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Abstract—Analysis of intramyocardial perfusion by contrast echocardiography provides quantitative parame-
ters for the assessment of ischemic disease. This analysis can be achieved by applying an ultrasound (US) burst
of high mechanical index to destroy contrast bubbles, measuring various myocardial refilling parameters from
the time curves obtained from regions-of-interest (ROIs) within the myocardial wall. To obtain reliable intensity
curves, the position of the ROIs must be tracked to compensate for the heart motion along the sequence. In this
work, we studied the use of optical flow techniques for ROI repositioning. Two block-matching and one
differential technique were evaluated for this purpose. Performance was measured by comparing the result of
automatic tracking with results of ROI repositioning by a human expert. This evaluation was carried out on
experimental data from animals as well as on sequences from clinical studies. Results are considered to be
accurate enough for clinical purposes, and computation times may allow for a real-time processing if incorpo-
rated into a US scanner. (E-mail: desco@mce.hggm.es) © 2004 World Federation for Ultrasound in Medicine
& Biology.
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INTRODUCTION

Analysis of the heart wall motion is a standard techn
for studying myocardial viability (Fedele et al. 1998). In
some cases, however, it is not sufficient to identi
pathologic region. For example, stunned myocardiu
a postischemic dysfunction characterized by regions
motion abnormalities, but normal flow, that may reco
in the following weeks. Myocardial contrast echoca
ography (MCE), due to its ability to assess microvasc
integrity, has been shown to provide markers of succ
ful reperfusion of acute myocardial infarction (Vannan
and Kuersten 2000). Viability of the myocardium i
estimated by the degree of myocardial opacification
lowing contrast injection. Absence of myocardial op
fication after reperfusion has been associated with n
sis and failure to recover function (Ohmori et al. 2001).

A method for obtaining quantitative parameters c
sists of acquiring images during the myocardial refil
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process after destroying the contrast microbubbles wi
ultrasound (US) pulse of high energy (high mechan
index). It is, thus, possible to obtain not only steady-s
region intensity, but also the wash-in curve showing
refilling of the region after the destruction of the mic
bubbles (Desco et al. 2001a; Masugata et al. 2001). In
routine analysis, regions-of-interest (ROIs) are traced o
image and time-intensity curves are drawn from eac
them (Tani et al. 2002). These time curves are adjusted
mathematical models, whose parameters provide qua
tive information on the degree of reperfusion (Jayaweera e
al. 1994). Images from a sequence and the time cu
corresponding to two ROIs are shown inFig. 1. The fitted
exponential models are also shown. Notice the diffe
degree of reperfusion of both regions.

Acquisition can be carried out in electrocardiogr
(ECG)-triggered mode (images are synchronously
tained at the same point of the cardiac cycle), b
higher sampling rate may be achieved in continu
mode, in which images are obtained asynchronously
constant frame rate. In this case, as the heart mov

fixed ROI position does not represent the same structures
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along the cardiac cycle. Therefore, for accurate quanti-
fication, regions must be repositioned along the se-
quence. In previous works, registration based on cross-
correlation has been used to align the images (Jayaweera
et al. 1994). In these works, only end diastole short-axis
views were used and complete images were aligned
using rigid registration by cross-correlation. Recently, a
nonrigid registration approach has also been used on
two-chamber views (Noble et al. 2002). This study was
based on sequences acquired in triggered mode, which
ensures a small displacement along the sequence. In
studies using real-time (continuous) acquisition mode,
ROIs are usually realigned manually for quantification
(Di Bello et al. 2002; Van Camp et al. 2003).

Optical flow computation has been and still is one of
the major areas of research in computer vision. Optical
flow techniques are generally classified into differential,
matching, energy-based and phase-based methods. A
comprehensive review of optical flow algorithms can be
found in Barron et al. (1994). Although previous studies
have shown that speckle motion does not represent per-
fectly tissue motion (Kallel et al. 1994), tracking meth-
ods are being widely applied in US. Tracking of time-
domain speckle using optical flow offers an alternative to
Doppler imaging to estimate tissue motion (Hein and
O’Brien 1993). Time-domain methods have found appli-
cations in biomedical imaging, including the assessment
of myocardial deformation (Mailloux et al. 1989).
Baraldi et al. (1996) compared several differential tech-
niques on synthetic echo images. More recently, optical
flow techniques have been used in conventional echocar-
diography to guide segmentation algorithms (Giachetti
1998). In Yeung et al. (1998a), a multilevel speckle-
tracking algorithm was presented and evaluated using a
phantom.

The aim of our work was to implement and evaluate
local block-matching algorithms as a tool to track ROIs
along the sequence. We also evaluate the efficiency of

local tracking algorithms that should provide faster re- (NSSD):
positioning than global morphing schemes, such as grid-

base (Yeung et al. 1998b) or registration (Noble et al.
2002) approaches. Two block-matching techniques and
one differential one were compared, both on experimen-
tal images obtained from pigs and on clinical sequences
from patients. To the best of our knowledge, there are no
published works about region tracking in contrast echo-
cardiography.

MATERIALS AND METHODS

Block-matching techniques
Window-matching or correlation-based tech-

niques are the most widely applied techniques to com-
pute the optical flow from an image sequence (Gia-
chetti 2000). They are based on the analysis of the
grey-level pattern around the point-of-interest and on
the search for the most similar pattern in the following
image. The basic implicit assumption is that the grey-
level pattern remains approximately constant between
successive frames and that local texture contains suf-
ficient unambiguous information. Correlation-based
techniques have been used for motion detection in
conventional US (Giachetti 1998). A thorough review
of these methods can be found in Giachetti (2000).

Matching-based tracking. Let I1 and I2 be two im-
ages corresponding to two neighbor frames. Having de-
fined a window W(x�) around the point x� in image I1, a
similar window W��x� � d�� in image I2 is considered,
shifted by an integer number of pixels in a search space
S. The motion vector (i.e., the estimated image displace-
ment) is obtained as the shift corresponding to the min-
imum value of a distance function (or maximum of a
correlation measure) between the intensity patterns in the
two corresponding windows:

dist � f(W,W�(d� )). (1)

We have evaluated two different distance functions,
namely the normalized sum-of-squared differences
and the zero-mean normalized cross-correlation (Gia-
NSSD� x� ,d� � �

�
i, j��N/ 2

N/ 2

�I1� x � i,y � j� � I2� x � i � dx,y � j � dy��
2

�
i, j��N/ 2

N/ 2

�I1� x � i,y � j� · �
i, j��N/ 2

N/ 2

�I2� x � i � dx,y � j � dy�

(2)
chetti 2000):
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where I�i is the mean grey level of image I in the corre-
lation kernel.

As a measure of confidence, we use the ratio of the
minimum value of the NSSD to the average distance in
the search space S(x�):

Q� x�� � 1 �
min�d�SNSSD� x� ,d� �

N� SSD
. (4)

A value of Q close to 1 ensures a good correlation.
In all the experiments, a search region of 25 � 25

pixels and a correlation neighborhood of 35 � 35 were
used.

Image subsampling. To reduce computing time, im-
ages were subsampled by a factor of two before applying
correlation. A separable cubic B-spline filter (Pratt 1991)
was applied to the images before subsampling to avoid
aliasing. After checking that subsampling did not de-
grade performance, all block-matching algorithms in-
cluded this step.

Spatial averaging. The shape of the ROI was fixed
throughout the sequence. Only one global motion value
was computed for the whole region. Assuming smooth-
ness of neighboring motion vectors, we computed mo-
tion vectors for four evenly spaced points within the

Fig. 1. (a) Image showing two user-defined ROIs, (b) time-
intensity curves and fitted exponential models corresponding to

the ROIs.

ZNCC� x� ,d� � �

�
i, j��N/ 2

N/ 2

�I1� x � i,y �

�
i, j��N/ 2

N/ 2

�I1� x � i,y �
region and averaged the global motion vector from them.
The contribution of each vector was weighted by the
confidence factor Q(x�) of its NSSD computation.

Singh’s algorithm. More complex algorithms may
allow for subpixel accuracy by introducing stronger
smoothness constraints on the motion. We have imple-
mented Singh�s algorithm (Singh 1990), which computes
motion using three consecutive images, im(�1), im(0),
im(1), by minimizing the distance:

NSSD3� x� ,d� ,im��1�,im�0�,im�1�� �

� NSSD� x� ,d� ,im��1�,im�0��

� NSSD� x� ,d� ,im�0�,im�1��, (5)

where NSSD for two frames is defined in eqn (2).
A weight function is computed from the NSSD

values:

R� x� ,d� � � e�k� x�� NSSD� x�,�d�, (6)

where

k� x�� � �ln�0.95�/min�NSSD3� x� ,d� ,im(�1),

im�0�,im�1��. (7)

Subpixel displacement is then obtained as:

u� x�� �
�R� x� ,d� �dx

�R�d� �
, �� x�� �

�R� x� ,d� �dy

�R�d� �
. (8)

Differential techniques
Differential techniques compute motion from the

spatiotemporal derivatives of the image intensity. Let
I(x,t) be the image intensity pattern at location x and time
t and m � (u(x),v(x)) the motion field, where u and w
represent the two velocity components. Differential tech-
niques are based on the assumption that the image inten-

1��I2� x � i � dx,y � j � dy� � I�2�

�
i, j��N/ 2

N/ 2

�I2� x � i � dx,y � j � dy�

, (3)
j� � I�

j� ·
sity pattern is constant along time:
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dI� x,t�

dt
� 0, (9)

Equation (9), referred to as the constant brightness equa-
tion, can be written as follows:

�I� x,t� · m � It� x,t� � 0 (10)

where �I denotes spatial image gradient and It denotes
derivative with respect to t. Equation (10) is known as
the gradient constraint equation.

We have implemented the algorithm proposed by
Lucas and Kanade (1981) because it was the one with
best results (both quantitative and subjective) in the
comparisons presented by Barron et al. (1994) on natural
scene sequences and by Baraldi et al. (1996) on synthe-
sized US images. It is based on a weighted least squares
(LS) fit of local first-order constraints in each small
spatial neighborhood N, by minimizing:

�
x�N

W2� x���I� x,t� · m � It� x,t�	2, (11)

where W(x) denotes a window function that gives more
influence to points at the center of the neighborhood than
to those at the periphery. The solution to eqn (11) is
given by:

ATW2Am � ATW2b (12)

where, for n points, xi, � N at a single time t,

A � ��I� x1�, . . . ,�I� xn�	 (13)

W � diag�W� x1�, . . . ,W� xn�	 (14)

b � ��It� x1�, . . . ,It� xn��
T. (15)

To capture large displacements without a major
increase in computational load, we adopted a multiscale
scheme using a four-level Gaussian pyramid. The dis-
placement was first computed at the lowest resolution.
The algorithm was then applied at each level, starting
from the displacements obtained in the previous level.
Before computing velocities, images were smoothed
with a Gaussian filter with an SD of 1.5 pixels. Ten
iterations of the algorithm were applied to achieve con-
vergence. An example of velocity vectors of nine points
in an ROI is shown in Fig. 2.

Validation
Validation of optical-flow algorithms is usually per-
formed using synthetized phantom sequences with a
known displacement (Baraldi et al. 1996). A realistic
simulation of perfusion echocardiography and, particu-
larly, the effect of the contrast media, is not an easy task
and has been previously done using only very simple
models (Fetics et al. 2001). In this work, evaluation was
carried out from a practical point of view, by considering
the repositioning by an expert as the “gold standard.”

Five image sequences were used to evaluate the
algorithms. Two of them were experimental studies ob-
tained from open-chest pigs during surgery. The other
three sequences were two-chamber views obtained from
three different patients. Each sequence consisted of 40
frames, spanning approximately four cycles.

Experimental images obtained in animals were
short-axis views from open-chest anesthetized pigs, us-
ing Sonovue� as echo-enhancer. Temporal resolution
was 75 ms; pixel size was 0.3 mm. The transducer in this
case was situated directly over the heart surface, produc-
ing images with higher contrast and well-defined myo-
cardial borders, where myocardial refilling is better ob-
served. Images obtained from pigs are part of an exper-
imental protocol designed to test the validity of perfusion
parameters with acute ischemia models. In this protocol,
we acquired both basal images and images with a flow-
limiting stenosis produced by reducing left anterior de-
scending artery (LAD) flow by 50% of the baseline
value. The latter were used for the evaluation because
they include segments with different degrees of perfu-
sion and wall motion. All aspects of animal handling and
surgery were in accordance with the “European conven-
tion for the protection of vertebrate animals used for
experimental and other scientific purposes” and with the
local government regulations.

In patients, images were acquired with coherent
contrast imaging (CCI), a single pulse cancellation
method on an Acuson Sequoia (Acuson-Siemens, Moun-
tainview, CA, USA) scanner. Images were acquired with

Fig. 2. Displacement vectors computed for nine points using
the Lucas–Kanade approach.
a 3-MHz transducer in real-time (75 ms between frames)
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during a continuous infusion of Sonovue� contrast agent;
pixel size was 0.2 mm. After three cardiac cycles of
homogeneous myocardial perfusion, microbubbles were
destroyed with a pulse of high mechanical index (MI)
(1.5) during three cardiac cycles and images of the re-
plenishment phase were acquired with low MI (0.1 to
0.2).

In both experimental and clinical studies, ROIs
must be tracked along the sequence to obtain time-
intensity curves. Figure 3 shows representative frames of
experimental and clinical sequences.

To evaluate the algorithm performance, three ROIs
were placed in each sequence and automatic tracking
was carried out using each of the tracking methods, in a
supervised fashion. After automatic repositioning in each
frame, the observer could either accept the result or
manually change the position of the ROI. Two indepen-
dent observers supervised the process on all the test
sequences and the number of corrections required was
recorded. As a reference measure, the users were asked
to align manually the ROIs when required in every
sequence, recording the number of frames where the user
actually shifted the ROI. The number of corrections on
all sequences and ROIs without applying any auto-
matic tracking were also recorded and used as a ref-
erence measure. The ROIs were placed on different
segments of the myocardium to take into account
different degrees of motion and image quality. Inter-
observer differences were measured using the method
proposed by Bland and Altman (1986). The mean and
SD of the differences on all the sequences were com-
puted. Performance of the different algorithms was
measured by computing the mean and SD of the num-
ber of corrections by both observers for all of the
sequences.

Because variables are not normally distributed, dif-
ferences in performance among methods were evaluated
using nonparametric analysis of variance using a

Fig. 3. (a) Short-axis view of an open-chest swine heart. (b)
Two-chamber view of a patient heart.
Kruskal–Wallis test (Sokal and Rohlf 1995). Post hoc
comparisons were carried out by means of a Tukey
honest significance difference (HSD) test, accepting a
significance threshold of p 
 0.01 to consider groups as
different.

RESULTS

Figure 4 shows an example of several frames with
ROIs repositioned automatically using the Lucas–Ka-
nade algorithm.

Interobserver variability was measured by compar-
ing the total number of frames corrected by each ob-
server in all the sequences. A mean difference of 0.57%
with an SD of the difference of 4.47% was obtained.
Because the difference between observers was so low,
validation results are presented using a merged set of
measures from both users. Table 1 presents the results of
the evaluation, showing the mean and SDs of the per-
centage of correct frames obtained with each of the
algorithms on experimental and on clinical sequences.
Figure 5 shows the results merged for all sequences.

The statistical analysis was applied considering all
the sequences together. As a result of the Kruskal–Wallis
test with post hoc comparisons, all the methods were
demonstrated to perform significantly better (p 
 0.01)
than manual repositioning. Among these methods, the
Lucas–Kanade algorithm was significantly better than
the rest (p 
 0.01). Among block-matching methods,
differences were not significant. Using NSSD as distance
yielded better results than ZNCC. Singh’s algorithm im-
proved the result of two-frame block-matching methods,
at the expense of an increase in computing time.

Computation time for all the algorithms was short.
The slowest is Lucas–Kanade, which took 0.5 s per
frame on a Pentium IV PC. Automatic tracking methods
have been included in an echocardiography quantifica-
tion platform (Desco et al. 2001a, 2001b) that is cur-
rently used routinely for research in our hospital (Perez
et al. 2001).

DISCUSSION

Results obtained with all the tracking methods were
found to be significantly better than with manual track-
ing. The best results were achieved with the differential
method, with similar computing times.

As expected, results obtained on the experimental
sequences were better than those with patient data, due to
the lower amount of noise present on these images. The
effect of induced ischemia can be observed in the black
nonperfused area of the myocardium in Fig. 4. One of the
ROIs was placed on that region, with decreased motion,
which could explain the better results obtained for that
region. In US imaging, speckle actually varies with

depth. Our evaluation included regions at different
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depths in the myocardium that did not show differences
in performance.

The use of three frames in Singh’s algorithm im-
proved the results obtained with the standard correlation
technique, but is computationally more demanding and
differences were not significant.

Two parameters were required in the algorithms,
namely the size of the search region and the size of the
correlation kernel. The first one depends on the maxi-
mum excursion expected between neighbor frames,
which, in turn, depends on the acquisition frame rate.
Pyramidal implementations allow detecting large inter-
frame displacements with a small computational effort.
The size of the correlation window depends on the
speckle pattern; it must be large enough to capture tissue
texture, although too large windows may hinder resolu-
tion of optical flow. The aim of our application was to
move individual ROIs, so optical flow resolution was not
an issue and the correlation windows used were large
enough to assure a reliable result.

In our experiments, the frame rate used was high
enough to assure a low interframe replenishment of con-
trast, being reasonable to assume approximately constant
intensity between frames. Optical flow methods that take
into account brightness variations along time have been
recently proposed (Haussecker and Fleet 2001) but they
require a precise mathematical description of the bright-
ness variation model. In the case of contrast echocardi-

Fig. 4. Results of ROI tracking using the differential technique
on (top) patient images and (bottom) open-chest animal images.

Table 1. Mean number of correct displacemen

Manual
positioning Matching-ZNCC

Group I sequences 65.2 � 5.4 86.6 � 4.2
Group II sequences 56.3 � 3.5 85.4 � 3.4
Group I sequences were obtained from open-chest pigs; group II sequence
ography, the reperfusion function may differ between
patients, as well as between different segments in an
image.

No prior information about expected motion was
included in any of the algorithms. Incorporating a priori
knowledge of heart motion or using results from previ-
ous heart cycles to correct motion vectors could further
improve our results.

During evaluation, we observed that, when using a
totally manual repositioning tool, a typical user only
moves the ROI every few frames, when a misplacement
is clearly visible, but the automatic algorithm computes a
displacement in all frames, thus achieving a better reso-
lution. This leads us to presume that the automatic
method could even be more exact, although this cannot
be affirmed based on the evaluation performed. Further
studies, maybe with phantoms, would be needed.

A limitation of the study is that size and shape of the
regions was kept constant during the whole sequence
because this is the way studies are performed in clinical
practice. ROIs are used only to sample the grey level in
a myocardial region; thus, it is not necessary to change
their shape along time. In our approach, region tracking

rcentages) and SD for each of the algorithms

Matching-NSSD Lucas–Kanade Singh

88.6 � 3.5 97.7 � 2.4 88.1 � 3.1
89.1 � 3.4 95.0 � 2.8 90.0 � 3.0

Fig. 5. Box plot of the percentages of correct frames obtained
with each of the methods. 1 � no tracking, 2 � block-matching
with ZNCC distance, 3 � block-matching with NSSD distance,

4 � Lucas–Kanade, and 5 � Singh.
ts (pe
s are clinical sequences obtained from patients.
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is independent of region shape. Computing the displace-
ment vector for all the points in the region could be the
basis for an adaptive ROI analysis, at the expense of
computing time.

Another limitation is that conventional 2-D US im-
aging can only capture in-plane motion, although heart
motion is 3-D and interplane motion could modify
speckle patterns. This is a limitation inherent to all meth-
ods that work on bidimensional imaging and will be
easier to face when 3-D echocardiography becomes a
tool in routine clinical use. Some initial experimental
works have already been presented (Camarano et al.
2002).

CONCLUSIONS

We have implemented and evaluated three optical
flow algorithms for ROI tracking in contrast echocardi-
ography sequences. Results are encouraging because al-
gorithms have been shown to be accurate and fast
enough for real-time processing. The differential method
yielded better results than block-matching methods with
similar execution times. We have designed an interactive
tracking tool, already included in a contrast quantifica-
tion software currently used for clinical research in sev-
eral hospitals.
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