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ABSTRACT 
Model-based image processing techniques have been proposed as a way to increase the resolution of 
optical microscopes. In this paper, a model based on the microscope's Point Spread Function (PSF) 
is analyzed and the resolution limits achieved with a proposed goodness-of-fit criterion are quantified. 
Several experiments have been performed to evaluate the possibilities and limitations of this method: a) 
experiments with an ideal (diffraction limited) microscope, b) experiments with simulated dots and a 
real microscope, c) experiments with real dots acquired with a real microscope. The results show that 
a threefold increase over classical resolution (e.g. Rayleigh) is possible. 
These results can be affected by model mis-specifications while model corruption, as seen in the effect 
of Poisson noise, seems to be unimportant. This work can be considered as preliminary with the final 
goal being the accurate measurement of various cytogenetic properties, such as gene distributions, in 
labeled preparations.  

1. INTRODUCTION 
The purpose of this work is to analyze the possibilities and limitations of model-based techniques to 
increase the resolution of two-dimensional, digital images acquired through optical microscopes. It is a 
first study in a work whose final goal is the measuring of the distance between genes in interphase 
nuclei and determining their gene distribution [1]. This problem could, in principle, have diagnostic 
implications as the information of whether two particular genes are on the same chromosome (and 
consequently at a fixed distance) could have clinical interpretation. This justifies the effort to obtain 
higher resolution with conventional (widefield) optical microscopes instead of using the more complex 
and expensive confocal microscopes. 
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To know the gene location in the nuclei, fluorescence probes are hybridized to individual genes and 
analyzed as dots whose presence and relative location in the acquired images are the relevant 
information. We, therefore, intend to measure the distances between two observable dots that 
represent the fluorescence light coming from two gene probes that have been appropriately hybridized. 
The relative peak intensities of the dots will also be measured. 

In this paper, we will assume that the two fluorescence dots produce incoherent light as they originate 
from two distinct self-luminous light sources. Although this is only partially true for high-aperture 
microscope objectives, the study of partially coherent light sources is left for future work. 

1.1. Model-based resolution 
Although there are some classical definitions of optical resolution (such as that of Rayleigh) that 
consider only diffraction effects in a lens, according to van den Bos, the resolution limit depends 
actually on the errors in the observed intensity distributions [2, 3]. 

Following [2], the two-point resolution—the resolution of two superimposed and overlapping 
component intensity distributions—can be formulated as a two-component functional model-fitting to 
error–corrupted observations with respect to the locations and amplitudes of both components. 

Then the two-component model can be defined as: 

( ) ( ) ( )222111 ,,,, yxyx yxhyxhyxg ββαββαβα −−+−−=  Eq.  1 

where ( )21 ,ααα =  are the amplitudes, ( )2121 ,,, yyxx βββββ =  the peak locations of both 
components, and h(x,y) is the component distribution. This equation can also be expressed as: 

( ) ( ) ( ) ( ){ }22110 ,1,,,, yxyx yxhyxhyxg ββγββγαγβα −−−+−−=  Eq.  2 

with γ as the peak ratio ( )211 αααγ +=  and 210 ααα += . 

Throughout this work, this model will be fitted to the error–free or noise–corrupted observations, 
trying to minimize the least squares criterion. The observations can include systematic errors (model 
mis-specification) and (in a well designed microscope) non-systematic or stochastic (Poisson noise) 
errors. 

2. DOT LOCATION PROCEDURE 
Keeping in mind the problem of locating fluorescence dots in cytogenetic applications, it will be 
assumed that a basic tool for a first rough location of the dots is already available. Perhaps a simple 
thresholding method will be used or more elaborate tools as described in [4-6]. The purpose of the 
work presented here is to refine this initial guess. A decision has to be made as to whether each of the 
dots located is actually one or two dots. In the two-dimensional projection of the three dimensional 
reality, one dot could be “hiding” behind a second one. If two dots are located close to one another, 
then their distance and peak ratio have to be measured as accurately as possible. 
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2.1. Building the model 
The observation model has been obtained by approximating the microscope’s point spread function 
(PSF) by an analytical function. As shown in Figure 1, two different kinds of mathematical functions 
have been tested—a Bessel-based model and a Gaussian-based model. 

The 1-D Bessel model for a single dot is: 
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where J1(•) is a Bessel function of the first kind and p1, p2 and p3 are the model parameters. 

The 1-D Gaussian model for a single dot is: 

( )( )2
321 )(exp)( pxppxh −−=  Eq.  4 

The 2-D model is obtained by simply evaluating these functions on a 2-D grid. 

The Bessel model was chosen because in an ideal, aberration-free microscope, the lens diffraction 
produces a circularly symmetric PSF that follows this expression. (See section 3.1.) The Gaussian 
model was selected as it is simpler, faster to compute, and under many circumstances an excellent 
approximation to the Bessel model [7]. It should be noted, however, that although both models fit the 
PSF's central peak, the actual PSF is broader. The effects of this mismatch will be discussed in section 
3.2. 

2.2. One-dot and two-dot models: 
The 2-D one-dot Bessel model is based on the expression: 

( ) ( )
( ) 2

21
11

2
3

2
2

model 






=

−+−=

d
dpJ

t

tytxd

 Eq.  5 

and the 2-D two-dot Bessel model on the expression: 

( ) ( ) ( ) ( )
( ) ( )

( )261612

2

2

221
2

2

1

121
1

2
5

2
42

2
3

2
21

)1(model

dotdot

dottdottt

d
dpJ

d
dpJ

tytxdtytxd

−+=









=








=

−+−=−+−=

 Eq.  6 

The 2-D one-dot Gaussian model is based on the expression: 

( )( ) ( )( )2
32

2
2211 )(exp)(expmodel txptxpt −−−−=  Eq.  7 

and the 2-D two-dot Gaussian model on the expression: 
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where {t1 to t6} are the fitting parameters in every case. 

It can be argued whether two models are required, as the one-dot model can be built from the two-
dot model. As will be seen in the next sections, both models are needed to define a goodness-of-fit 
criterion that permits one to discriminate between one or two dots in the image. The two-dot model, 
having a greater number of parameters, always achieves a better fit. 

2.3. Fitting the model to the observations 
The fitting procedure first fits the one-dot model to the observations and then fits the two-dot model. 
The decision as to whether there is a single dot or two dots is one of the critical steps of the method 
and will be discussed later. The basic tool that is used to fit the model is the Matlab function leastsq 
(optimization toolbox), using the Levenberg-Marquardt method applied to the error function: 
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 Eq.  9 

The MatLab default values are used except for the maximum number of iterations which was 
increased to 1,000. Although this maximum number of iterations was occasionally reached and 
consequently it could be assumed that a better fit could be obtained with more iterations, this number 
was not increased in order to simulate a more realistic computational situation where the optimization 
time cannot increase indefinitely.  

The fitting procedure required four input values: 

• the x  and y coordinates of the initial location. Although in the first experiments this location was 
chosen randomly in the neighborhood of the one of the dots, it was thought that a more 
realistic selection was a position of maximum brightness in the image: this (possibly non-
unique) position is probably not the exact location of the dot(s) in noisy images, but it is easy 
to locate in real images; 

• an initial peak ratio (γo) for the two-dot model; γo = 0.52 in all the experiments, and; 

• the size of the subimage to be considered for fitting. In all the experiments described here, 40 
pixels from the initial location in all four directions were used. Again this is a parameter to 
simulate a real situation; a larger subimage (or the whole available image) could be used. But in 
a real case with a larger image, some disturbing factors (other dots for example) could be 
included. How large this subimage actually is, depends on the sampling density which, in our 
case, is 2 × 22.28 = 44.56 pixels/µm when corrected for binning. (See section 3.2.) 

The optimization procedure adjusts the following parameters: 
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• Location (x, y coordinates) of one or two peaks depending on the model used; 

• Amplitude of the model, t1, and; 

• Peak ratio in the two-peak model (γ). This parameter was not optimized in den Dekker's 
work [8], but has proved useful.  

The procedure has the following steps: 

a) Determination of the initial location for the fitting algorithm. It has been chosen in all the 
experiments as the position of the absolute brightness maximum in the subimage considered. If 
there are several points with the same maximum value, the one closest to the upper-left corner 
is chosen. 

b) Starting from the initial location, the one-dot model is fitted. 

c) Starting from the initial location, the two-dot model is fitted.  

In the Den Dekker procedure [8] the two-dot fit starts from the saddle or minimum point of the error 
function located with the single-dot model. When starting from this local minimum in our application, 
however, the two-dot model fitting sometimes cannot escape. We have obtained better results starting 
the second fitting from another point nearby, for example, the initial location determined in step (a).  

d) A decision is made as to whether the best fit is the single-dot or the double-dot model: a 
goodness-of-fit criterion has to be computed. For the Gaussian model only, the resolution 
criterion proposed in [2] is also computed.  

2.4. Goodness-of-fit criterion 
The measure of the goodness of an individual fit that we use is the mean-square error (mse): 

∑= 2
2

err1mse
N

 Eq.  10 

where err is the error between the actual and the obtained values for each pixel and N2 is the number 
of pixels analyzed. This parameter is the square of the discrepancy, which is used by some authors 
(e.g. [9]). 

The increase in the number of parameters of the two-dot model implies that it always obtains better fits 
and lower mse values; there are simply more degrees-of-freedom. Thus the decision as to whether the 
one-dot or two-dot fits is to be preferred has to be based on a relative measure such as the decrease 
in the mse when going from the one-dot to the two-dot model:  

2

12

mse
msemse −

=ξ  Eq.  11 

with mse2 and mse1 being the mean-square error of the two-dot fit and the one-dot fit, respectively. If 
ξ  is not above a certain threshold, the two-dot fit is discarded. The selection of the optimal threshold 
is a key point that will be discussed in following sections. Figure 4, for example, will show the effect of 
two different thresholds. 
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3. EXPERIMENTS 
Several experiments have been performed to evaluate the possibilities and limitations of this method: 

a) experiments with an ideal (diffraction limited) microscope 

b) experiments with simulated dots and a real microscope 

c) experiments with real dots acquired with a real microscope. 

3.1. Ideal case (diffraction limited) 
An ideal aberration-free microscope, where the only limiting factor is the diffraction in the lens, will 
have a circularly-symmetric PSF, given by: 

2
1 )(

2constant)(PSF 






=
r
arJ

r  Eq.  12 

where J1(•) was defined previously and a = 2ð NA/λ. For NA = 1.3 and λ = 600 nm, as in the rest of 
the experiments described here, a = 13.614 µm-1. 

A simulation has been conducted on the ability of the fitting procedure to locate two dots in this ideal 
case where the PSF is known and the two dots are infinitesimally small. The only non-deterministic 
consideration has been the introduction of Poisson noise, as it is always present, due to the photon-
counting effect. 

3.1.1. Method 

A set of artificial images has been constructed simulating the effect of two dots at different relative 
distances d (from 1 to 40 pixels). It is assumed that the dots are infinitesimally small so that the 
observed image is the addition of two overlapping PSFs. The actual peak ratio (γ) was kept constant 
at a value of 0.6 even when the initial estimate was γo = 0.52 as described above. 

To include Poisson noise, the simulated images were modified with the Matlab function Poissrnd 
(statistics toolbox). The SNR (signal-to-noise ratio) in the noisy image was computed on the area used 
to fit the model, in these experiments, 81x81 pixels. To obtain a specific value of SNR, the image was 
multiplied by a factor before applying Poissrnd and later was divided by the same factor. In this way, 
the SNR was adjusted to a value of approximately 15 dB.  

The simulation was done using as the PSF the function (J1(0.2898 × d)/d)2 that includes unitless 
distances d (pixels). The multiplying factor 0.2898 which is used in subsequent experiments was found 
for a Zeiss microscope and determined experimentally by fitting equation 12 to the measured PSF 
shown in Figure 1. (See section 3.2.) For a distance d = 1, using equation 12 means an actual distance 
of: 

r =
0 .2898

a
=

0 .2898

13 .614 µm-1 = 0 .021 µm  Eq.  13 

that is, a sampling density of 1/0.021µm = 46.96 pixels/µm. This value differs slightly from the direct 
measurement of the sampling density (44.56 pixels/µm) referred to in section 3.2. 
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3.1.2. Results 

The results of the fitting procedure using the Bessel model are shown in Table 1 and in Figure 2. The 
second and third columns in Table 1 show the error in determining the relative distance and the peak 
ratio when there is no noise included in the simulated images. The remaining columns show the results 
of 12 experiments performed for each distance d including Poisson noise (SNR = 15.7 dB). Columns 
4-8 show the raw results of the two-dot model fitting. For small and large distances, the fit is obviously 
incorrect and a local minimum in the error function has been found. In columns 9-13, the same results 
are shown, excluding cases where the goodness-of-fit criterion ξ is below the threshold value of 0.1. 

3.1.3. Discussion 

For large distances (d > 20), the effect of the finite image size is evident. As a large amount of the 
intensity distribution of the second dot is left out of the image, the fit deteriorates. This effect cannot be 
considered of importance as—the distance being large—the initial dot location procedure would not 
have problems in detecting the presence of two dots. The single -dot fit then will improve the individual 
dots’ locations, allowing accurate distance measurements. 

For small distances (d < 4), the situation is different. Sometimes the procedure fails to locate both dots 
and this can be considered the resolution limit: 4 × 0.021 µm = 0.084 µm. It is interesting to note that 
the Rayleigh resolution limit in this case is  
0.61λ / NA = 0.282 µm. In this ideal case, there is a 3.3 improvement in resolution! 

3.2. Simulated dots and real microscope 
A step towards a more realistic case has been achieved using the data (PSF and pixel size) from a real 
microscope. In this case, using the experimentally-obtained PSF from a Zeiss Axioskop microscope 
(Zeiss Corporation, Jena, Germany), simulated images with one or two dots were “built.” These dots 
were assumed to be point-like objects so the simulated image is either the PSF (one-dot images) or 
the overlap of two PSF functions in different locations and multiplied by different amplitude factors 
(two-dot images). 

3.2.1 Equipment 

The equipment selected was the same as the one used by Netten [4, 5]. In order to use his images as 
a test set, we used a Zeiss Axioskop microscope with a Photometrics KAF 1400 camera 
(Photometrics Corporation, Tucson, Arizona) using 2x2 binning. The objective was an oil–immersion 
40x, NA=1.3 Zeiss Plan Neofluor. 

The experimentally obtained sampling density (excluding binning) was known to be 5.57 pixels/µm 
[10]. Considering the binning, this meant a sampling density of 2.785 pixels/µm. The fluorescence 
emission wavelength was assumed to be 600 nm; actually it was 615 nm for the fluorochrome used 
but the OTF (optical transfer function) had been measured for 600 nm. 

3.2.2. Obtaining the Model 

The PSF was computed by taking the inverse Fourier transform of the one-dimensional, 256-point 
OTF that had been measured. As this method to measure the OTF uses a spatial interpolation by a 
factor of eight, the PSF is obtained in this 8× interpolated space [10]. To achieve greater accuracy, all 
the experiments have been done in this interpolated space. It should be kept in mind that in all of the 
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simulation experiments eight  pixels in a simulated image are equivalent to one pixel in an actual 
(acquired) image. This yields a simulated sampling density of 8×2.785 = 22.28 pixels/µm in the binned 
image from above which translates to 44.56 pixels/µm in the unbinned image. Finally, two analytic 
models were built: a Gaussian-based and a Bessel-based one. 

Gaussian-based model – The PSF was approximated by a Gaussian function with three parameters as 
given in equation 4. This fitting was done with the Matlab function curvefit (optimization toolbox) 
which uses the least squares method. Only parameter p2 in equation 4 was actually used in the 
computations as the function was normalized to one and shifted to the origin. The equations shown in 
section 2.2 were used to build the one-dot and two-dot models. 

The model shows a good fit in Figure 1 to the PSF's main lobe, although it does not account for the 
secondary lobes. These lobes are small and initially it was thought that they would not affect the 
location of the image peaks. This mismatch, however, has some effects as will be seen. The full width 
at half maximum (FWHM) of each peak in this Gaussian model is nine pixels while the full width at 
10% of the maximum is 25 pixels. 

Bessel-based model – The PSF was approximated by the three-parameter function given in equation 
3. As in the previous case, the fitting of this equation to the microscope’s PSF was done with the 
Matlab function curvefit and the 2-D model obtained by evaluating this expression on the 2-D grid. 

3.2.3. Results from single-dot experiments 

The accuracy of the location of individual dots was measured with a set of experiments with simulated 
images of a single dot. These images included Poisson noise with an average SNR of 15 dB as 
measured in the subimage.  

From 71 cases analyzed with the Bessel model, the mean error in the location of the dot coordinates 
(x , y) measured in pixels in the interpolated space was (–0.010, 0.006) and the standard deviation 
was (0.054, 0.043). With the Gaussian model, 376 cases were studied, obtaining a mean error in the 
location of the dot coordinates of (0.004, –0.005) with a standard deviation of (0.051, 0.053). As a 
reference, the position of the brightness maximum in a dot image, when used as an estimate of the dot 
location, produced a mean error of (0.085, 0.056) in the first 71 cases and of (0.013, –0.040) in the 
376 remaining ones with standard deviations of (0.874, 0.924) and (0.869, 0.855), respectively.  

3.2.4. Results from two-dot experiments 

Table 2 shows the results of the experiments with the Gaussian and the Bessel model. The cases 
where the goodness-of-fit criterion ξ  was not above a threshold value of 0.1 or 0.4 have been 
discarded as meaningless. When Poisson noise is included, the table shows the mean and standard 
deviations of several analyzed cases: 20 with the Gaussian model and 14 with the Bessel model. The 
columns with the label “n (%)” show the cases that have been included in the computations, thereby 
excluding the cases discarded by a low threshold value ξ . The percentage of these cases with respect 
to the total simulations done is given in the parentheses. These results are also presented in Figures 3 
and 4 with the former showing the Bessel model and the latter, the Gaussian model. 
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3.2.5. Discussion 

Apart from the random variations due to the Poisson noise, there are some systematic errors that seem 
to be attributable to the lack of accuracy in the models used. Both the Gaussian and Bessel models, as 
can be seen in Figure 1, do not accurately follow the secondary lobes in the microscope PSF. This 
seems to be the reason for the following three effects: 

Meaningless results at very short distances – At distances around five or fewer pixels, the fitting 
algorithm produces meaningless results. A second “ghost” dot is found at a distance around 14 pixels 
(γ = 0.89) for the Gaussian model, or 7 to 11 pixels for the Bessel model. This second dot is possibly 
due to the secondary lobes, not considered in the model. These incorrect fittings, however, can be 
detected by an appropriate threshold on the goodness-of-fit criterion ξ . 

Slight underestimation of distances when the dots are around 10 to 20 pixels apart –This seems to be 
due to an increase in the brightness amplitude of the neighboring peak produced by the secondary 
lobes. As this is something the model does not take into account, the best fit for each peak is moved 
slightly towards the other peak leading to an underestimate. 

Small bias in the measure of peak ratios – The overlap of peaks means that each dot increases the 
amplitude of its neighbor. Thus there is some tendency to compensate with differences in their relative 
amplitudes. As again this is not modeled, there is a bias in the estimation of a peak ratio towards 
γ = 0.5. To test if this was the real reason for the underestimation of the peak ratio, an experiment has 
been done with simulated images having true peak ratios of 0.5, 0.6, and 0.7. The results are shown in 
Figure 5 and confirm clearly the tendency to estimate a peak ratio of 0.5. Note that when γ is really 
0.5, the error is negligible. 

3.3. Real dots acquired with a real microscope 
Experiments that used real fluorescence dot images instead of simulated images were also performed. 
Due to the difficulty in knowing the real distance and peak ratio between dots in acquired images, 
however, art ificial images were constructed where an acquired dot was replicated at known distances 
and with known peak ratios. 

The real cytogenetic images were extracted from the Netten test set [11] where the dots were 
centromeres labeled with a Spectrum Orange probe and acquired with a dual band-pass filter 
DAPI/IO4 with an integration time of 1.0 s. 

3.3.1. Model for acquired dots 

It was assumed that the real dots that would be analyzed had a diameter of 1 µm. A model of a 
circularly symmetric dot of this diameter was then constructed. First, a 1-D model was obtained by 
convolving the 1-D PSF (see Figure 1) with a rectangular function whose width was equal to 1 µm or 
22 binned pixels. The result of this convolution has a FWHM of 24 pixels and a full-width (FW) at 
10% of the maximum of 44 pixels. A Gaussian model is then fit to this 1-D model. The parameter p2 
(as in equation 4) was then used to build the single-dot and the double -dot models. 

3.3.2. Images used in the experiments 

Two cytogenetic images with several nuclei were selected from the test set. In these eight-bit images, 
ten dots from six different cells were segmented with a mask created by a thresholding function 
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followed by five, eight-connected dilation operations (Matlab functions: im2bw and dilate.) The 
baseline intensity level (background plus nucleus intensity) was estimated with a bilinear interpolation 
from the four corner values in the dot’s rectangular image (Matlab function interp2.) The values thus 
obtained were subtracted from the image. Finally the image was interpolated by eight using bicubic 
interpolation (Matlab function: interp2.) 

The resulting dots were then analyzed with the standard procedure described above: fitting the single -
dot and double-dot model. To give an idea of the sizes of the dots, the FWHMs measured on the two 
axes for each dot before and after interpolation are shown in Table 3. 

Two types of images were created: images with a single dot and images with two dots. In the latter 
case in order to know the accuracy of the method in measuring inter-dot distances and peak ratios, 
the images were constructed by replicating a single dot at known distances and with a fixed peak ratio 
of γ = 0.6. 

3.3.3. Results with a single dot 

For three of the ten dots, the two-dot model could be nevertheless fit to the single -dot images with 
significant results. Table 4 shows the results of this fit. To know whether the bicubic interpolation had 
any influence on these results, this analysis was repeated with the original (non-interpolated) dots that 
had been processed solely by segmentation and removal of the baseline. The results, also shown in 
Table 4, were very similar. The difference in the distance estimation is below one pixel in the 
interpolated space and the maximum difference in peak ratio is 0.02. The table shows that this double-
dot fit is not due to the interpolation but to some feature present in the image. 

3.3.4. Results with two (replicated) dots 

The range where the distance could be estimated, the error in the distance, and the peak ratio 
measures are shown in Table 5. Two cases are delineated a) the results when discarding cases where 
ξ  < 0.4 and b) results when discarding cases where ξ < 0.6. 

3.3.5. Discussion 

The experiments made with single dots suggest that the most critical point seems to be the resolution 
criterion. It seems that small asymmetries in the fluorescence probes mean that the double-dot model 
shows a good fit. It remains to be seen whether some of the acquired dots are actually two partially 
overlapping dots or a single one. As an example, p8 seems a probable candidate to be a double dot. 
It is important to understand that the images analyzed were not from real gene probes but from much 
larger centromeric probes. A further study with controlled experiments involving real gene probes 
seems to be appropriate. 

The resolution criterion described in [2] has been computed in all the experiments where the Gaussian 
model was used. In almost every case it showed that two point resolution was possible. The only 
exception was when testing an image with a single acquired dot, p10. In this case, when trying to fit 
the two-dot model, the obtained location for both dots was the same. The explanation of this is simple: 
with more parameters to adjust it is always possible to find a solution that mathematically gives a better 
fit. 



A. Santos, Ian T. Young. "Model-Based Resolution: Applying the Theory in Quantitative Microscopy" 
 Appl. Optics , vol. 39, no. 17, pp. 2948 - 2958. Jun. 2000. 

 

 11

4. Conclusions 
Using model-based techniques the resolution limits have been increased in several cases to 3× the 
resolution limit that one would expect from a classical definition such as the Rayleigh limit. The 
influence of Poisson noise (at the levels studied here) does not seem strong. More important is the 
influence of model mis-specifications. When real images are involved, however, biological factors such 
as the shape and size of the fluorescence dot images will have to be carefully considered. 

Concerning the resolution decision, the goodness-of-fit criterion ξ  provides useful information. Further 
studies are needed to know its dependency on the SNR. Perhaps an adaptive threshold  might be 
defined. It should take into account the level of the peak maxima as an estimation of the Poisson noise 
present in the image. 

Finally, our assessment of the influence of γ , the relative dot intensity, on the entire procedure must be 
extended. It is well-known, for example, that in interphase cells, the relative brightness of dots from 
homologous chromosomes can differ significantly [12]. A full study of the accuracy of the relative 
intensity measures is, therefore, under way.  
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Table 1: Ideal case: diffraction limited microscope with two infinitesimally small objects. Results using the Bessel-
based model: ∆d is the difference between the obtained and the actual distances (in pixels in the interpolated space) 
and ∆γ is the difference between the obtained and the actual peak ratios. When Poisson noise is included, the table 
shows the mean and standard deviation over several simulated images. Three cases are presented: a) without noise 
(columns  2,3); b) Poisson noise included, 12 experiments (columns 4-8); c) the same as before, but discarding cases 
where ξ<0.1 (columns 9-13). The column “n (%)” shows the number of cases included in the previous computations 
and the percentage these cases mean on the total of cases analyzed. 
 

 

 

W i t h o u t  n o i s e P o i s s o n  n o i s e ;  S N R  ~ 1 5 . 7  d B P o i s s o n  n o i s e ;  S N R  ~ 1 5 . 7  d B
A c t u a l d i s c a r d i n g  w h e n ξ <  0 . 1

d i s t a n c e ∆d ∆γ m e a n ∆d s t d ∆d m e a n ∆γ s t d ∆γ n  ( % ) m e a n ∆d s t d ∆ d m e a n ∆γ s t d ∆γ n  ( % )

1 - 0 . 0 2 0 . 0 0 6 2 . 9 0 3 . 4 2 0 . 2 4 6 0 . 1 6 3 1 2 ( 1 0 0 ) – – – – 0  ( 0 )

2 - 0 . 0 1 0 . 0 0 2 1 . 4 0 1 . 8 1 0 . 1 8 4 0 . 1 4 7 1 2 ( 1 0 0 ) – – – – 0  ( 0 )

3 - 0 . 0 1 0 . 0 0 1 0 . 2 7 0 . 4 3 0 . 0 7 2 0 . 1 1 7 1 2 ( 1 0 0 ) – – – – 0  ( 0 )

4 0 . 0 0 0 . 0 0 0 - 0 . 0 3 0 . 2 7 - 0 . 0 2 2 0 . 0 5 5 1 2 ( 1 0 0 ) - 0 . 0 3 0 . 2 7 - 0 . 0 2 2 0 . 0 5 5 1 2  ( 1 0 0 )

5 0 . 0 0 0 . 0 0 0 0 . 0 9 0 . 1 8 0 . 0 0 6 0 . 0 3 7 1 2 ( 1 0 0 ) 0 . 0 9 0 . 1 8 0 . 0 0 6 0 . 0 3 7 1 2  ( 1 0 0 )

6 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 1 7 0 . 0 0 4 0 . 0 3 3 1 2 ( 1 0 0 ) 0 . 0 0 0 . 1 7 0 . 0 0 4 0 . 0 3 3 1 2  ( 1 0 0 )

7 0 . 0 0 0 . 0 0 0 0 . 0 8 0 . 1 5 0 . 0 0 9 0 . 0 1 5 1 2 ( 1 0 0 ) 0 . 0 8 0 . 1 5 0 . 0 0 9 0 . 0 1 5 1 2  ( 1 0 0 )

8 0 . 0 0 0 . 0 0 0 0 . 0 1 0 . 0 8 0 . 0 0 7 0 . 0 1 5 1 2 ( 1 0 0 ) 0 . 0 1 0 . 0 8 0 . 0 0 7 0 . 0 1 5 1 2  ( 1 0 0 )

9 0 . 0 0 0 . 0 0 0 - 0 . 0 6 0 . 1 0 - 0 . 0 0 1 0 . 0 0 9 1 2 ( 1 0 0 ) - 0 . 0 5 0 . 1 0 - 0 . 0 0 1 0 . 0 0 9 1 2  ( 1 0 0 )

1 0 0 . 0 0 0 . 0 0 0 0 . 0 7 0 . 0 9 - 0 . 0 0 1 0 . 0 0 9 1 2 ( 1 0 0 ) 0 . 0 7 0 . 0 9 - 0 . 0 0 1 0 . 0 0 9 1 2  ( 1 0 0 )

1 1 0 . 0 0 0 . 0 0 0 0 . 0 1 0 . 0 8 0 . 0 0 0 0 . 0 0 6 1 2 ( 1 0 0 ) 0 . 0 1 0 . 0 8 0 . 0 0 0 0 . 0 0 6 1 2 ( 1 0 0 )

1 2 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 7 - 0 . 0 0 2 0 . 0 0 5 1 2 ( 1 0 0 ) 0 . 0 0 0 . 0 7 - 0 . 0 0 2 0 . 0 0 5 1 2 ( 1 0 0 )

1 3 0 . 0 0 0 . 0 0 0 - 0 . 0 2 0 . 1 3 0 . 0 0 0 0 . 0 0 5 1 2 ( 1 0 0 ) - 0 . 0 2 0 . 1 3 0 . 0 0 0 0 . 0 0 5 1 2 ( 1 0 0 )

1 4 0 . 0 0 0 . 0 0 0 0 . 0 3 0 . 1 0 0 . 0 0 2 0 . 0 0 6 1 2 ( 1 0 0 ) 0 . 0 3 0 . 1 0 0 . 0 0 2 0 . 0 0 5 1 2 ( 1 0 0 )

1 5 0 . 0 0 0 . 0 0 0 0 . 0 1 0 . 0 7 - 0 . 0 0 1 0 . 0 0 3 1 2 ( 1 0 0 ) 0 . 0 1 0 . 0 7 - 0 . 0 0 1 0 . 0 0 3 1 2  ( 1 0 0 )

1 6 0 . 0 0 0 . 0 0 0 0 . 0 3 0 . 0 5 0 . 0 0 0 0 . 0 0 3 1 2 ( 1 0 0 ) 0 . 0 3 0 . 0 5 0 . 0 0 0 0 . 0 0 3 1 2  ( 1 0 0 )

1 7 0 . 0 0 0 . 0 0 0 0 . 0 4 0 . 1 2 0 . 0 0 2 0 . 0 0 4 1 2 ( 1 0 0 ) 0 . 0 4 0 . 1 2 0 . 0 0 2 0 . 0 0 4 1 2  ( 1 0 0 )

1 8 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 5 - 0 . 0 0 1 0 . 0 0 5 1 2 ( 1 0 0 ) 0 . 0 0 0 . 0 5 - 0 . 0 0 1 0 . 0 0 5 1 2  ( 1 0 0 )

1 9 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 1 1 0 . 0 0 0 0 . 0 0 4 1 2 ( 1 0 0 ) 0 . 0 0 0 . 1 1 0 . 0 0 0 0 . 0 0 4 1 2 ( 1 0 0 )

2 0 0 . 0 0 0 . 0 0 0 - 0 . 0 2 0 . 0 8 0 . 0 0 1 0 . 0 0 4 1 2 ( 1 0 0 ) - 0 . 0 2 0 . 0 8 0 . 0 0 1 0 . 0 0 4 1 2  ( 1 0 0 )

2 1 0 . 0 0 0 . 0 0 0 - 1 . 5 6 0 . 2 3 0 . 0 1 2 0 . 0 4 2 1 2 ( 1 0 0 ) - 0 . 0 4 0 . 0 8 0 . 0 0 0 0 . 0 0 4 1 1  ( 9 2 )

2 2 0 . 0 0 0 . 0 0 0 - 0 . 0 3 0 . 0 9 0 . 0 0 1 0 . 0 0 3 1 2 ( 1 0 0 ) - 0 . 0 3 0 . 0 9 0 . 0 0 1 0 . 0 0 3 1 2  ( 1 0 0 )

2 3 0 . 0 0 0 . 0 0 0 - 4 . 4 4 8 . 0 6 0 . 0 6 8 0 . 1 4 2 1 2 ( 1 0 0 ) - 0 . 0 3 0 . 0 9 0 . 0 0 0 0 . 0 0 2 9  ( 7 5 )

2 4 0 . 0 0 0 . 0 0 0 - 1 . 8 0 0 . 2 6 0 . 0 2 4 0 . 0 7 8 1 2 ( 1 0 0 ) - 0 . 0 3 0 . 0 9 0 . 0 0 1 0 . 0 0 4 1 1  ( 9 2 )

2 5 0 . 0 0 0 . 0 0 0 - 3 . 8 1 8 . 8 4 0 . 0 2 9 0 . 0 8 3 1 2 ( 1 0 0 ) - 0 . 0 3 0 . 1 8 0 . 0 2 8 0 . 0 8 6 1 0  ( 8 3 )

2 6 0 . 0 0 0 . 0 0 0 - 1 . 9 9 6 . 8 7 0 . 0 1 3 0 . 0 3 5 1 2 ( 1 0 0 ) - 0 . 0 1 0 . 0 9 0 . 0 0 3 0 . 0 0 2 1 1  ( 9 2 )

2 7 0 . 0 0 0 . 0 0 0 0 . 0 5 0 . 1 0 - 0 . 0 0 1 0 . 0 0 3 1 2 ( 1 0 0 ) 0 . 0 5 0 . 1 0 - 0 . 0 0 1 0 . 0 0 3 1 2  ( 1 0 0 )

2 8 0 . 0 0 0 . 0 0 0 - 4 . 0 6 9 . 6 1 0 . 0 2 5 0 . 1 1 5 1 2 ( 1 0 0 ) 0 . 0 1 0 . 0 9 0 . 0 0 0 0 . 0 0 4 1 0  ( 8 3 )

2 9 0 . 0 0 0 . 0 0 0 - 4 . 0 8 9 . 5 3 0 . 0 5 8 0 . 1 3 5 1 2 ( 1 0 0 ) - 0 . 0 1 0 . 0 6 0 . 0 0 1 0 . 0 0 5 1 0  ( 8 3 )

3 0 0 . 0 0 0 . 0 0 0 - 1 6 . 1 3 1 4 . 3 3 0 . 0 6 9 0 . 1 5 4 1 2 ( 1 0 0 ) - 0 . 0 1 0 . 0 4 0 . 0 0 0 0 . 0 0 6 5  ( 4 2 )  
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Table 2: Experiment with two overlapping simulated dots and Gaussian and Bessel models (adjusted to the Zeiss 
Axioskop microscope). The table shows the error in the measured distances (∆d ) and peak ratios (∆γ) for several 
cases. When Poisson noise is included, the table shows the mean (and standard deviation) over several simulated 
images, excluding the cases with low ξ. The column “n (%)” represents the number of cases considered to take the 
mean and standard deviation and the percentage these cases represent (how many have not been excluded by the 
parameter ξ). 
 

 

Gauss ian  (no noise) Gauss ian  model  (Poisson  no ise ;  SNR ~13 dB) Besse l  (no  noise) Besse l  mode l  (Po i s son  no i se ;  SNR ~13  dB)

discarding cases discarding cases when ξ  < 0.4 discarding cases discarding cases when ξ < 0.4

A c t u a l w h e n ξ  < 0.1 w h e n ξ  < 0.1
distance

∆d ∆γ m e a n ∆d s td ∆d m e a n ∆γ s td ∆γ n  ( % ) ∆d ∆γ m e a n ∆d s td ∆d m e a n ∆γ s td ∆γ n  ( % )

4 6 .61 0 .236 – – – – 0  (0 ) 3 .37 0 .086 – – – – 0  (0 )
5 3 .08 0 .118 – – – – 0  (0 ) 2 .42 0 .003 – – – – 0  (0 )

6 2 .04 0 .027 – – – – 0  (0 ) 2 .01 -0 .017 – – – – 0  (0 )
7 1 .72 0 .000 – – – – 0  (0 ) 1 .69 -0 .023 – – – – 0  (0 )
8 1 .50 -0 .011 1 .56 0 .12 -0 .005 0 .010 19  (95) 1 .41 -0 .026 1 .46 0 .08 -0 .026 0 .006 14  (100)
9 1 .30 -0 .017 1 .32 0 .08 -0 .019 0 .007 20  (100) 1 .15 -0 .027 1 .14 0 .10 -0 .029 0 .007 14  (100)

10 1 .11 -0 .020 1 .14 0 .12 -0 .019 0 .006 20  (100) 0 .90 -0 .027 0 .94 0 .10 -0 .028 0 .006 14  (100)
11 0 .91 -0 .022 0 .91 0 .12 -0 .023 0 .007 20  (100) 0 .66 -0 .026 0 .71 0 .12 -0 .028 0 .007 14  (100)

12 0 .71 -0 .022 0 .72 0 .07 -0 .023 0 .008 20  (100) 0 .43 -0 .026 0 .42 0 .06 -0 .026 0 .004 14  (100)
13 0 .51 -0 .023 0 .54 0 .09 -0 .024 0 .005 20  (100) 0 .20 -0 .025 0 .18 0 .09 -0 .026 0 .006 14  (100)
14 0 .32 -0 .023 0 .32 0 .10 -0 .023 0 .005 20  (100) -0 .02 -0 .024 -0 .04 0 .12 -0 .024 0 .006 14  (100)

15 0 .13 -0 .022 0 .12 0 .10 -0 .020 0 .005 20  (100) -0 .22 -0 .023 -0 .25 0 .09 -0 .021 0 .005 14  (100)
16 -0 .04 -0 .022 -0 .06 0 .10 -0 .022 0 .005 20  (100) -0 .40 -0 .022 -0 .37 0 .04 -0 .020 0 .005 14  (100)

17 -0 .20 -0 .021 -0 .24 0 .08 -0 .021 0 .003 20  (100) -0 .55 -0 .021 -0 .53 0 .12 -0 .022 0 .004 14  (100)
18 -0 .33 -0 .020 -0 .31 0 .13 -0 .021 0 .004 20  (100) -0 .65 -0 .019 -0 .60 0 .08 -0 .019 0 .004 14  (100)
19 -0 .44 -0 .019 -0 .44 0 .13 -0 .019 0 .003 20  (100) -0 .70 -0 .018 -0 .72 0 .11 -0 .020 0 .006 14  (100)

20 -0 .52 -0 .018 -0 .53 0 .12 -0 .017 0 .004 20  (100) -0 .70 -0 .017 -0 .69 0 .11 -0 .016 0 .004 14  (100)
21 -0 .58 -0 .017 -0 .58 0 .09 -0 .016 0 .005 20  (100) -0 .65 -0 .016 -0 .65 0 .10 -0 .014 0 .005 14  (100)

22 -0 .62 -0 .016 -0 .61 0 .09 -0 .016 0 .004 20  (100) -0 .59 -0 .014 -0 .61 0 .10 -0 .015 0 .006 14  (100)
23 -0 .64 -0 .015 -0 .62 0 .11 -0 .016 0 .004 20  (100) -0 .54 -0 .013 -0 .53 0 .09 -0 .013 0 .005 14  (100)
24 -0 .64 -0 .014 -0 .66 0 .09 -0 .013 0 .005 20  (100) -0 .49 -0 .012 -0 .50 0 .12 -0 .012 0 .005 14  (100)

25 -0 .63 -0 .013 -0 .61 0 .16 -0 .013 0 .004 20  (100) -0 .56 0 .044 -0 .49 0 .15 -0 .010 0 .005 14  (100)
26 -0 .61 -0 .012 -0 .61 0 .11 -0 .012 0 .005 20  (100) -0 .53 0 .045 -0 .50 0 .07 -0 .009 0 .003 14  (100)
27 -0 .59 -0 .011 -0 .59 0 .09 -0 .010 0 .004 20  (100) -0 .51 0 .045 -0 .48 0 .10 -0 .008 0 .004 14  (100)

28 -0 .57 -0 .010 -0 .57 0 .11 -0 .009 0 .004 20  (100) -0 .50 0 .048 -0 .47 0 .10 -0 .008 0 .005 14  (100)
29 -0 .55 -0 .009 -0 .57 0 .14 -0 .008 0 .003 20  (100) -0 .46 -0 .008 -0 .45 0 .08 -0 .006 0 .004 14  (100)

30 -0 .54 -0 .007 -0 .55 0 .10 -0 .006 0 .004 20  (100) -0 .50 0 .051 -0 .42 0 .15 -0 .006 0 .004 14  (100)
31 -0 .53 -0 .006 -0 .55 0 .12 -0 .005 0 .004 20  (100) -0 .43 0 .052 -0 .46 0 .10 -0 .005 0 .004 14  (100)
32 -0 .53 -0 .005 -0 .52 0 .12 -0 .004 0 .005 20  (100) -0 .49 0 .053 -0 .46 0 .14 -0 .004 0 .005 13  (93)

33 -0 .53 -0 .004 -0 .51 0 .10 -0 .003 0 .004 19  (95) -0 .63 0 .054 -0 .53 0 .09 -0 .004 0 .005 14  (100)
34 -0 .53 -0 .002 -0 .54 0 .09 -0 .002 0 .005 19  (95) -0 .70 0 .061 -0 .55 0 .15 -0 .004 0 .004 14  (100)

35 -0 .52 -0 .001 -0 .51 0 .15 0 .001 0 .003 16  (80) -0 .50 -0 .001 -0 .47 0 .14 -0 .002 0 .005 12  (86)
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Table 3: Full width at half maximum of the acquired dots used in the experiments, with and without cubic 
interpolation.  
  

Dot Label FWHM 

without interpolation 

FWHM 

with interpolation 

p1 3 x 3 21 x 19 

p2 3 x 3 24 x 18 

p3 4 x 2 26 x 16 

p4 3 x 3 19 x 18 

p5 3 x 2 22 x 19 

p6 3 x 2 24 x 19 

p7 3 x 2 21 x 18 

p8 6 x 4 42 x 20 

p9 3 x 2 25 x 18 

p10 2 x 2 17 x 16 
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Table 4: Results with a single (acquired) dot with and without interpolation: estimated distance, peak ratios and 
goodness-of-fit criterion for two -dot  model fitting. 
 

Dot Label Interpolated case Without interpolation 

 d γ ξ d γ ξ  

p1 20.99 0.87 0.37 2.70 0.88 0.30 

p2 28.91 0.78 0.57 3.64 0.78 0.54 

p3 13.69 0.70 0.25 1.62 0.71 0.22 

p4 27.30 0.92 0.20 3.52 0.92 0.15 

p5 27.20 0.89 0.18 3.51 0.90 0.15 

p6 22.48 0.78 0.49 2.92 0.79 0.50 

p7 24.48 0.85 0.34 3.09 0.86 0.38 

p8 21.66 0.52 0.81 2.51 0.53 0.68 

p9 16.08 0.79 0.35 2.01 0.81 0.28 

p10 0.00 – 0.00 0.00 – 0.00 
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Table 5: Results with two (replicated) dots. ranges of the considered distance values and maximum error of the 
distance and peak ratio measurements in these ranges are shown for two cases: ξ ≥ 0.4 and ξ ≥ 0.6 
 

Dot Label Discarding cases when ξ  < 0.4 Discarding cases when ξ < 0.6 

 Range(d) max(∆d) max(∆γ) Range(d) max(∆d) max(∆γ) 

p1 7-41 12.37 0.24 10-41 7.46 0.18 

p4 13-48 1.78 0.04 15-48 1.72 0.03 

p5 14-48 2.26 0.06 17-48 1.95 0.02 

p7 11-41 10.18 0.19 17-41 1.20 0.06 

p10 17-43 1.56 0.03 19-43 1.56 0.03 

p9 8-37 8.49 0.19 17-37 0.99 0.03 
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FIGURE CAPTIONS 

 

Figure 1: Bessel-based (above) and Gaussian-based (below) models. The models are shown as continuous lines 
(—) while the Zeiss Axioskop microscope PSF is shown as dashed line (• •) . The fitting was done as described in 
the text. 
Figure 2: Results of the two -dot model fit in the ideal case. The simulated image is from an ideal diffraction–limited 
microscope considering Poisson noise. Left: Results of all fits obtained. Right: Discarding cases where ξ < 0.1. Note 
the different vertical scales. 
Figure 3: Results of the experiments with simulated dots with the Bessel model for the Zeiss microscope 
parameters and including Poisson noise. Left : Discarding cases where ξ < 0.1. Right: Discarding cases where ξ < 0.4. 
Distances in pixels are in interpolated space. Note the different vertical scales.  
Figure 4: Results of the experiments with simulated dots with the Gaussian model for the Zeiss microscope 
parameters and including Poisson noise. Left: Discarding cases where ξ < 0.1. Right: Discarding cases where ξ < 0.4. 
Distances in pixels are in interpolated space. Note the different vertical scales.  
Figure 5: Simulated dots without noise. Error in the distance estimation and the peak ratio estimation for three 
values of the true peak ratio γ = 0.7 (above), γ = 0.6 (middle), and γ = 0.5 (below). 
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Figure 1 : Bessel-based (above) and Gaussian-based (below) models. The models are shown as continuous lines (—) while the Zeiss 

Axioskop microscope PSF is shown as dashed line (• •) . The fitting was done as described in the text. 
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Figure 2: Results of the two -dot model fit in the ideal case. The simulated image is from an ideal diffraction–limited microscope 

considering Poisson noise. Left: Results of all fits obtained. Right: Discarding cases where ξ < 0.1. Note the different vertical scales. 
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Figure 3: Results of the experiments with simulated dots with the Bessel model for the Zeiss microscope parameters and in cluding 

Poisson noise. Left: Discarding cases where ξ < 0.1. Right: Discarding cases where ξ < 0.4. Distances in pixels are in interpolated space. 

Note the different vertical scales. 
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Figure 4 : Results of the experiments with simulated dots with the Gaussian model for the Zeiss microscope parameters and including 

Poisson noise. Left: Discarding cases where ξ < 0.1. Right: Discarding cases where ξ < 0.4. Distances in pixels are in interpolated space. 

Note the different vertical scales. 
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Figure 5: Simulated dots without noise. Error in the distance estimation and the peak ratio estimation for three values of the true peak 

ratio γ = 0.7 (above), γ = 0.6 (middle), and γ = 0.5 (below). 


