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Introduction
This study considers post-processing of global kinetic images
derived from data collected with Positron Emission Tomog-
raphy (PET). Global kinetic images are not acquired images,
but rather represent the solution to an inverse problem solved
pixel-by-pixel. Specifically, kinetic images are solutions to the
following inverse problem,

yj(t; kj) = f(t; kj) ∗ u(t), (1)

where kj is a vector of parameters to be determined for each
pixel j, f(t; kj) is an analytic function with known form, non-
linear in kj , yj(t; kj) is the pixel concentration function, and u(t)

is a pixel-invariant input function.
If we let v denote the original true global kinetic image, the
typical formulation for an image restoration problem is to con-
sider the relation

v0 = Rv + η

where v0 is the observed image, R is a blur operator, and η

is the additive noise. Usually, the blur operator R describes
the deterministic process of image acquisition. The noise is
also characterized by the signal transmission. Although this is
not strictly true of kinetic imaging, this study performs image
restoration for kinetic imaging under these general assump-
tions.

Anisotropic Diffusion
Nonlinear anisotropic diffusion in the context of image
restoration is traced back to the work of Perona and Malik [1],
who refer to the following model as the anisotropic diffusion
(AD) model,

∂v

∂t
= div(c(|∇v|)∇v), in Ω × (0, T ),

∂v

∂N
= 0, on ∂Ω × (0, T ),

v(x, y, 0) = v0(x, y) in Ω, (2)

where N is the outward normal to the boundary ∂Ω and c(·) is
a nonnegative, smooth decreasing function of the magnitude
of the local image gradient |∇v| =

√

v2
x + v2

y. For constant
functions c(·) = cst, this reduces to the isotropic heat equation.
In the context of image restoration, t acts as an iteration num-
ber. The discretization adopted in [1] and used in this study is
a forward Euler method, using a box nearest-neighbor spatial
discretization,

vt+1

i,j = vt
i,j + λ[ci+1

2
,j(v

t
i+1,j − vt

i,j) + ci,j+1
2

(vt
i,j+1 − vt

i,j)

+ci−1
2
,j(v

t
i−1,j − vt

i,j) + ci,j−1
2

(vt
i,j−1 − vt

i,j)]. (3)

Here, the conduction coefficients are updated at every step,
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The choice of the analytic form of the nonlinear function c(·)

leads to different behavior for (2). Following the analysis on
robust anisotropic diffusion given by Black et al, [2], this work
considers Tukey’s biweight robust norm for c(·),

c(s; σ) =

{

.5
[

1 − ( s
σ
)2

]2
, |s| ≤ σ,

0, else.
(4)

An analysis of the noise-reducing effects of nonlinear
anisotropic diffusion are presented in [3].

Results
The iteration (2) depends sensitively on two factors:

• the parameter σ in c(s; σ);

• the number of iterations chosen.

These factors are dependent on each other and may lead to dif-
ferent results if chosen inappropriately. The numerical scheme
(3) requires the selection of an additional rate parameter λ

which is related to the CFL condition of the scheme. In this
work, λ = .0312.
The choice of σ is motivated by considering a robust statistical
measure, not affected by values of extreme observations.
The Median Absolute Deviation (MAD) is robust in this sense,
[2]

MAD = medianv||∇v − medianv(||∇v||)||.

The iteration is stopped if ||vt+1−vt||

||vt+1||
≤ tol, for a given tolerance.

The images below were generated as the solution to the
inverse problem given in (1) for the dynamics of Fluoro-
Deoxy-Glucose tracer uptake in the normal brain, see [4]
for more details on this generation. The parameter vector
kj = [k1, k2, k3, k4]j describes respectively, forward transport
from plasma into tissue, back-transport from tissue into blood,
phosphoryllation and de-phosphorylation of FDG in tissue. In
addition, another parameter of interest is K = k1k3

k2+k3
, a propor-

tionality constant for the rate of glucose uptake. The results be-
low were obtained by applying anisotropic filtering to K and
k4 images.
Gaussian filtering is compared with anisotropic filtering. Re-
sults for K follow.
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In addition to using a fixed parameter σ proportional to MAD
througout the iteration (3), we also consider an iterative up-
date of σ based on the median absolute deviation computed at
each step based on the updated image.
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Similar results were obtained for the de-phosphorylation pa-
rameter k4. Note, this parameter does not follow a Gaussian
distribution as K does. Results for k4 follow.
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Conclusions
This study uses anisotropic diffusion to filter global kinetic im-
ages derived from Positron Emission Tomography data.
• Using a Gaussian filter for kinetic PET data leads to blur-

ring, and hence to a possible misclassification of regional
function.

• Anisotropic filtering is a smooth, edge enhancing filter and
thus better suited for maintaining region specific functional
information.

• The iterative update of σ, proportional to the median abso-
lute deviation, maintains sharper edges than the iterative
update using a fixed σ value.
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