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ABSTRACT

M odel- based image processing techniques have been proposed as away to increase the resol ution of
optical microscopes. In this paper, amodel based on the microscope's Point Spread Function (PSF)
is anadyzed and the resolution limits achieved with a proposed goodness: of-fit criterion are quantified.
Severd experiments have been performed to evauate the possibilities and limitations of this method: @)
experiments with an ided (diffraction limited) microscope, b) experiments with smulated dots and a
real microscope, ¢) experiments with real dots acquired with areal microscope. The results show that
athreefold increase over classica resolution (e.g. Rayleigh) is possible.

These results can be affected by modd mis- specifications while modd corruption, as seen in the effect
of Poisson noise, seems to be unimportant. This work can be considered as preliminary with the fina
god being the accurate measurement of various cytogenetic properties, such as gene ditributions, in
labeled preparations.

1. INTRODUCTION

The purpose of this work is to andyze the possibilities and limitations of mode- based techniques to
increase the resolution of two-dimensiond, digita images acquired through optical microscopes. Itisa
firgt study in a work whose find god is the measuring of the distance between genes in interphase
nucle and determining their gene didribution [1]. This problem could, in principle, have diagnogtic
implications as the information of whether two particular genes are on the same chromosome (and
consequently at a fixed distance) could have clinicd interpretation. This judtifies the effort to obtain
higher resolution with conventiona (widefield) opticad microscopes ingtead of using the more complex
and expensive confocal microscopes.
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To know the gene location in the nuclei, fluorescence probes are hybridized to individud genes and
andyzed as dots whose presence and relative location in the acquired images are the relevant
information. We, therefore, intend to measure the disances between two observable dots that
represent the fluorescence light coming from two gene probes that have been gppropriately hybridized.
Therelative pesk intengties of the dots will aso be measured.

In this paper, we will assume that the two fluorescence dots produce incoherent light as they originate
from two didinct sdf-luminous light sources. Although this is only partidly true for high-aperture
microscope objectives, the study of partially coherent light sourcesis I eft for future work.

1.1. Model-based resolution

Although there are some dasscd definitions of optica resolution (such as that of Rayleigh) that
consder only diffraction effects in a lens, according to van den Bos, the resolution limit depends
actudly on the errorsin the observed intengity digtributions|[2, 3.

Following [2], the two-point resolution—the resolution of two superimposed and overlgpping
component intendity distributions—can be formulated as a two-component functiona mode-fitting to
error—corrupted observations with respect to the locations and amplitudes of both components.

Then the two-component model can be defined as:.

g(x y/a,b)=ahlx- b, y- b, )+a,hlx- by, y-b,,) Eq. 1

where a =(a,,a,) ae the amplitudes, b =(b,,,b,,,b,,b,,) the pesk locations of both
components, and h(x,y) isthe component distribution. This equation can aso be expressed as.

g(x y/a,b,g)=a,{gh(x- b, y- b,)+@- g)hlx- b,,,y- b, } Eq. 2
with g as the peek ratio g =a, /(a, +a,) ad a, =a, +a,.

Throughout this work, this mode will be fitted to the error—free or noise-corrupted observations,
trying to minimize the least squares criterion. The observations can include systematic errors (mode
mis-specification) and (in a well designed microscope) non-systematic or stochastic (Poisson noise)
errors.

2. DOT LOCATION PROCEDURE

Kegping in mind the problem of locating fluorescence dots in cytogenetic goplications, it will be
assumed that a basic tool for a first rough location of the dots is dreedy available. Perhgps a smple
thresholding method will be used or more elaborate tools as described in [4-6]. The purpose of the
work presented hereisto refine thisinitid guess. A decision has to be made as to whether each of the
dots located is actudly one or two dots. In the two-dimensond projection of the three dimensiond
redity, one dot could be “hiding” behind a second one. If two dots are located close to one another,
then their distance and peak ratio have to be measured as accurately as possible.
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2.1. Building the model

The observation model has been obtained by approximating the microscope's point spread function
(PSF) by an andyticd function. As shown in Figure 1, two different kinds of mathemetica functions
have been tested—a Bessel-based model and a Gaussian based moddl .

The1-D Bessdl modd for asingledot is
.2
2], (p,(x - Py))0

h(x) = 0 i
LS ST s

where J,(*) isaBess function of thefirst kind and p,, p, and p; are the model parameters.
The 1-D Gaussan modd for asingle dot is:

h(x) = p,expl- (p, (x- 1)) Eq. 4
The2-D modd is obtained by smply evauating these functionson a2-D grid.

The Bessel modd was chosen because in an ideal, aberration free microscope, the lens diffraction
produces a circularly symmetric PSF that follows this expression. (See section 3.1.) The Gaussian
model was sdected as it is Smpler, faster to compute, and under many circumstances an excellent
approximation to the Bessel modd [7]. It should be noted, however, that dthough both modelsfit the
PSF's central peek, the actua PSF is broader. The effects of this mismatch will be discussed in section
3.2.

2.2. One-dot and two-dot models:
The 2-D one-dot Bessel modd is based on the expression:

dz\/(x-t2 P +(y-t,)?

(pzd) Eq.5
d g

model —tlg

and the 2- D two-dot Bessel modd on the expression:

d, _\/( ) ( ) dzz\/(x' t, 2+(y' t5)2

o, (p,d,) ¢ _ e, (p,d,)0
dot. = giz T Ea. 6
' d1 (%] g dz [4] ;
model , =t,(t, dot, +(1- t,)dot,)
The 2-D one-dot Gaussian mode is based on the expression:
mOdell :tl e(p(' (pz (X' tz))z)e(p(' (pz (X' ts))z) Eq. 7

and the 2- D two-dot Gaussian modd on the expression:
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dot, =expl- (p,(x- t,))2)expl- (p,(y- t,))?)

dot, :exp(— (p,(x- t4))2)exp(— (p,(y- t5))2) Eq. 8
model , =t, (t, dot, + (1- t,)dot,)

where{t, to t;} arethefitting parametersin every case.

It can be argued whether two models are required, as the one-dot modd can be built from the two-
dot model. As will be seen in the next sections, both models are needed to define a goodness- of-fit
criterion that permits one to discriminate between one or two dots in the image. The two-dot mode,
having a greater number of parameters, dways achieves a better fit.

2.3. Fitting the model to the observations

The fitting procedure firg fits the one-dot mode to the observations and then fits the two-dot model.
The decison asto whether there is a Single dot or two dots is one of the critical steps of the method
and will be discussed later. The basic tool that is used to fit the modd is the Matlab function leastsg
(optimization toolbox), using the Levenberg- Marquardt method gpplied to the error function:

onedot : err, = g_ (image_data(x, y]- model, [x, y])’

nyl Edg. 9
twodot : err, = g (image_data[x, y]- model,[x, y])’

X, y=1

The MaLab default vaues are used except for the maximum number of iterations which was
increased to 1,000. Although this maximum number of iterations was occasondly reeched and
consequently it could be assumed that a better fit could be obtained with more iterations, this number
was not increased in order to Smulate a more redistic computationd Stuation where the optimization
time cannat increase indefinitely.

Thefitting procedure required four input vaues.

thex and y coordinates of the initid location. Although in the first experiments this location was
chosen randomly in the neighborhood of the one of the dots, it was thought that a more
redigic sdlection was a padtion of maximum brightness in the image: this (possibly non
unique) postion is probably not the exact location of the dot(s) in noisy images, but it is easy
to locate in red images,

aninitial pesk ratio () for the two-dot model; g = 0.52 in dl the experiments, and;

the size of the subimage to be consdered for fitting. In dl the experiments described here, 40
pixds from the initid location in al four directions were used. Again this is a parameter to
gmulate ared Stuation; alarger subimeage (or the whole available image) could be used. But in
ared case with a larger image, some disturbing factors (other dots for example) could be
included. How large this subimage actudly is, depends on the sampling dendty which, in our
case, is2” 22.28 = 44.56 pixelsum when corrected for binning. (See section 3.2.)

The optimization procedure adjusts the following parameters:
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Location (x, y coordinates) of one or two peaks depending on the model used;
Amplitude of the modd, t,, and,

Peak ratio in the tvo-peak model (). This parameter was not optimized in den Dekker's
work [8], but has proved useful.

The procedure has the following steps.

a) Deeminaion of the initid locaion for the fitting agorithm. It has been chosen in dl the
experiments as the position of the absolute brightness maximum in the subimage consdered. If
there are severa points with the same maximum value, the one closest to the upper- left corner
is chosen.

b) Starting from theinitid location, the one-dot modd is fitted.
c) Sating fromtheinitia location, the two-dot modd is fitted.

In the Den Dekker procedure [8] the two-dot fit Starts from the saddle or minimum point of the error
function located with the single-dot modd. When garting from this locd minimum in our gpplication,
however, the two-dot mode fitting sometimes cannot escape. We have obtained better results starting
the second fitting from another point nearby, for example, theinitid location determined in tep (a).

d) A decision is nade as to whether the best fit is the single-dot or the double-dot modd: a
goodness of-fit criterion has to be computed. For the Gaussan modd only, the resolution
criterion proposed in [2] is aso computed.

2.4. Goodness-of-fit criterion
The measure of the goodness of an individud fit that we use is the mean-square error (mse):

19 2
mse—maerr Eq. 10

where err is the error between the actual and the obtained values for each pixel and N7 is the number
of pixds andyzed. This parameter is the square of the discrepancy, which is used by some authors

(eg. [9]).

The increase in the number of parameters of the two-dot mode implies that it dways obtains better fits
and lower mse vaues; there are Smply more degrees of-freedom. Thus the decision as to whether the
one-dot or two-dot fitsis to be preferred has to be based on a relative measure such as the decrease
in the mse when going from the one- dot to the two-dot mode!:

_mse, - mse,
Xx=—=2—1 Eq. 11
mse,

with mse, and mse, being the mean-square error of the two-dot fit and the one-dot fit, respectively. If
X IS not above a certain threshold, the two-dot fit is discarded. The sdlection of the optima threshold
is a key point that will be discussed in following sections. Figure 4, for example, will show the effect of
two different thresholds.
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3. EXPERIMENTS
Severd experiments have been performed to evauate the possibilities and limitations of this method:

a) experimentswithan ided (diffraction limited) microscope
b) experiments with smulated dots and ared microscope

c) experimentswith real dots acquired with areal microscope.

3.1. Ideal case (diffraction limited)

An ided aberration-free microscope, where the only limiting factor is the diffraction in the lens, will
have acircularly - symmetric PSF, given by:

.2
9
2

PSF(r) = constant EEZM Eq. 12

e r
where J,(*) was defined previoudy anda = 28 NA/| . For NA =1.3and | =600 nm, asin the rest of
the experiments described here, a = 13.614 pm.

A smulation has been conducted on the ability of the fitting procedure to locate two dots in this idedl
case where the PSF is known and the two dots are infinitesmaly smdl. The only non-deterministic
consderation has been the introduction of Poisson noise, as it is dways present, due to the photon-
counting effect.

3.1.1. Method

A st of atificid images has been congructed smulating the effect of two dots at different rdative
distances d (from 1 to 40 pixels). It is assumed that the dots are infinitesmaly smdl so tha the
observed image is the addition of two overlapping PSFs. The actua pesk ratio (g) was kept constant
a avaue of 0.6 even when the initid estimate was g, = 0.52 as described above.

To indude Poisson noise, the smulated images were modified with the Matlab function Poissrnd
(statistics toolbox). The SNR (signal-to-noise rétio) in the noisy image was computed on the area used
to fit the mode, in these experiments, 81x81 pixels. To obtain a gpecific vaue of SNR, the image was
multiplied by a factor before applying Poissrnd and later was divided by the same factor. In this way,
the SNR was adjusted to avalue of approximately 15 dB.

The smulation was done using as the PSF the function ¢,(0.2898 ~ d)/d)? that incdludes unitless
distances d (pixels). The multiplying factor 0.2898 which is used in subsequent experiments was found
for a Zeiss microscope and determined experimentdly by fitting equation 12 to the measured PSF
shown in Figure 1. (See section 3.2.) For adistance d = 1, using equation 12 means an actud distance
of:

. 0.2898 _ 0.28%8
a 13.614 Mm*

=0.021 Mn Eq. 13

thet is, a sampling dengity of 1/0.021mm = 46.96 pixels/mm. This vaue differs dightly from the direct
measurement of the sampling density (44.56 pixes'nm) referred to in section 3.2.
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3.1.2. Results

The reaults of the fitting procedure using the Bessel modd are shown in Table 1 and in Figure 2. The
second and third columns in Table 1 show the error in determining the reative distance and the peak
ratio when there is no noise included in the smulated images. The remaining columns show the results
of 12 experiments performed for each distance d including Poisson noise (SNR = 15.7 dB). Columns
4-8 show the raw results of the two-dot modd fitting. For smadl and large distances, thefit is obvioudy
incorrect and alocal minimum in the error function has been found. In columns 9-13, the same results
are shown, excluding cases where the goodness-of-fit criterion x is below the threshold value of 0.1.

3.1.3. Discussion

For large distances (d > 20), the effect of the finite image Sze is evident. As a large amount of the
intengity distribution of the second dot isleft out of the image, the fit deteriorates. This effect cannot be
consdered of importance as—the distance being large—the initia dot location procedure would not
have problems in detecting the presence of two dots. The single-dot fit then will improve the individua
dots locations, dlowing accurate distance measurements.

For small distances (d < 4), the Stuation is different. Sometimes the procedure fails to locate both dots
and this can be consdered the resolution limit: 4~ 0.021 mm = 0.084 nm. It is interesting to note that
the Rayleigh resolution limit in this case is
0.611 /NA =0.282 mm. Inthisidedl case, thereisa 3.3 improvement in resolution!

3.2. Simulated dots and real microscope

A step towards amore redlistic case has been achieved using the data (PSF and pixel size) from ared
microscope. In this case, usng the experimentaly- obtained PSF from a Zeiss Axioskop microscope
(Zeiss Corporétion, Jena, Germany), Smulated images with one or two dots were “built.” These dots
were assumed to be point-like objects so the smulated image is ether the PSF (one-dot images) or
the overlgp of two PSF functions in different locations and multiplied by different amplitude factors
(two-dot images).

3.2.1 Equipment

The equipment selected was the same as the one used by Netten [4, 5]. In order to use hisimages as
a test s, we used a Zeiss Axioskop microscope with a Photometrics KAF 1400 camera
(Photometrics Corporation, Tucson, Arizond) using 2x2 binning. The objective was an oil-immerson
40x, NA=1.3 Zeiss Plan Neofluor.

The experimentaly obtained sampling density (excluding binning) was known to be 5.57 pixdsum
[10]. Conddering the binning, this meant a sampling dendty of 2.785 pixdsum. The fluorescence
emission wavelength was assumed to be 600 nm; actudly it was 615 mm for the fluorochrome used
but the OTF (opticd transfer function) had been measured for 600 nm.

3.2.2. Obtaining the Model

The PSF was computed by taking the inverse Fourier trandform of the one-dimensiond, 256-point
OTF that had been measured. As this method to measure the OTF uses a spatid interpolation by a
factor of eight, the PSF is obtained in this 8" interpolated space[10]. To achieve greater accuracy, dl
the experiments have been done in this interpolated space. It should be kept in mind thet in dl of the
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gmulation experiments eight pixels in a smulated image are equivdent to one pixe in an actud
(acquired) image. Thisyields asmulated sampling density of 8 2.785 = 22.28 pixd<g/um in the binned
image from above which trandates to 44.56 pixdgum in the unbinned image. Findly, two andytic
models were built: a Gaussan-based and a Bessel-based one.

Gaussan- based model — The PSF was approximated by a Gaussian function with three parameters as
given in eguation 4. This fiting was done with the Matlab function curvefit (optimization toolbox)
which uses the least squares method. Only parameter p, in eguation 4 was actudly used in the
computetions as the function was normalized to one and shifted to the origin. The equationsshownin
section 2.2 were used to build the one-dot and two-dot models.

The modd shows a good fit in Figure 1 to the PSF's main lobe, athough it does not account for the
secondary lobes. These lobes are smdl and initidly it was thought that they would not affect the
location of the image pesks. This mismaich, however, has some effects as will be seen. The full width
a hdf maximum (FWHM) of each pegk in this Gaussan modd is nine pixels while the full width at
10% of the maximum is 25 pixds.

Bessel-based model — The PSF was approximated by the three- parameter function given in equation
3. As in the previous case, the fitting of this equation to the microscope s PSF was done with the
Matlab function curvefit and the 2-D mode obtained by evauating this expression on the 2-D grid.

3.2.3. Results from single-dot experiments
The accuracy of the location of individua dots was measured with a set of experiments with Smulated

images of a sngle dot. These images included Poisson noise with an average SNR of 15 dB as
measured in the subimage.

From 71 cases analyzed with the Bessel model, the mean error in the location of the dot coordinates
(x, y) measured in pixels in the interpolated space was (0.010, 0.006) and the standard deviation
was (0.054, 0.043). With the Gaussan model, 376 cases were studied, obtaining a mean error in the
location of the dot coordinates of (0.004, —0.005) with a standard deviation of (0.051, 0.053). Asa
reference, the position of the brightness maximum in a dot image, when used as an estimate of the dot
location, produced a mean error of (0.085, 0.056) in the first 71 cases and of (0.013, —0.040) inthe
376 remaining ones with standard deviations of (0.874, 0.924) and (0.869, 0.855), respectively.

3.2.4. Results from two-dot experiments

Table 2 shows the results of the experiments with the Gaussan and the Bessd model. The cases
where the goodness-of-fit criterion x was not above a threshold value of 0.1 or 0.4 have been
discarded as meaningless. When Poisson noise is included, the table shows the mean and standard
deviations of severd andyzed cases. 20 with the Gaussan mode and 14 with the Bessel modd. The
columns with the labd “n (%)” show the cases that have been included in the computations, thereby
excluding the cases discarded by alow threshold value x . The percentage of these cases with respect
to the total Smulations done is given in the parentheses. These results are dso presented in Figures 3
and 4 with the former showing the Bessel model and the latter, the Gaussan modd.
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3.2.5. Discussion

Apart from the random variations due to the Poisson noise, there are some systemétic errors that seem
to be atributable to the lack of accuracy in the models used. Both the Gaussian and Bessel models, as
can be seen in Figure 1, do not accurately follow the secondary lobes in the microscope PSF. This
seems to be the reason for the following three effects:

Meaningless results a very short distances — At distances around five or fewer pixes, the fitting
agorithm produces meaningless results. A second “ghost” dot is found a a distance around 14 pixels
(g=0.89) for the Gaussian mode, or 7 to 11 pixels for the Bessdl model. This second dot is possibly
due to the secondary lobes, not considered in the model. These incorrect fittings, however, can be
detected by an appropriate threshold on the goodness- of-fit criterion x .

Slight underestimation of distances when the dots are around 10 to 20 pixels gpart —This seemsto be
due to an increase in the brightness amplitude of the neighboring pesk produced by the secondary
lobes. As this is something the modd does not take into account, the best fit for each peak is moved
dightly towards the other peak leading to an underestimate.

Smadl bias in the measure of peek ratios— The overlap of peaks means that each dot increases the
amplitude of its neighbor. Thus there is some tendency to compensate with differences in their relative
amplitudes. As again this is not modeled, there is a bias in the estimation of a peek ratio towards
g =05. Totest if thiswas the redl reason for the underestimation of the pesk ratio, an experiment has
been done with smulated images having true peek ratios of 0.5, 0.6, and 0.7. The resultsare shownin
Figure 5 and confirm clearly the tendency to estimate a pesk ratio of 0.5. Note that when gisredly
0.5, the error is negligible.

3.3. Real dots acquired with a real microscope

Experiments that used redl fluorescence dot images instead of smulated images were aso performed.
Due to the difficulty in knowing the red distance and pesk rétio between dots in acquired images,
however, artificia images were constructed where an acquired dot was replicated at known distances
and with known pesk ratios.

The red cytogenetic images were extracted from the Netten test set [11] where the dots were
centromeres labeled with a Spectrum Orange probe and acquired with a dud band-pass filter
DAPI/104 with an integration time of 1.0 s.

3.3.1. Model for acquired dots

It was assumed that the red dots that would be analyzed had a diameter of 1 nm. A modd of a
circularly symmetric dot of this diameter was then constructed. First, a 1- D modd was obtained by
convolving the 1-D PSF (see Figure 1) with arectangular function whose width was equd to 1 um or
22 binned pixels. The result of this convolution has a FWHM of 24 pixels and a full-width (FW) at
10% of the maximum of 44 pixels. A Gaussan modd is then fit to this 1-D model. The parameter p,
(asin equation 4) was then used to build the single-dot and the double-dot models.

3.3.2. Images used in the experiments

Two cytogenetic images with severd nuclel were sdlected from the test set. In these eight- bit images,
ten dots from sx different cells were segmented with a mask creasted by a thresholding function
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folowed by five, eght-connected dilation operations (Matlab functions: im2bw and dilate) The
basdline intengity leve (background plus nucleus intensity) was estimated with a bilinear interpolation
from the four corner vaues in the dot’s rectangular image (Matlab function interp2.) The vaues thus
obtained were subtracted from the image. Findly the image was interpolated by eight using bicubic
interpolation (Matlab function: interp2.)

The resulting dots were then analyzed with the standard procedure described above: fitting the single-
dot and double-dot mode. To give anideaof the sizes of the dots, the FWHM's measured on the two
axes for each dot before and after interpolation are shown in Table 3.

Two types of images were crested: images with a single dot and images with two dots. In the latter
case in order to know the accuracy of the method in measuring inter-dot distances and pesk ratios,
the images were congtructed by replicating a single dot a known distances and with a fixed pesk ratio
of g=0.6.

3.3.3. Results with a single dot

For three of the ten dots, the two-dot modd could be neverthdess fit to the Sngle-dot images with
sgnificant results. Table 4 shows the results of this fit. To know whether the bicubic interpolation had
any influence on these reaults, this analysis was repeated with the origind (norrinterpolated) dots that
had been processed soldy by segmentation and remova of the basdine. The results, dso shown in
Table 4, were very smilar. The difference in the distance estimation is below one pixd in the
interpolated space and the maximum difference in peak ratio is 0.02. The table shows that this double-
dot fit is not due to the interpolation but to some feature present in the image.

3.3.4. Results with two (replicated) dots

The range where the distance could be estimated, the error in the distance, and the pesk ratio
measures are shown in Table 5. Two cases are ddinegated a) the results when discarding cases where
x < 0.4 and b) results when discarding cases where x < 0.6.

3.3.5. Discussion

The experiments made with single dots suggest that the most aritica point seems to be the resolution
criterion. It seems that smal asymmetries in the fluorescence probes mean that the double-dot modd
shows a good fit. It remains to be seen whether some of the acquired dots are actudly two partidly
overlapping dots or a single one. As an example, p8 seems a probable candidate to be a double dot.
It is important to understand that the images analyzed were not from redl gene probes but from much
larger centromeric probes. A further study with controlled experiments involving red gene probes
seemsto be appropriate.

The resolution criterion described in [2] has been computed in dl the experiments where the Gaussian
modd was used. In dmogt every case it showed that two point resolution was possible. The only
exception was when testing an image with a single acquired dot, p10. In this case, when trying to fit
the two-dot model, the obtained location for both dots was the same. The explanation of thisissmple:
with more parametersto adjust it is dways possible to find a solution that mathematicaly gives a better
fit.

1C
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4. Conclusions

Using model-based techniques the resolution limits have been increased in severd cases to 3 the
resolution limit that one would expect from a classcd definition such as the Rayleigh limit. The
influence of Poisson noise (a the levels sudied here) does not seem strong. More important is the
influence of modd mis- specifications. When redl images are involved, however, biologicd factors such
as the shape and size of the fluorescence dot images will have to be carefully considered.

Concerning the resolution decision, the goodness- of-fit criterion x provides useful information. Further
studies are needed to know its dependency on the SNR. Perhaps an adaptive threshold might be
defined. It should take into account the leve of the peak maxima as an estimation of the Poisson noise
present in the image.

Findly, our assessment of the influence of ¢, the relative dot intensity, on the entire procedure must be
extended. It is wdl-known, for example, that in interphase cdls, the rdative brightness of dots from
homologous chromosomes can differ sgnificantly [12]. A full study of the accuracy of the reative
intensity measures is, therefore, under way.
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Table 1: Ideal case: diffraction limited microscope with two infinitesimally small objects. Results using the Bessel
based model: Dd is the difference between the obtained and the actual distances (in pixelsin the interpolated space)
and Dgis the difference between the obtained and the actual peak ratios. When Poisson noise isincluded, the table
shows the mean and standard deviation over several simulated images. Three cases are presented: a) without noise
(columns 2,3); b) Poisson noise included, 12 experiments (columns 4-8); ¢) the same as before, but discarding cases
where x<0.1 (columns 9-13). The column “n (%)” shows the number of cases included in the previous computations

and the percentage these cases mean on the total of cases analyzed.

Without noise

Poisson noise; SNR ~15.7 dB

Poisson noise; SNR ~15.7 dB

Actual discarding when X < 0.1

distance Dd Dg |mean pd std pd |mean Dg std Dg n (%) (mean pd std pd |mean Dg std Dg n (%)
1 -0.02 0.006 2.90 3.42 0.246 0.163 12(100) - - - - 0 (0)
2 -0.01 0.002 1.40 1.81 0.184 0.147 12(100) - - - - 0 (0)
3 -0.01 0.001 0.27 0.43 0.072 0.117 12(100) - - - - 0 (0)
4 0.00 0.000 -0.03 0.27 -0.022 0.055 12(100) -0.03 0.27 -0.022 0.055 12 (100)
5 0.00 0.000 0.09 0.18 0.006 0.037 12(100) 0.09 0.18 0.006 0.037 12 (100)
6 0.00 0.000 0.00 0.17 0.004 0.033 12(100) 0.00 0.17 0.004 0.033 12 (100)
7 0.00 0.000 0.08 0.15 0.009 0.015 12(100) 0.08 0.15 0.009 0.015 12 (100)
8 0.00 0.000 0.01 0.08 0.007 0.015 12(100) 0.01 0.08 0.007 0.015 12 (100)
9 0.00 0.000 -0.06 0.10 -0.001 0.009 12(100) -0.05 0.10 -0.001 0.009 12 (100)
10 0.00 0.000 0.07 0.09 -0.001 0.009 12(100) 0.07 0.09 -0.001 0.009 12 (100)
11 0.00 0.000 0.01 0.08 0.000 0.006 12(100) 0.01 0.08 0.000 0.006 12(100)
12 0.00 0.000 0.00 0.07 -0.002 0.005 12(100) 0.00 0.07 -0.002 0.005 12(100)
13 0.00 0.000 -0.02 0.13 0.000 0.005 12(100) -0.02 0.13 0.000 0.005 12(100)
14 0.00 0.000 0.03 0.10 0.002 0.006 12(100) 0.03 0.10 0.002 0.005 12(100)
15 0.00 0.000 0.01 0.07 -0.001 0.003 12(100) 0.01 0.07 -0.001 0.003 12 (100)
16 0.00 0.000 0.03 0.05 0.000 0.003 12(100) 0.03 0.05 0.000 0.003 12 (100)
17 0.00 0.000 0.04 0.12 0.002 0.004 12(100) 0.04 0.12 0.002 0.004 12 (100)
18 0.00 0.000 0.00 0.05 -0.001 0.005 12(100) 0.00 0.05 -0.001 0.005 12 (100)
19 0.00 0.000 0.00 0.11 0.000 0.004 12(100) 0.00 0.11 0.000 0.004 12(100)
20 0.00 0.000 -0.02 0.08 0.001 0.004 12(100) -0.02 0.08 0.001 0.004 12 (100)
21 0.00 0.000 -1.56 0.23 0.012 0.042 12(100) -0.04 0.08 0.000 0.004 11 (92)
22 0.00 0.000 -0.03 0.09 0.001 0.003 12(100) -0.03 0.09 0.001 0.003 12 (100)
23 0.00 0.000 -4.44 8.06 0.068 0.142 12(100) -0.03 0.09 0.000 0.002 9 (75)
24 0.00 0.000 -1.80 0.26 0.024 0.078 12(100) -0.03 0.09 0.001 0.004 11 (92)
25 0.00 0.000 -3.81 8.84 0.029 0.083 12(100) -0.03 0.18 0.028 0.086 10 (83)
26 0.00 0.000 -1.99 6.87 0.013 0.035 12(100) -0.01 0.09 0.003 0.002 11 (92)
27 0.00 0.000 0.05 0.10 -0.001 0.003 12(100) 0.05 0.10 -0.001 0.003 12 (100)
28 0.00 0.000 -4.06 9.61 0.025 0.115 12(100) 0.01 0.09 0.000 0.004 10 (83)
29 0.00 0.000 -4.08 9.53 0.058 0.135 12(100) -0.01 0.06 0.001 0.005 10 (83)
30 0.00 0.000 -16.13 14.33 0.069 0.154 12(100) -0.01 0.04 0.000 0.006 5 (42)
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Table 2: Experiment with two overlapping simulated dots and Gaussian and Bessel models (adjusted to the Zeiss
Axioskop microscope). The table shows the error in the measured distances (Dd ) and peak ratios (Dg) for several
cases. When Poisson noise is included, the table shows the mean (and standard deviation) over several simulated
images, excluding the cases with low x The column “n (%)” represents the number of cases considered to take the
mean and standard deviation and the percentage these cases represent (how many have not been excluded by the

parameter x).

Gaussian (no noise) Gaussian model (Poisson noise; SNR ~13 dB) Bessel (no noise) Bessel model (Poisson noise; SNR ~13 dB)
discarding cases discarding cases when x < 0.4 discarding cases discarding cases when x < 0.4
Actual when y <0.1 when y <0.1
distance

pd Dy mean pd std pd |meanpg std pg | N (%) pd Dy |mean pd std pd [meanpg stdpg | N (%)

4 6.61 0.236 - - - - 0 (0) 3.37 0.086 - - - - 0 (0)

5 3.08 0.118 - - - - 0 (0) 2.42 0.003 - - - - 0 (0)

6 2.04 0.027 - - - - 0 (0) 2.01 -0.017 - - - - 0 (0)

7 1.72 0.000 - - - - 0 (0) 1.69  -0.023 - - - - 0 (0)
8 1.50 -0.011 1.56 0.12 -0.005 0.010 19 (95) 1.41 -0.026 1.46 0.08 -0.026 0.006 | 14 (100)
9 1.30 -0.017 1.32 0.08 -0.019 0.007 20 (100) 1.15 -0.027 1.14 0.10 -0.029 0.007 14 (100)
10 1.11 -0.020 1.14 0.12 -0.019  0.006 20 (100) 0.90 -0.027 0.94 0.10 -0.028 0.006 | 14 (100)
11 0.91 -0.022 0.91 0.12 -0.023  0.007 20 (100) 0.66 -0.026 0.71 0.12 -0.028 0.007 | 14 (100)
12 0.71 -0.022 0.72 0.07 -0.023  0.008 20 (100) 0.43 -0.026 0.42 0.06 -0.026 0.004 | 14 (100)
13 0.51 -0.023 0.54 0.09 -0.024  0.005 | 20 (100) 0.20 -0.025 0.18 0.09 -0.026 0.006 | 14 (100)
14 0.32 -0.023 0.32 0.10 -0.023  0.005 | 20 (100) || -0.02 -0.024 -0.04 0.12 -0.024 0.006 | 14 (100)
15 0.13 -0.022 0.12 0.10 -0.020  0.005 20 (100) || -0.22 -0.023 -0.25 0.09 -0.021 0.005 | 14 (100)
16 -0.04 -0.022 -0.06 0.10 -0.022 0.005 20 (100) -0.40 -0.022 -0.37 0.04 -0.020 0.005 14 (100)
17 -0.20 -0.021 -0.24 0.08 -0.021  0.003 20 (100) || -0.55 -0.021 -0.53 0.12 -0.022 0.004 | 14 (100)
18 -0.33 -0.020 -0.31 0.13 -0.021 0.004 20 (100) -0.65 -0.019 -0.60 0.08 -0.019 0.004 14 (100)
19 -0.44 -0.019 -0.44 0.13 -0.019  0.003 20 (100) || -0.70  -0.018 -0.72 0.11 -0.020 0.006 | 14 (100)
20 -0.52 -0.018 -0.53 0.12 -0.017  0.004 | 20 (100) || -0.70  -0.017 -0.69 0.11 -0.016 0.004 | 14 (100)
21 -0.58 -0.017 -0.58 0.09 -0.016  0.005 20 (100) || -0.65 -0.016 -0.65 0.10 -0.014 0.005 | 14 (100)
22 -0.62 -0.016 -0.61 0.09 -0.016  0.004 | 20 (100) || -0.59 -0.014 -0.61 0.10 -0.015 0.006 | 14 (100)
23 -0.64 -0.015 -0.62 0.11 -0.016  0.004 | 20 (100) || -0.54 -0.013 -0.53 0.09 -0.013 0.005 | 14 (100)
24 -0.64 -0.014 -0.66 0.09 -0.013  0.005 | 20 (100) || -0.49 -0.012 -0.50 0.12 -0.012 0.005 | 14 (100)
25 -0.63 -0.013 -0.61 0.16 -0.013 0.004 20 (100) -0.56 0.044 -0.49 0.15 -0.010 0.005 14 (100)
26 -0.61 -0.012 -0.61 0.11 -0.012  0.005 20 (100) || -0.53 0.045 -0.50 0.07 -0.009 0.003 | 14 (100)
27 -0.59 -0.011 -0.59 0.09 -0.010 0.004 20 (100) -0.51 0.045 -0.48 0.10 -0.008 0.004 14 (100)
28 -0.57 -0.010 -0.57 0.11 -0.009 0.004 | 20 (100) (| -0.50 0.048 -0.47 0.10 -0.008 0.005 | 14 (100)
29 -0.55 -0.009 -0.57 0.14 -0.008 0.003 20 (100) -0.46 -0.008 -0.45 0.08 -0.006 0.004 14 (100)
30 -0.54 -0.007 -0.55 0.10 -0.006  0.004 | 20 (100) (| -0.50 0.051 -0.42 0.15 -0.006 0.004 | 14 (100)
31 -0.53 -0.006 -0.55 0.12 -0.005 0.004 | 20 (100) || -0.43 0.052 -0.46 0.10 -0.005 0.004 | 14 (100)
32 -0.53 -0.005 -0.52 0.12 -0.004  0.005 20 (100) || -0.49 0.053 -0.46 0.14 -0.004 0.005 13 (93)
33 -0.53 -0.004 -0.51 0.10 -0.003  0.004 19 (95) -0.63 0.054 -0.53 0.09 -0.004 0.005 | 14 (100)
34 -0.53 -0.002 -0.54 0.09 -0.002  0.005 19 (95) -0.70 0.061 -0.55 0.15 -0.004 0.004 | 14 (100)
35 -0.52 -0.001 -0.51 0.15 0.001 0.003 16 (80) -0.50 -0.001 -0.47 0.14 -0.002 0.005 12 (86)
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Table 3: Full width at half maximum of the acquired dots used in the experiments, with and without cubic
interpolation.

Dot Label FWVHM FWVHM
without interpolation with interpolation
pl 3x3 21x 19
p2 3x3 24 x 18
p3 4x2 26 x 16
p4 3x3 19x 18
p5 3x2 22x19
p6 3x2 24 x 19
p7 3x2 21 x 18
p8 6x4 42 x 20
p9 3x2 25x 18
pl0 2Xx2 17x 16
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Table 4: Results with a single (acquired) dot with and without interpolation: estimated distance, peak ratios and
goodness-of-fit criterion for two-dot model fitting.

Dot Label Interpolated case Without interpolation
d g X d g X
pl 2099 087 037 | 270 0.88 0.30
p2 2891 078 057 | 364 078 054
p3 1369 070 025 | 162 071 0.22
p4 2730 092 020 | 352 092 0.15
p5 2720 089 018 | 351 090 0.15
p6 2248 078 049 | 292 079 050
p7 2448 085 034 | 309 086 0.38
p8 2166 052 081 | 251 053 0.68
p9 1608 079 035 | 201 081 0.28
pl0 0.00 - 0.00 | 0.00 - 0.00

1€
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Table 5: Results with two (replicated) dots. ranges of the considered distance values and maximum error of the
distance and peak ratio measurements in these ranges are shown for two cases: x3 0.4 andx3 06

DotLabe || Discarding caseswhenx < 0.4 Discarding caseswhenx < 0.6
Range(d) maxDd) maxDg | Range(d) maxDd) maxDg
pl 7-41 12.37 0.24 1041 7.46 0.18
p4 13-48 1.78 0.04 1548 1.72 0.03
p5 14-48 2.26 0.06 17-48 1.95 0.02
p7 11-41 10.18 0.19 17-41 1.20 0.06
pl0 17-43 1.56 0.03 19-43 1.56 0.03
p9 837 8.49 0.19 17-37 0.99 0.03
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FIGURE CAPTIONS

Figure 1. Bessel-based (above) and Gaussian-based (below) models. The models are shown as continuous lines

(—) while the Zeiss Axioskop microscope PSF is shown as dashed line (®®) . The fitting was done as described in
the text.

Figure 2: Results of the two-dot model fit in the ideal case. The simulated imageis from an ideal diffraction-imited
microscope considering Poisson noise. Left: Results of all fits obtained. Right: Discarding cases where X < 0.1. Note
the different vertical scales.

Figure 3: Results of the experiments with simulated dots with the Bessel model for the Zeiss microscope
parameters and including Poisson noise. Left : Discarding cases whereX < 0.1. Right: Discarding cases whereX < 0.4.
Distancesin pixelsarein interpolated space. Note the different vertical scales.

Figure 4: Results of the experiments with simulated dots with the Gaussian model for the Zeiss microscope
parameters and including Poisson noise. Left: Discarding cases wherex < 0.1. Right: Discarding cases wherex < 0.4.
Distancesin pixelsarein interpolated space. Note the different vertical scales.

Figure 5: Simulated dots without noise. Error in the distance estimation and the peak ratio estimation for three
values of the true peak ratio 9= 0.7 (above), 9= 0.6 (middle), andg= 0.5 (below).

18



A. Santos, lanT. Y oung. "Model-Based Resolution: Applying the Theory in Quantitative Microscopy"
Appl. Optics, vol. 39, no. 17, pp. 2948 - 2958. Jun. 2000.

0.08 -

Zeiss PSF

\‘T‘m

20 40 60

Zeiss PSF

20 40 60



A. Santos, lanT. Y oung. "Model-Based Resolution: Applying the Theory in Quantitative Microscopy"
Appl. Optics, vol. 39, no. 17, pp. 2948 - 2958. Jun. 2000.

Figure 1: Bessel-based (above) and Gaussian-based (below) models. The models are shown as continuous lines (—) while the Zeiss

Axioskop microscope PSF is shown as dashed line (* ®) . The fitting was done as described in the text.
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Figure 2: Results of the two-dot model fit in the ideal case. The simulated image is from an ideal diffraction-limited microscope

considering Poisson noise. Left: Results of all fits obtained. Right: Discarding cases wherex < 0.1. Note the different vertical scales.
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Figure 3: Results of the experiments with simulated dots with the Bessel model for the Zeiss microscope parameters and including
Poisson noise. Left: Discarding cases wherex < 0.1. Right: Discarding cases wherex< 0.4. Distancesin pixelsare in interpolated space.

Note the different vertical scales.
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Figure 4: Results of the experiments with simulated dots with the Gaussian model for the Zeiss microscope parameters and including
Poisson noise. Left: Discarding cases wherex < 0.1. Right: Discarding cases whereX< 0.4. Distances in pixels arein interpolated space.

Note the different vertical scales.
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Figure 5: Simulated dots without noise. Error in the distance estimation and the peak ratio estimation for three values of the true peak

ratiog= 0.7 (above), 9= 0.6 (middle), and g = 0.5 (below).



