with N = 17.
Moreover, the fixed point representation for the polynomial
coefficients a; is (A,0), with an implicit scale factor of 2—M
The output values f are represented with P bits and an implicit
scale factor of 2~ M,

aﬂ(A,o) =q;-2M
yilany = ol =228
yj|(1.2N) = (17|(1.N) 'yj—1|1.N)
yilany = Yilian >N
folp—n.nvy = aglao -2V
filp=n.vy = fimil(p=nvy +a;l(a0) - yilany (22)

Figure shows the simulation of the polynomial error estimation
block, taking as input the time stamp value provided by the in-
terpolator block and, for the polynomial (—348 - x*4+952 - x3 —
964 - x2 + 360 - x — 2) - 279, values that were obtained from ex-
perimental data based on the linearization method described. In
this example, the fractional part of the time stamp is estimated
as 38(1.g), which is equivalent to 19456, 17), and the module
produces after six clock cycles f = 33, which represents the
value 0.0645 in the fixed point simulation, whereas the actual
value of f in the floating point simulation would be 0.0647.

Finally, the analysis results show the feasibility of the pro-
posed timing module, requiring as little as 2 MULTI 8 x 18,
1590 flip-flops and 1419 look-up tables LUTs, values that rep-
resent less than 50% of the resources in the smallest available
Virtex-1II and barely 2% in the biggest device.

The authors thank SUINSA Medical Systems Engineering
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the experimental data.
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