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Copyright c©2015 David Pastor Escuredo



Tribunal nombrado por el Sr. Rector Magnífico de la Universidad Politécnica de Madrid, el día de
de 2015.

Presidente: .

Vocal: .

Vocal: .

Vocal: .

Secretario: .

Suplente: .

Suplente: .

Realizado el acto de defensa y lectura de la Tesis el día de de 2015, en la E.T.S.I.
de Telecomunicación.

Calificación .

EL PRESIDENTE LOS VOCALES

EL SECRETARIO





ABSTRACT

The embryogenesis is the process from which a single cell turns into a living organism. Through

several stages of development, the cell population proliferates at the same time the embryo shapes

and the organs develop gaining their functionality. This is possible through genetic, biochemical and

mechanical factors that are involved in a complex interaction of processes organized in different levels

and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a

robust and reproducible way, but allowing variability that makes possible the diversity of living spec-

imens. The advances in physics of microscopes and the appearance of fluorescent proteins that can

be attached to expression chains, reporting about structural and functional elements of the cell, have

enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of

high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the

embryos that can be further analyzed, provided new image processing and data analysis techniques

are developed.

One of the most relevant and challenging lines of research in the field is the quantification of the

mechanical factors and processes involved in the shaping process of the embryo and their interactions

with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies

have focused on specific problems and scales controlled in the experiments, posing and testing hy-

pothesis to gain new biological insight. However, methodologies are often difficult to be exported to

study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of

research and tries to propose a systematic methodology to quantify the emergent deformation patterns

from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be

possible to quantify not only local mechanisms, but to discover and characterize the scales of mechan-

ical organization within the embryo.

The framework focuses on the quantification of the motion kinematics (deformation and strains),

neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and

methodological challenges hamper the quantification of exerted forces and the mechanical properties

of tissues. However, a descriptive framework of deformation patterns provides valuable insight about

the organization and scales of the mechanical interactions, along the embryo development. Such a

characterization would help to improve mechanical models and progressively understand the com-

plexity of embryogenesis.

This framework relies on a Lagrangian representation of the cell dynamics system based on the

trajectories of points moving along the deformation. This approach of analysis enables the reconstruc-

tion of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal

profiles of deformation along stages of development, comprising both the instantaneous events and



the cumulative deformation history.

The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to

discover mechanical profiles that stabilized through time forming structures that organize in a scale

comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic

patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s

dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network orga-

nized complexly coupling different scales: local force generation foci, cellular morphology control

mechanisms and tissue geometrical constraints.

In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale

cell dynamics that enables to quantify automatically mechanical patterns and also offers a new rep-

resentation of the embryo dynamics as experienced by cells instead of how the microscope captures

instantaneously the processes. Therefore, this framework enables for new strategies of quantitative

analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.



RESUMEN

La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo

de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión

va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos,

bioquı́micos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo

que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta

y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una

misma especie. La aparición de la microscopı́a de fluorescencia, posible gracias a proteı́nas fluores-

centes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la fı́sica

óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar

secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes per-

miten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de

datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las

más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en

interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido

a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas

especı́ficas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo

conclusiones sobre el funcionamiento de los mecanismos estudiados.

Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologı́as

del estado del arte y con un objetivo especı́fico: estudiar patrones de deformación que emergen del

movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera

global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de

señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para

generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo

a diferentes escalas espaciales y temporales. Esto permitirı́a no sólo estudios locales, si no estudios

sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema

propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación

de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en dı́a

las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden

una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación

muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando

lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de

la metodologı́a propuesta en esta tesis.

La metodologı́a asume un medio continuo descrito de forma Lagrangiana (en función de las



trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la

dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de

células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la defor-

mación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión.

La aplicación de esta metodologı́a a imágenes 3D + t del pez zebra sirvió para desvelar estructuras

mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan

a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con pa-

trones de expresión genética. También se aplicó la metodologı́a al estudio del tejido amnioserosa de

la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento

entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a

la fuerza generada por los esqueletos de acto-myosina.

En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celu-

lar multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una rep-

resentación que reconstruye la evolución de los procesos como los ven las células, en lugar de como

son observados desde el microscopio. Esta metodologı́a por tanto permite nuevas formas de análisis

y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in microscopy imaging techniques allow scientists to observe developmental bio-

logical processes at a microscopic scale [Peng, 2008, Kitano et al., 2002, Megason and Fraser, 2007].

The revolution of fluorescence microscopy [Stearns, 1995] enabled biologists to label biological struc-

tures during embryogenesis such as cell membranes or cell nuclei and also to obtain functional im-

ages of marking gene expression as well as actomyosin networks as proxy indicators of mechanical

stresses. In this context, image processing and data analysis techniques are being developed to digitize

and process these data for further analysis and ultimately extract biological insights [Doursat, 2008,

Castro-González et al., 2010, Oates et al., 2009, Luengo-Oroz et al., 2011].

These experimental and methodological advances have led to the expansion of biological stud-

ies in genetics, morphogenesis, biomechanics, cell migration or cells interaction. In-vivo imaging

techniques open new opportunities and paradigms through the observation of biological phenomena

in a non-invasive way [Khairy and Keller, 2011, Megason et al., 2011] integrating different types of

analysis to empower biological research on several animal models [Fernandez et al., 2010, Gorfinkiel

et al., 2011, Supatto et al., 2009]. Thus, the main goal of the uprising bio-image informatics field is

to digitally reconstruct the underlying biology phenomena from structural and functional imaging by

quantitative, robust and reliable methods that can be applied to different problems exploiting the large

pool of bioimage data available (see Fig. 1.1).

Furthermore, new challenges beyond the digital reconstruction of the development such as the

characterization of the embryonic mechanics factors, the spatio-temporal organization of the genome

and the characterization of other epigenetic factors. The ultimate objective is therefore to understand

the contribution and interplay of the genetic and epigenetic factors determining the embryogenesis.

This PhD Thesis focuses in the quantification and characterization of spatio-temporal mechanical

patterns that act shaping the embryo and determining relevant tissue behaviours. The approxima-

1
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Figure 1.1: Digital reconstruction of embryogenesis: Top row: cell detection (left) cell segmentation (right).

Middle row: cell tracking. Bottom row: building templates of gene expression (from [Luengo-Oroz et al.,

2011]).
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tion to in-vivo mechanics quantification must be conceived as a multi-scale analysis ([Stearns, 1995,

Asnacios and Hamant, 2012, Farhadifar et al., 2007, Wang and Lin, 2007] that focused not only on

the cell behavior, but also on subcellular behaviour, mesoscopic patterns and large scale embryonic

mechanical structures.

Cell migration dynamics determine many organism processes such as those related to the im-

munological system or healing and the misfunctionality of these processes can cause multiple dis-

eases including some types of cancer [Jonietz, 2012]. Mechanics can determine how cells interact

with the Extra Cellular Matrix (ECM) or with surrounding cells [Maruthamuthu et al., 2011, Zamir

et al., 2008, Lecuit and Lenne, 2007, McCain et al., 2012], how cells migrate and how they adapt to

the environment exerting forces and change their shape according to the mechanical properties and the

activity of mechanical sensing through integrins and cadherins proteins [Arciero et al., 2011, Trepat

et al., 2009, Tambe et al., 2011, Heisenberg and Bellaı̈che, 2013].

On the other hand, large-scale collective cell migration during embryogenesis is part of the shap-

ing mechanism during embryo development that eventually define the morphogenesis of tissue and

organs in a complex system of concurrent and regulated processes at different scales [Rauzi et al.,

2010, Kennaway et al., 2011, Davidson et al., 2009]. Recent studies also show that mechanics act as

an epigenetic factor during embryogenesis through mechano-sensing where cell-cell and cell-ECM

interaction mechanisms play an important role in individual cell behavior, for instance, triggering

apoptosis or mitosis, or defining signaling pathways necessary to control embryogenesis or affect-

ing the normal migration patterns producing diseases [Keller et al., 2000, Herszterg et al., 2013, von

Dassow and Davidson, 2007, Levental et al., 2009, Guillot and Lecuit, 2013]. Mechanical processes

are important not only at the cell level, the also conform a multi-scale system that comprises active

force generation (actin-myosin structures activity) and passive behavior through mechano-sensing and

signaling (based on cadherin and integrin functionality) that help to configure tissue properties and

coordinate large-scale force transmission [Davidson et al., 2009, Lecuit et al., 2011]. Both active

and passive mechanical processes are equally important to understand the development of embryos

[Heisenberg and Bellaı̈che, 2013, Keller et al., 2003].

The study of in-vivo mechanics during embryogenesis is necessary to understand and measure how

forces interactions contribute to two main characteristics of life generation: robustness and variability.

Robustness ensures life and phenotype identification in the species. Variability ensures the differences

in life and individuals of the same species. Mechanics are believed to actively shape tissues during

embryogenesis and also passively regulate their behavior. Therefore, only by quantifying mechanics

accurately, research will be able to understand, model and predict mechanisms involved in important

biological phenomena such as cell migration, embryogenesis stages transitions, phenotyping or tissue

differentiation with scientific, clinical and engineering purposes.

In this PhD Thesis, the strategies and methodologies to quantify mechanics from in-vivo imag-
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ing have been reviewed, proposing new concepts and implementations that have required an inte-

grative research comprising bioimage technologies, systems biology, machine learning, mathematics

and physics. This research has been applied to real biological problems in the state-of-the-art of de-

velopmental biology helping to generate multi-scale characterization of mechanics pointing to new

biological insights.

1.2 Objectives

The main objective of this Thesis is to design, develop and validate a well-founded methodology
to study multi-scale mechanics in complex 2D/3D+ t bioimage data of embryogenesis acquired
with fluorescence microscopy techniques. Such a methodology would help to reach a better un-

derstanding of how biomechanical patterns can be identified and analyzed from image data and also

provide biological insight in applied studies. Therefore, a framework will be developed consider-

ing theoretical and methodological aspects in order to successfully extract meaningful insight from

different biological problems.

Concretely, the strategy proposed relies on the motion estimation of cell structures marked with

fluorescent proteins in sequences of high spatio-temporal resolution images (seconds-minutes of time

resolution and µm of spatial resolution). That estimation would allow us to build a multi-scale

description of deformation and strain patterns, as a characterization of the embryo, neglecting the

quantification of stresses1. Therefore, this PhD Thesis focuses on the kinematics of embryogene-

sis, describing the motion along stages of development without considering its causes (i.e. forces).

The quantification of the stresses would additionally require the characterization of tissue mechanical

properties to pose an inverse problem or experimental setups allowing the sensing of applied forces.

Although some strategies have been proposed in these directions [Ishihara et al., 2013, Campas et al.,

2014], the technology and methods are not mature enough to provide high throughput information of

accurate and reliable stresses characterization. Nevertheless, due to the level of mechanical factors

and interactions, deformation patterns provide a very valuable quantitative description of the shaping

process that integrates several embryogenesis mechanisms. Here, we aim at providing a multi-scale

characterization of patterns that would help to understand mesoscopic and embryonic constraints in

the embryo and how subcellular and cellular mechanisms coordinated and synchronized lead to larger

scale patterns necessary to shape the embryo and configure its organs and tissues [Keller, 2012].

In order to fulfill this objective, we distinguished specific goals within this PhD Thesis, being

divided in theoretical and methodological goals, focused on the foundation and implementation of a

framework of analysis, and also in biology oriented goals that exploit the framework and illustrate its

1From now on the term ”mechanical description” will be generally used considering that no forces nor stresss are

inferred, neither mechanical properties such as viscosity or stiffness.
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potential.

From a theoretical perspective, this PhD Thesis addresses how mechanical processes can be quan-

tified from images and their digital reconstruction. We grounded the methodology with continuum

mechanics theory relying on a Lagrangian representation of the cell dynamics. This representation

of physical dynamics is based on a particle-based description of the system, so the quantification of

the motion is expressed in terms of trajectories (movement of fluid particles or material points of a

solid). This representation is alternative to the Eulerian perspective that is based on spatial represen-

tation of the system referred to an external observer. Interestingly, the way processes are imaged with

microscopes external to the embryo has led to a generalized Eulerian approach of analysis of biolog-

ical phenomena. The study of deformation patterns in embryogenic tissues from in-vivo images has

been restricted to an analysis of deformation from the displacements and cell morphology dynamics

between time steps [Blanchard et al., 2009, Bosveld et al., 2012]. This approach provides a detailed

description of mechanical patterns and interactions with other genetic and biochemical factors, but

do not produce a description of the temporal scales of the patterns required to understand how me-

chanical patterns affecting cells evolve through time. The reconfiguration of the tissues along the

shaping process requires a Lagrangian framework to better characterize the different length-scales of

the processes. The cells move at the same time embryos are shaped, therefore, the mechanical patterns

seen from an Eulerian perspective can only be mapped instantaneously (in the same way the embryo

is observed from the microscope). However, within a Lagrangian (material) analysis, mechanical

patterning can be quantified in finite time intervals along the trajectories

From a methodological perspective, this PhD Thesis aims at implementing a flexible framework

that would provide such a characterization of mechanics for different types of images. More specifi-

cally, we will differentiate between discrete and continuous techniques of motion estimation to build

a unique framework based on a continuum mechanics description. Such a framework will enable

to study different biological phenomena observed with different types of images according to their

resolution, marked structures and scales of movement.

From the developmental biology research perspective, this PhD Thesis pretends to exploit the

designed methodology to better quantify and understand dynamics during embryogenesis in animal

models. Specifically, new strategies will be required to understand the role of mechanical patterns in

the shaping process of embryogenesis and the behavior of tissues in Drosophila and zebrafish in-vivo

data provided by the biology researchers partners involved in this PhD Thesis.

To summarize, this PhD Thesis gets into the cross-roads between bioimage processing, infor-

matics, computational solid mechanics and computational fluid dynamics, tackling the challenging

problem of providing quantitative assessments of the complex multi-scale mechanisms involved in

the embryogenesis.
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1.2.1 A framework to quantify multi-scale mechanics in microscopy images

Image analysis techniques have been designed and implemented to reconstruct the embryogenesis

processes observed with in-vivo images. This PhD Thesis aims one step further in order to characterize

dynamics and mechanical patterning. We will implement a framework that unifies the dynamics

implicit in the motion estimated from different image analysis techniques: cell tracking and B-splines

sequential registration. Thus, we will propose a common a systematic quantification of mechanical

patterns based on a Lagrangian representation of the dynamics. Using analysis tools this patterns

will be further investigated in terms of biological domains and tissues. Therefore, the framework will

comprise the following modules:

• A continuous motion description of tissue dynamics and cell collective movements

• Estimation of motion using B-splines sequential registration

• Estimation of motion using cell tracking

• A Lagrangian representation of dynamics to compute multi-scale mechanical descriptors

• A framework to generate mechanical profiles for spatial and material domains

• A statistics module to obtain characteristic patterns withing the mechanical description provided

• Interactive visualization tools to relate mechanical descriptors to biological domains

1.2.2 Characterizing the meso-level mechanical patterning during zebrafish embryo-
genesis

Digital cell lineages provide a spatio-temporal description of the embryogenesis at the cell level, but

due to the state of the art in imaging and processing techniques, tracking methods do not produce

complete and error-free lineages. Cell-level descriptions therefore do not robustly scale along several

stages of development. On the other hand, mechanical patterns analysis based on displacements do

not allow to observe different temporal length-scales that are necessary to understand the mechanics

of, for example, the zebrafish gastrulation.

The framework proposed can use the digital cell lineage, output by any tracking method with a

characterized given error rate, to generate a continuous flow approximation of the dynamics implicit

in the displacements of a cell and its neighbors. Therefore, the framework is able to quantify meso-

scopic patterning emergent from the interactions of the embryogenesis mechanical factors in different

temporal length-scales. Thus, it would be possible to understand patterning in long temporal scales

helping to describe how mechanics help to shape the embryos and determine the phenotype configu-

ration. We will apply this strategy to zebrafish embryos imaged with 2-photon fluorecent microscopy
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(3D+ time data of cell nuclei and membranes) to discover the characteristic mechanical patterns and

their organization in the temporal length-scale of gastrulation.

1.2.3 Quantification of the contractile behaviour of Drosophila’s amnioserosa

The framework proposed is suitable not only to quantify large-scale reconfiguration processes along

gastrulation, but also to quantify collective cell behavior within tissues in smaller scales. One tissue

of interest is the Drosophila’s amnioserosa (AS) during the dorsal closure (DC). AS cells show api-

cal area fluctuations driven by actomyosin contractility. The AS then contracts while the epidermis

undergo filopodia-mediated zippering to generate a continuous epidermis at the dorsal side of the

Drosophila embryo. In this process, the relevant scales of dynamics go down to the subcellular level

and up to the tissue level.

The mechanical patterns underlying this behavior can be also studied with the proposed frame-

work by using B-splines sequential registration to estimate the motion (provided good spatio-temporal

resolution of the observation adapted to the scale of the phenomena). We will apply the framework

to data of stained cell membranes imaged with confocal microscopy (2D + time data) to generate a

continuous spatio-temporal dense description of the tissue that allows focusing on supracellular and

subcellular scales. We expect to generalize the analysis done so far in this tissue and provide addi-

tional descriptions, showing the potential of this approach to characterize any tissue behavior during

development.

1.3 Document Structure

In chapter 2 we will overview the current state of the art in analysis of mechanics in embryogene-

sis with special focus on studies using in-vivo data. From that overview, we will identify then the

main challenges and opportunities in the field, concretely in the research of zebrafish and Drosophila

embryogenesis processes. In chapter 3 we introduce the motion estimation techniques and the nec-

essary processing to characterize continuous motion from images. Chapter 4 introduces a descriptive

framework based on a Lagrangian perspective of analysis to provide multi-temporal length-scale de-

scriptors. We will show the results of applying this framework to the analysis of zebrafish in-vivo

data in chapter 5, providing a novel characterization of biomechanical profiles of wild-type embryos.

Chapter 6 shows the results of applying the continuous motion analysis framework to the study of the

Drosophila’s amnioserosa (AS) during the Dorsal Closure. Finally, in chapter 7, we will discuss on

the contributions of this PhD Thesis and the new challenges open after the achieved results.





Chapter 2

State of the Art

In this Chapter we will overview the necessary bibliography and context to understand the importance

of the contribution presented in this PhD Thesis. First, we will address the developmental biology an-

imal models that have been studied: zebrafish (Danio-rerio) and Drosophila melanogaster (fruit-fly).

We will describe dynamic processes of interest within these animal models that have been the biolog-

ical focus of this work. Then, we will overview technical aspects regarding imaging and analysis of

in-vivo data of embryogenesis. Considering that this Thesis presents a new comprehensive framework

to analyze mechanical factors involved in the embryogenesis, the main mechanics oriented studies in

the field are discussed in detail pointing out to the missing gaps this PhD Thesis contributes to.

2.1 Biological context

In developmental biology research, some model organisms are used to drive biological research due

to practical issues such as cost, ease of culturing, ease of imaging or seasonal availability, as well as

biological advantages such as genetic content, phylogenetic similarity to humans and organs function-

ing. Following sections overview the work carried out in zebrafish and Drosophila melanogaster, both

being models largely used in embryogenesis mechanics research.

2.1.1 Zebrafish

The zebrafish is one of the most widely used models to understand vertebrates development. This

model, due to its transparency, is very suitable for fluorescent microscopy imaging and has been used

as a reference to improve microscopy techniques [Keller, 2013, Olivier et al., 2010, Brend and Holley,

2009]. zebrafish has been also exploited for genetic manipulation and phenotyping, with very well

characterized mutants regarding eye and brain development [Tawk et al., 2007, Jessen et al., 2002,

Warga and Kane, 2003, England et al., 2006]. Recently, several methodologies have appeared in

9
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order to create genetic atlases of zebrafish, both in early and late stages of its development [Castro-

González et al., 2014, Ronneberger et al., 2012, Rittscher et al., 2011, Potikanond and Verbeek, 2012].

Because of its closer phylogenetic position to humans, zebrafish has been subject of toxicology and

pharmacology essays [Burns et al., 2005, Hill et al., 2005, Yang et al., 2009].

Zebrafish develops fast, completing the segmentation stage within 24 hours-post-fertilization -

hpf -1, enabling researchers to image several stages of development, trying to understand how the

cells differentiate and move through these stages to form the functional map of the cells -fate map-

[Woo and Fraser, 1995, Kwan et al., 2012, Blum et al., 2009, Kwan et al., 2012, England et al., 2006,

Kimmel et al., 1990, Fleury et al., 2015]. Regarding mechanics, there are studies describing and

modeling the dynamics during early stages with special focus on gastrulation [Behrndt et al., 2012,

Campinho et al., 2013, Keller et al., 2003, von Dassow and Davidson, 2007, Jessen et al., 2002].

The zebrafish starts developing through synchronous mitosis phases until it reaches the 1024 cells

stage [Olivier et al., 2010]. Then the dynamics of the yolk and the epithelium layer help to start

the blastula stage and the epipoly progression [Campinho et al., 2013, Behrndt et al., 2012]. The

gastrulation onset is produced by an invagination in the hemisphere yet to be understood, but presum-

ably initiated by apical contraction as local force generation mechanism and the EVL as large force

generation mechanism. Later stages have been further investigated to compare different mutants and

wild-type in terms of neurolation and eye formation [Tawk et al., 2007]. However, no recent studies

have investigated the relationship between mechanics of the gastrulation and the fate map configura-

tion [Woo and Fraser, 1995, England et al., 2006, Glickman et al., 2003, Keller, 2012].

2.1.2 Drosophila melanogaster

Drosophila melanogaster, has been widely used in developmental biology research due to its size and

cost of culturing. Main recent contributions in imaging have been oriented to output whole-embryo

data of this species [Tomer et al., 2012, Pantazis and Supatto, 2014]. The embryos size and the

possibility to properly observe them with confocal microscopy motivated plenty of studies in genetic

atlases [Fowlkes et al., 2008, Peng et al., 2011] and dynamics of cell migration [Amat et al., 2014]

and gastrulation [Supatto et al., 2009, Martin, 2010, McMahon et al., 2008]. This Thesis focuses on

the behavior of the Amnioserosa (AS), a tissue that oscillates and contracts during the Drosophila’s

DC. This tissue helps to drive the closure thanks to ratchet-like behavior of its cells, so the tissue that

eventually disappears from the apical plane. Several studies have tried to find the driving forces during

DC and the zippering of the epidermis, and understand the complex mechanism that integrates forces

at the boundaries of the AS and the internal contraction of the cells forming the tissue [Gorfinkiel

et al., 2009, Azevedo et al., 2011, Kiehart et al., 2000, Solon et al., 2009, Blanchard et al., 2010].

1http://zfin.org/
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The dynamics of the dorsal closure have been extensively studied and characterized (reviewed in

[Gorfinkiel et al., 2011]), however, more sophisticated methods are necessary to understand the cou-

pling between the actomyosin networks generating forces and the observed behavior of the AS. The

characterization and modeling of exerted forces will be also a major topic of research in Drosophila

along with studies crossing signaling information and mechanical descriptions [Machado et al., 2014,

Wang et al., 2012, Gorfinkiel, 2013].

2.2 Embryogenesis image data acquisition, processing and visualization

2.2.1 Image acquisition

Imaging techniques are evolving pursuing the in-toto observation of embryos during embryogene-

sis with the maximal temporal and spatial resolution [Megason and Fraser, 2007, Megason, 2009].

Most part of the studies of mechanics analysis have relied on confocal multi-photon Laser-Scanning

Microscopy -LSM- because of the good balance between spatial resolution, temporal resolution and

imaging artifacts [Megason and Fraser, 2003, Pawley and Masters, 2008, Supatto et al., 2011]. How-

ever, this technique loses precision when imaging in depth along the axis of illumination obtaining

blurred images that can only be improved at the cost of longer exposure, reducing the temporal res-

olution and increasing the effect of photo-bleaching and radiation. The spinning-disk microscopy

[Pawley and Masters, 2008] was designed to speed up the imaging process, but the spatial resolution

of the images is sometimes not sufficient for studying cell structures.

The Light Sheet Fluorescence Microscopy -LSFM- technique, also known as Selective Plane Illu-

mination Microscopy -SPIM-, was introduced trying to avoid the depth limitation of confocal imaging

and reduce photo-bleaching, potentially enabling for imaging entire embryos [Meyer, 1979, Keller

et al., 2008, Keller and Stelzer, 2008, Pantazis and Supatto, 2014]. However, initial results were

not completely satisfactory because of the low temporal resolution and the need to fusion the differ-

ent views into one single image with a temporal delay between them [Rubio-Guivernau et al., 2012,

Temerinac-Ott et al., 2012, Keller, 2013, Preibisch et al., 2008, Maitre and Heisenberg, 2013]. New

advances in this technique such as the simultaneous multi-view version of the LSM [Tomer et al.,

2012] have allowed imaging the entire Drosophila melanogaster embryo, overcoming the time shift

problem. This technique has been also used recently to quantify dynamics at large scales [Pampaloni

et al., 2015], for example to study the dynamics of endodermal cells [Schmid et al., 2013] or the cell

dynamics in large mouse embryos [Udan et al., 2014]. LSFM has been also enhanced with multi-

photon excitation to make multi-color acquisition [Mahou et al., 2014] or to obtain functional images

of the whole brain in mouse embryos [Wolf et al., 2015]. Alternative techniques such as bessel-

beam plane illumination microscopy allows different operational modes reaching high speed and less

photo-bleaching [Gao et al., 2014, 2012].
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2.2.2 Digitizing and visualizing live embryos

The previous imaging techniques enable to acquire live images of embryogenesis producing high

throughput images that are digitized using image processing methods [Luengo-Oroz et al., 2011,

Mikut et al., 2013, Peng, 2008, Keller, 2013]. The ultimate goal defined in this field has been to

reconstruct the motion, morphology and functional mechanisms along the development, allowing to

generate multi-scale descriptions based on the subcellular-to-cellular-to-embryonic levels data [Amat

et al., 2014, Olivier et al., 2010].

Motion estimation can be approached with discrete or continuous methodologies. Typically, em-

bryogenesis is analyzed with cell tracking methods [Meijering et al., 2012, 2009], that can be classified

according to the motion model assumed [Maška et al., 2014]. Most part of tracking methods would

rely on a cell detection stage and a cell linking stage, but other methods work in the spatio-temporal

domain to find connected structures as cell trajectories [Luengo-Oroz et al., 2012, Pastor-Escuredo

et al., 2012, Bellaiche et al., 2011]. State of the art tracking workflows are powerful tools that gen-

erate cell lineages for different species and large 3D + t datasets with linking accuracy above 95%

[Amat et al., 2014, E. Faure et al, 2015]. Image correlation techniques such as PIV [Keane and Adrian,

1992], widely used in in-vitro traction force microscopy [Oliver et al., 1998, Hall et al., 2013, Wang

and Lin, 2007] for motion estimation are also used to quantify displacements fields during embryo-

genesis. Integrative frameworks have combined cell based analysis with image correlation techniques

to relate cell and tissue level descriptions [Blanchard et al., 2009, Bosveld et al., 2012].

Data visualization is also critical for developmental biology research [Long et al., 2012]. Vi-

sualization is intended to have cell level resolution [Keller and Ahrens, 2015] and integrate different

sources of data and processing, enabling the interaction with the digital embryos [Pietzsch et al., 2015,

Chaumont et al., 2012, E. Faure et al, 2015].

2.3 Methods to study embryogenesis mechanics

Mechanics plays a key role in shaping the embryo, sculpting tissues and organs during the embryo-

genesis through force generation, force transduction and adaptive mechanical properties of tissues.

Mechanics also acts as a regulator of cell proliferation and apoptosis, gene expression and signal-

ing pathways thanks to mechano-sensing mechanisms based on cell-cell and cell-extracellular matrix

adhesion [Heisenberg and Bellaı̈che, 2013, Lecuit et al., 2011]. Conversely, cell and tissue mechan-

ical properties depend on genetics and molecular interactions that determine cell stiffness, adhesive

interactions and cell coordination. It could be assumed that embryogenesis is composed of several

interacting and concurrent processes at different scales that collaborate to shape the embryo and reg-

ulate each other to reach a robust and reproducible unique process that enables the development of

embryos of the same phenotype [von Dassow and Davidson, 2007, Haeger et al., 2015].
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Quantification of stresses and mechanical properties in embryonic tissues has been approached us-

ing invasive experimental techniques [Davidson et al., 2009], specially with laser ablations to observe

tissue tensions [Rauzi et al., 2008, Hutson and Ma, 2007]. A less invasive approach has been used

to obtain functional images as proxy indicators of mechanical activity by marking actin and myosin

[Levayer and Lecuit, 2012, Machado et al., 2014]. However, for understanding the interactions and

dependencies of mechanical patterns with other genetic and epigenetic factors [Kwan et al., 2012], it is

necessary to quantify dynamics in-vivo from the observed motion of biological structures to explore

the spatial and temporal scales of the processes shaping the embryo [Blanchard and Adams, 2011,

Oates et al., 2009, Keller, 2012].

The advances in in-vivo data acquisition and processing overviewed in the previous section, have

enabled the quantification of strain and deformation rates from the motion in the images. These tech-

niques are closest state-of-the-art methodologies to the work proposed in this PhD Thesis. Cell based

measurements (shape and position) have been exploited to measure local cell shape changes and cell

rearrangements derived from a combination of tissue strain rates and cell shape analysis [Blanchard

et al., 2009]. Also, discrete analysis approaches have been used to quantify tissue dynamics mod-

eled as a topological network of cells [Graner et al., 2008]. A multi-scale imaging methodology has

enabled to combine both cell level measurements and tissue strain rates (image correlation methods)

[Bosveld et al., 2012], considering that cell intercalation and shape changes are quantified with the

traceless strain rate tensor (deviatoric tensor). This framework also proposes a comparison strategy

based on the subtraction of strain rate fields, after spatio-temporal alignment by removing rotation and

elongations components of the deformation.

These works are presented for image data in 2D (including projections of thin 3D volumes into

one slice), that simplifies the analysis and visualization, and applied to tissues that show a clear planar

behavior and orientation (normally defined as the apical plane) of the mechanical patterning. However,

in order to generalize strain and deformation quantification it is necessary to extend methodologies

to 3D to understand processes with greater geometry complexity. Futhermore, it is necessary to

understand large scale processes that not only deform the tissues but also configure the anatomy of the

embryo through time [Keller, 2012]. Moreover, not only quantifying this spatial scale of deformation

rates is required, but also the deformation and strain along finite intervals of time, as the mechanical

processes during embryogenesis might be organized along several temporal length-scales.

Several methodologies are being proposed to not only quantify strain rates, but also stresses.

Some of them infer stress rates (absolute stress quantification requires to define a zero-force state)

from strain rates by posing an inverse problem assuming certain tissue properties or by modeling

the force effects in terms of cell junctions [Chiou et al., 2012, Brodland et al., 2010, 2014, Ishihara

and Sugimura, 2012, Fletcher et al., 2014, Ishihara et al., 2013]. A slightly different approach has

been to formulate and solve constitutive equations for biological tissues [Tlili et al., 2015]. A recent
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approach combines strain rates measurements based on cell morphology with myosin activity to infer

mechanical properties assuming linear viscoelasticity of the tissue [Machado et al., in press]. These

properties are then used to quantify stresses with laser-cuts.

However, the quantification of mechanics (strain and stresses) in the large scales of embryogeneis

processes, such as gastrulation, is not yet addressed from images as it requires. The methodologies we

have referred establish mechanical relationships in small spatial scales of the cell and the cell neigh-

boring, but also in small temporal length-scales (as defined by the temporal resolution of the imaging).

The quantification of stresses is not addressed in this Thesis (see related discussion in section 7.2.3),

but the quantification of multi-scale deformation patterning (kinematics). Thus, it would be possible

to provide descriptions to more generally understand the complexity of the mechanical interactions

and mechanisms shaping the embryo.

2.4 Mechanics of actomyosin-driven pulsatile contraction

One of the most studied mechanical phenomena in developmental biology is the contraction driven

by actomyosin networks (Myo-II motors and F-actin filaments). Due to its importance, we overview

separately bibliography about this topic, which is related to the study presented in chapter 6. Ac-

tomyosin driven contraction is considered the main force generator in several biological processes

such as the tissue invagination during the gastrulation, tissue foldings or the dorsal closure [Kasza and

Zallen, 2011, Lecuit and Lenne, 2007, Munjal and Lecuit, 2014]. The mechanism of apical epithe-

lial contraction produced by Myo-II (myosin) during the gastrulation has been studied in Drosophila

embryos by comparing the development of wild-types with mutants that mimic Myo-II, finding that

a synchronized mechanism of myosin pulses play a fundamental role generating incremental apical

constriction and keeping tissue integrity [Vasquez et al., 2014]. Besides, tissue contraction, myosin is

also a driving force during tissue rearrangement through intercalation and extension [Paré et al., 2014,

Kasza et al., 2014, Bertet et al., 2004, Siedlik and Nelson, 2015].

The Drosophila’s Dorsal Closure -DC- is an exceptional biological process involving the interplay

between the amniserosa -AS- and the epidermis. The AS is a tissue forming a discontinuity in the

epidermis that eventually contracts allowing the closure of the epidermis into a continuous tissue

[Kiehart et al., 2000, Gorfinkiel et al., 2011]. The dynamics of the AS has been investigated initially

combining imaging of myosin activity and laser cuts [Ma et al., 2009, Hutson et al., 2003] showing

that the apical contraction of this tissue depends strongly in the apical myosin networks inside the

cells. The myosin networks show a pulsatile behavior producing oscillation in the AS and eventually

a progressive ingression of the whole tissue replaced by the epidermis [David et al., 2010, Sokolow

et al., 2012, Blanchard et al., 2010, Gorfinkiel and Blanchard, 2011]. One of the main questions is to

determine if the AS contraction is sufficient to lead the DC and or the leading edge between the AS
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and the epidermis was the main regulator of the process [Solon et al., 2009, Kiehart et al., 2000].

However, there are still open questions about the origin of the pulsatile concentration of apical

actomyosin activity and the apical contraction oscillations, and also about mechanical forces driving

the net contraction of the AS (tissue level or cell level ratcheting mechanism), so the tissue eventually

closes [Gorfinkiel, 2013]. In order to address these questions, a model of AS mechanics has been

proposed by [Wang et al., 2012] to explain both the oscillatory behavior and the net contraction.

This model uses a network force interaction topology defined by the position of the nodes and elastic

forces in the edges combined with signaling of myosin activity that drives the pulsatile behavior.

Furthermore, this model combines two temporal scales: the signaling of myosin activity and the

relaxation of cells activity defined by viscoelastic properties. The model also tests the two ratchet-

like assumptions, showing that the predictions output by the model enforces the hypothesis of a cell

level ratcheting that produces the individual cell ingression until the complete zipping of the AS.

Another AS model explains the oscillatory behavior through the coupling between active Myosin-

driven forces, actin turnover and cell deformation [Machado et al., 2014]. In this model, the net

contraction of the AS is driven by an increment of the actin turnover and the myosin force generation.

The phenomenology of the contraction is still being analyzed at different scales, trying to explain the

emergent tissue behaviors that arise from underlying synchronization mechanisms between cells [Xie

and Martin, 2015].





Chapter 3

Estimating Continuous Motion from
Microscopy Images

3.1 Unifying continuous and discrete image analysis

Motion estimation methods may be categorize into discrete, continuous and hybrid techniques. De-

pending on the image features, the scale of the dynamics of the system and the collaborative cell

behavior, each strategy will be more suitable to analyze a specific problem. Embryogenesis analysis

is fundamentally based on the behavior of the cells, single entities with characterized behavior and

properties. However, during some stages, collective behavior can give rise to patterns with scales

larger than the cell that can be described with continuous dynamics Keller [2012]. This duality has

encouraged our work in the design and implementation of a framework that allows the analysis of

bioimage data with either discrete or continuous image processing techniques, unifying both under

the same characterization of continuous motion.

This strategy becomes important in order to exploit continuum mechanics formulation to describe

and characterize the patterns in different types of tissues and domains and in different types of images.

However, the continuous motion assumption does not hold when the behavior is not collective for

the scales considered, and therefore, the mechanical interactions are better described by a network

with topological changes instead than by a continuous motion. The continuous motion serves to

describe large-scale cell movements approximated as a flow, as well as to describe the behavior of

soft embryonic tissues as a continuum. The framework unifies both descriptions by calculating two

elements: a differentiable displacements field vcont and a trajectory field consistent with the local

displacements Trajs . The spatio-temporal continuity implies also the smoothness of the trajectories.

This is assumed for the data used in this work because the instantaneous deformation is considered

infinitesimal for the time step of the acquisition. Therefore, the trajectories resulting by integrating

17
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this field can be considered smooth.

These two elements enable the dual representation of the embryo dynamics from the Eulerian

(spatial points seen from an external reference frame) and Lagrangian (particles describing trajectories

as an internal reference frame) perspectives. However, as the different spatial points considered will

be the instantaneous positions of the particles along their their trajectories, the framework proposed

can be understood as a trajectory based (Lagrangian) representation of the dynamics which can be

analyzed instantaneously or through time.

The displacements in vcont must match a local differentiability condition (at each sample) to

enable tensorial analysis. The displacements field can be sparse if calculated with a discrete image

processing technique or a dense field if calculated with a continuous image processing technique.

To fulfill the differentiability condition, the density of the field will define the spatial resolution of

the description given at each sample. The trajectory field Trajs , defines the motion of the particles

through time as determined by the displacements field (pathlines). Therefore, these trajectories enable

the Lagrangian representation of the motion, either as the particles of a flow or as material points

within a body or tissue.

Now, we introduce two different implementations of the model, one based on a discrete approx-

imation to motion estimation (cell tracking) and another approach based on a continuous motion

estimation technique (B-splines sequential registration). We will overview how both approaches can

be used to provide the continuous motion description proposed.

3.2 Motion estimation based on cell tracking

In the last few years, bioimage processing has focused on developing cell tracking methods, mainly

encouraged by the availability of high-resolution images of fluorescence-marked cell nuclei. Although

none of them achieves a 100% correct cell lineage through different stages of development, most of

them provide a high accuracy rate to obtain cell trajectories [Amat et al., 2014, Maška et al., 2014,

Meijering et al., 2012], and therefore they can be exploited to implement the model proposed. Al-

though several contributions have been made on cell tracking during the development of this PhD

Thesis [Luengo-Oroz et al., 2012, Pastor-Escuredo et al., 2012, Pastor et al., 2009], the main con-

tributions of our work are not linked to describe in detail an implementation of cell tracking but on

techniques to use any cell tracking data to analyze embryogenesis dynamics.

Cell tracking, which is a discrete approach to estimate motion, provides a sparse map of samples

map of samples. Typically an algorithm starts by nuclei detection followed by nuclei linking between

consecutive steps. Most general method consists in selecting the closest nucleus in the next step,

however, different approaches have been implemented to ensure robust linking. Through the linking,

cell lineages are built but they propagate the error rate of the tracking building the trajectories. We
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Figure 3.1: Scheme of the estimation of continuous motion with discrete analysis (cell tracking) and continuous

analysis (B-Splines sequential registration).

will use the displacements implicit in the cell lineage to generate the differentiable vector field vcont

which integrates the displacements of a cell and its neighbors in a regularization process. Trajectories

are built again using the differentiable vector field generating a continuous approximation of the cell

lineage. This trajectory field is complete and defines a bijective map along the embryo development,

so it can be considered as a flow assimilation of the lineage. Under the assumption of continuous mo-

tion, some phenomena like cell mitosis and cell apoptosis are disregarded as neglectable singularities

for the description.

3.2.1 Digital cell lineage

A digital cell lineage is a spatio-temporal structure of the embryo comprising the information of cell

nuclei position and also cell mitosis. It has been a major objective in in-vivo analysis of embryogenesis

to create whole-embryo complete lineages. Thanks to the lineage it would be possible to understand

the role of cell-level phenomena such as the proliferation or the organization of the fate maps (map of

cells along stages of development according to their differentiation fate). However, only after tedious

hand correction it is possible to ensure the accuracy of lineages for large embryos during long intervals
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of time.

In the lineage, each cell is located spatio-temporally and uniquely identified with a cell identifier.

Cell position is linked to the cell lineage by a reference to the mother cell allowing cell mitosis

representation. We generally define each entry of a digital cell lineage with the following structure:

{cellid,motherid, x, y, z, t}i (3.1)

where i is each of the detected cells, cellid is its corresponding unique identifier for the (x, y, z, t)

spatio-temporal position and motherid is the cellid of the mother cell. Two cells with the similar

mother cell describe a cell mitosis. Thus, the sparse map of samples is formed by all nuclei centers

detected at each time xi (x, y, z, t) that, alternatively, can be defined as a function of the unique

identifier of each cell xi (cellid). Any tracking method providing as output a lineage structure like

this, could be used to further follow with the proposed processing pipeline.

3.2.2 Displacements field implicit in the cell lineage

We build a displacements vector field v at each embryo sample xi calculating the displacements

using the motherid information to find the cell(s) in the next time step linked to the current cell xi′.
In presence of mitosis, two occurrences may be found, being selected the cell that minimizes the

Euclidean norm of the displacement. Therefore, only a part of the cell lineage is considered and some

links are disregarded. This simplification could introduce a strong bias if the concentration of mitosis

was high, so a mass change component would become relevant and it could not be neglected. Thus,

v (xi) is extracted from the displacement between the current position xi and the following position

xi′ when a link is available, which is not ensured if the lineage is not complete.

3.2.3 Temporal averaging of displacements

A temporal averaging process was introduced to filter out high-frequency noise within a trajectory

(fast displacements changes of magnitude or direction within a trajectory). This noise may come

from time-linking errors or high-temporal resolution phenomena such as mitosis that we disregard

in a continuous analysis approach. We exploit the temporal information of the cell trajectories from

the tracking to filter the velocity field v with a temporal Gaussian Kernel N(0, T ) centered on each

sample within the trajectory. For each sample of the tracking data xi within a branch k at a time

frame t, being vk the velocity of the same cell along the branch k, we define the temporal averaging

as follows:

vT(xi) =
1

αi

∑
t′∈π(t,T )

w(i, t′ )vk(t+ t′ ) (3.2)
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where t′ is the index within a time window π (t, T ) centered on t, αi is the sum of all weights

w (i, t′) for the links of the trajectory that the instance at xi belongs to, following this expression:

w(i, t′ ) = e
−t2

2T2 if the link at t′ exists

w(i, t′ ) = 0 if the link at t′ does not exist or is marked incorrect

In a discrete time domain, the ensemble for averaging π is defined as follows:

π(t, T ) = {t+ h∆t | h ∈ Z, h∆t ∈ [−2T, 2T ]} (3.3)

This filtering depends on the parameter Tave which defines the Gaussian distribution parameter

Tave = 2σ = 2T , tuned considering the time step between acquisitions and covering the time neces-

sary to mask cell mitosis (see Fig. 3.2). Some other parameters used are the MaxMov, that defines

the maximum speed allowed for a tracking link, and the MinWindow that defines the minimum

number of steps to be averaged around each sample.

Figure 3.2: Schema of the Gaussian kernel parameters used for the temporal averaging of the velocity field.
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3.2.4 Obtaining a differentiable displacements field

The vector field that describes the continuous motion is obtained by the regularization of the velocity

field vT, using a kernel N(0, R) adjusted to generate a differentiable vector field estimated around

each sample xi. The interpolated field vTR(xi) is calculated for every embryo sample i in a time

frame t as

vTR(xi) =
1

βi

∑
m∈η(i,R)

wi,m(xm)vT(xi) (3.4)

where η(i, R) is the set of selected neighbors for each sample, wi,m are the weights following the

by N(0, R) distribution centered in xi being xm the position of each neighbor and βi the sum of all

the weights. In order to preserve sharp dynamic boundaries that are treated as discontinuities inside

the field, we use a binary function S(xm,xi) that determines if a sample xm should be considered

within the ensemble average of the sample xi to be averaged.

η (i, R) = {m | ‖xm − xi‖ < 2R,S(xm,xi) = 1} (3.5)

where S(xm,xi) considers three decision thresholds which are set based on experimental data

observation:

• Maximum angle deviation of xm against the reference xi

• Minimum speed module of xm

• Maximum speed module ratio of xm against the reference xi

The parameter that defines the spatial scale is Xave = 2R = 2σ and is optimized using regular-

ization based on discretized function to statistically measure the differentiability of the velocity field

for a range of values. The parameterXave is selected using a regularization based on the second-order

structure function for a velocity function v is generally defined as follows:

S2 (l) =
〈

[v(r + l)− v(r)]2
〉

(3.6)

where < 〈〉 stands for the ensemble average and S2(l) ≈ l2 when l→ 0.

In our discretized and non-homogeneously sampled vector field, we perform an approximation

using a power law fitting on a series of bins n to approximate the structure function with the velocity

difference modulus. Thus, the discrete vector field vTR(xi) will be approximately differentiable when

the function S2,i [n] on the spatio-temporal position xi fits a decay power law of exponent e ≈ 2, pl−2.

S2,i [n] = {
〈
‖vTR(xk)− vTR(xi)‖2

〉
}Γn,i (3.7)
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To obtain this function, firstly, a discretized space around each position is built:

Γn,i = {r | (n− 1)dl < ‖xk − xi‖ < (n+ 1)} (3.8)

where n ∈ [1, numberOfBins] and {vTR(xk)} are the vector samples of the set of cells k ∈
Γn,i enclosed inside each concentric ring of size dl around a reference position xi. The samples

enclosed in this space are statistically characterized with several parameters shown in Fig. 3.1.

Once the second order function is created for every sample xi, an ensemble average along space

S2(n, t) is created by aggregating by rings all the samples in one time step. To compute this function,

a subset of rings within the whole space of S2,i [n] are selected by matching a stability condition. This

condition imposes that the parameter σ(Acells) (see Table 3.1) within the rings should be below the

third quartile Q3 of the distribution of this parameter for the ring n in every sample. Thus, rings with

divergent vector directions are disregarded as they could contain velocity discontinuities.

Table 3.1: Statistical descriptors of the velocity field in a discretized space around each cell

Thus, we obtain a function that characterizes the average differentiability of the spatial defor-

mation field along the time steps of the nuclei data. This function is used to test several N(0, R)

regularization kernels to obtain the minimum Xave = 2R that makes the deformation field fit in aver-

age to pl−2 along time. The output of the regularization described is a sparse vector field vcont(xi)

that approximates the cell displacements as a differentiable field.

3.2.5 Trajectory field generation

We then build the trajectory field consistent with vcont that defines a bijective mapping along an

interval [tn, tm] as a set of complete and unique trajectories Trajsmn . For motion characterized by

long displacements from the initial position but under infinitesimal local gradients, the trajectory field

is assumed to define continuous domains formed by smooth trajectories. Thus, the trajectories form a

flow field that approximates the cell dynamics implicit in the cell lineage.

The trajectories traj j are built integrating the vector field vcont(xi) from an initial position xj in

tn until tm using the information located in the samples map xi with a nearest cell interpolation of

the velocity field vcont. The result is a trajectory field Trajsmn = {traj1, . . . , trajl} where l is the

number of trajectories equal to the number of cells in tn and where each traj j(x, y, z, t) is a set of
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spatio-temporal points with the same trajid j . Each spatio-temporal point of the trajectory has been

assigned to the nearest cell in the map of points xi allowing the interpolation of vectorial and tensorial

data and also the visualization of Lagrangian descriptions expressed in terms of the trajectory field.

Thus, these trajectory field enables the Lagrangian expression of the dynamics and derived descriptors

in terms of trajectories vcont(Trajs).

3.3 Motion estimation based on B-splines sequential registration

Continuum deformation can be also estimated more directly with other image processing techniques

such as PIV or registration [Keane and Adrian, 1992, Sorzano et al., 2005]. These techniques are

preferred to cell tracking when the latter is difficult to achieve due to particle density, image quality or

spatio-temporal resolution. These methods rely either on image correlation or on other intensity based

metrics [Thévenaz and Unser, 2000]. We rely on an implementation based on B-splines registration

which provides a continuous deformation field expressed in terms of continuous functions (B-splines)

which ensure the spatial differentiability of the deformation field and is efficient for further analytical

treatment [Kybic and Unser, 2003, Ledesma-Carbayo et al., 2005, 2006]. Thus, as shown in Fig.3.1,

we estimated a dense version of vcont expressed through the B-splines and a trajectory field Trajs as

the tracking of material points (initial seeds) evaluating the B-splines.

3.3.1 B-splines registration

Among the different techniques that work at the image level rather than the cell or particle level, we

preferred the B-splines registration for the following reasons:

• Accurate deformation fields can be expressed with high-order B-splines as continuous functions

• Global optimization of image comparison metrics that avoid boundary effects

• Continuous function properties for derivation and deformation evaluation

Registration definition

Given two N dimensional discrete images fr(x) and ft(x) where x ≡ (x1, x2, ...xn) ∈ I being I

the N dimensional discrete interval representing the set of all pixels coordinates in the image. We

will refer to them as the reference image fr and test or transformed image ft, respectively. Supposing

that the test image is a geometrically transformed version of the reference image and vice-versa. This

is to say that the points with the same coordinates in the reference image fr(x) and in the correctly

transformed test image fw(x) = f ct (g(x)) should correspond.
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Where f ct is a continuous version of the test image. The aim of the registration procedure will be

to find the deformation function g : Rn → Rn (n = 3 for the case of our three dimensional images)

that minimizes a given criterion trying to provide a fw as close as possible to fr. Therefore, we define

the registration problem as a minimization problem that searches for a deformation function g such

that g = arg ming∈GE(fr, f
c
t (g(x))) whereG is the space of all admissible transformation functions

g and E is the criterion being minimized.

Following sections give details of different characteristics of the proposed method, regarding the

image model, the transformation model, and the criterion function.

Image model

We generate a continuous version f ct of the discrete test image ft using uniform B-splines as interpo-

lation functions:

f ct (x) =
∑
i∈I

biβq(x− i) (3.9)

where βq (x) is the tensorial product of centered B-splines of degree q. This interpolation provides

a good approximation and a good framework for the evaluation of spatial derivatives analytically.

Transformation model

Given that g : Rn → Rn represents the transformation function, we will restrict its representation

to a family of functions described by a finite number of parameters c using also in this case B-spline

functions.

g(x) =
∑
j∈ZN

cjβr (x/h− j) (3.10)

Therefore g is a linear combination of base functions βr (x) located on a regular grid. The pa-

rameter h represents the knot spacing of that regular grid, and therefore governs the scale of the

transformation, the total number of parameters cj, and the smoothness of the solution. The advantage

of this deformation model are its good approximation properties, its fast evaluation, the local influence

of the parameters, and its implicit smoothness.

A remarkable feature of the B-spline model is that the complexity of evaluating the deformation,

and the gradient and the Hessian of the criterion does not depend on the sampling step h, or equiva-

lently, on the number of parameters. This can be seen from the fact that one pixel in the image always

contributes to a fixed number of gradient (or Hessian) components. Additionally the explicit formula-

tion of the deformation functions allows express explicitly the derivatives of the criterion [Kybic and
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Unser, 2003, Thévenaz et al., 1998, Thévenaz and Unser, 2000] with respect to the parameters within

the optimization procedure performed during the registration. Additionally transformation descrip-

tors, such as the deformation gradient tensor, can be easily computed explicitly from the described

transformation model.

Criterion

The criterion to be minimized is composed of two terms, a similarity or data term Ed and a regular-

ization term Er as described in the following equation.

E = Ed(fr, ft(g)) + αEr(g) (3.11)

As data term or similarity criterion we choose the Sum of Squared Differences -SSD- criterion

because of its simplicity, fast computation time, and smoothness of the resulting criterion space. It is

described by:

Ed =
∑
i∈I

(fw(i)− fr(i))2 =
∑
i∈I

(ft(i + g(i))− fr(i))2 (3.12)

where I is the set of coordinates specifying the spatial region of interest, andNI is the correspond-

ing number of pixels.

Additionally to enforce smoothness of the transformation and to improve the stability of the solu-

tion in homogeneous areas, our non-rigid registration approach employs a regularization based on the

separate norms of the second derivative of each of the deformation components [Rohlfing et al., 2003,

Wollny et al., 2010] as energy term Er in (3.11):

E(g) :=

∫
Ω

d∑
i

d∑
j

∥∥∥∥ ∂2

∂xi∂xj
g((x))

∥∥∥∥2

d(x). (3.13)

As given in eq. (3.11) the regularization term will be weighted against the similarity measure by

a factor κ.

3.3.2 Spatial and material definition of the continuous motion from B-splines registra-
tion

The spatial deformation along time given by gt is expressed as a sequence of continuous transfor-

mation functions {g} for each pair of images, so it is considered to be a dense characterization of

spatial tissue dynamics. In order to have a definition of vcont in terms of spatial points, we define a

differentiable discretized vector field vreg using a grid of samples xgrid to evaluate the B-splines gt

and to obtain the instantaneous displacements between time steps. This grid can be adjusted to have
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a specific density (parameter snode , that could be set as dense as the image pixel grid at the expense

of more computational cost) and to be properly restricted to the tissue boundaries by masking the grid

with the tissue contour of each time step to have xi = xgrid(t).

vreg(xi) = gt(xgrid(t)) (3.14)

The Lagrangian characterization of the system based on the material points can be also obtained

by evaluating the B-splines in an interval [tn, tm] as a spatio-temporal map generated from the grid in

tn. This new map stands for the positions within the trajectories followed by material points at each

time point. These trajectories can be created by evaluating gt to update the position in each time step

from the seeds in the grid j in tn.

xt,j = xt−1,j + gt(xt−1,j) , xtn,j = xgrid,j(tn) where t ∈ [tn+1, tm] (3.15)

This expression determines the direction of the registration sequence gt and the subsequent motion

estimation. The registration has to be applied inversely to the direction of the displacement field

expected. Thus, given spatio-temporal image data between two time points [tini tend], the causal

displacements field is achieved by registering the sequence backwards tend → tini. Therefore, the

anticausal displacements field is calculated by a forward registration tini → tend.

This way of evaluating the B-splines provides a trajectory field {Trajsmn }j that is smooth when the

spatio-temporal continuity of the transformation is ensured with special regularization or constraints.

Sequential registration provides incremental differentiable spatial deformation fields but does not en-

sure the smoothness of the trajectories [Ledesma-Carbayo et al., 2006]. However, as mentioned earlier

on, the temporal resolution is assumed to provide infinitesimal deformation. In this situation, it can be

also assumed that the trajectories of the material points will be smooth along the sequence of deforma-

tion displacements fields. Thus, B-splines sequential registration is used to create a dense Lagrangian

description of the dynamics vreg(Trajsmn ).

3.4 Conclusions

In this chapter we presented a comprehensive framework to estimate motion from in-vivo images that

provided a description of continuous motion in terms of the trajectories of material points moving

within a continuum, whose deformation was spatially characterized with a differentiable displace-

ments field. The framework included a pipeline to provide such a description from a digital cell

lineage (as a result of cell tracking) and another pipeline based on B-splines sequential registration.
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Both approaches of motion analysis (see Fig.3.3) were illustrated as the selection of their usage de-

pended on the image features and the scale of motion to be analyzed (see discussion in Chapter 7). The

lineage based approach required techniques to deal with sparse data containing displacements without

prior differentiability conditions. The registration pipeline was more demanding in terms of image

quality in resolution to provide a good motion estimation, but it provided a finer characterization in

terms of continuous functions itself.

We expect that with the increasing quality of images, these techniques could be applied to numer-

ous biological studies. There are unavoidable limitations coming from the scale of the dynamics to be

observed. The methods can only be applied when collective behavior or large-scale motion produces

quasi-continuous motion. The methods will not be suitable to describe network-like rearrangements

in very small scales, where discrete analysis tools (and also discrete mechanics formulation) should

be used instead.

Figure 3.3: Continuous vs discrete analysis at the different stages of analysis. Analysis can be equivalent for

specific data and can be combined throughout the processing pipeline depending on the data sources.



Chapter 4

Descriptive framework of embryogenesis
mechanics

We propose a spatio-temporal framework that quantifies embryogenesis mechanics using multi-scale

deformation and strain (kinematics) descriptors 1 to profile the history of deformation undergone by

cell domains and tissues along stages of the development. This descriptive framework relies on the

motion estimation framework introduced in chapter 3, which can be applied to flow-like movements

or the motion of soft-tissues during embryogenesis.

This framework, as anticipated in section 1.2, is based on a Lagrangian representation of the

dynamics, which has not been exploited in embryogenesis analysis so far. This representation will

allow us to quantify instantaneous mechanical descriptors, in 2D and 3D, equivalent to current works

in the field based on an Eulerian description of deformation (see Appendix A.2 for details), but also

to consistently explore other temporal length-scales with finite time descriptors. Patterns emerging

from instantaneous descriptors show mechanical events as a result of cell intrinsic activity and cell

interactions at a certain moment (instantaneous resolution assumption). On the other hand, the patterns

emerging from finite-time descriptors indicate the history of mechanical activity providing insight

about the organization of mechanical activity through time.

In this chapter we describe the different components of the analysis that will be applied to the

studies of zebrafish and Drosophila embryogenesis. Figure 4.1 shows the schema of the representation

and descriptors for zebrafish and its digital cell lineage. Spatial maps and material (Lagrangian)

profiles are tools to observe patterns from different perspectives and further quantify and understand

the mechanics of development.

1As mentioned in the Introduction, we will generalize the term to mechanical descriptors.

29
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Figure 4.1: A: Top: Render of raw nuclei data acquired with fluorescent in-vivo microscopy for a wild-type

zebrafish embryo. The orientation is from the animal pole at two stages of development: 7.5 hours post fertil-

ization -hpf- (past half epiboly) and 14 hpf (segmentation stage). Bottom: Two snapshots of the digital embryo

reconstructed from the raw data shown above. Nuclei are detected with image processing techniques forming

a spatio-temporal map xi as digital sampled embryo. Samples are linked through time with a tracking method

forming a cell lineage. The cell selection defining the eye domain Meye is shown for both stages highlighted in

yellow over the rest of the embryo samples.

B: Top: The Eulerian descriptor P . This descriptor gives instantaneous information about the compression

(red) and expansion (blue) rates. The patterns in this descriptor show organization in the instantaneous activity

in the embryo. Bottom: The descriptor P is presented only for the eye domainMeye. The definition of Eulerian

descriptors in terms of the embryo samples xi allows the aggregation of descriptor by cell domains.

C: Left: The descriptor P seen along the cell trajectories of the eye domain Meye. The continuous trajec-

tories definition for the computation of cumulative descriptors and a complete trajectory based representation

(Lagrangian) of the descriptors as domain profiles abstracted from spatial coordinates. The profiles shown for

volume change rate P and the cumulative volume change for the interval J14
7.5 represent the Lagrangian dy-

namics of the eye field (rows: trajectories, columns: time steps). The descriptor J shows compression (red) to

expansion (blue) from the initial state at reference time (tref = 7.5 hpf here).
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4.1 Motion to deformation: Incremental Deformation Gradient (IDG)
tensor

Due to the nature of data acquired with in-vivo imaging, the deformation information is based on spa-

tial displacements characterized by vcont(xi). In order to study deformation patterns, it is necessary

to first define the Incremental Deformation Gradient -IDG- ft(xi) tensor field for both approaches in-

troduced in the previous chapter. Having defined this information for the spatio-temporal map implicit

in the trajectory field Trajs , it would be possible to either present the spatial snapshots as an Eulerian

description of the mechanical activity or provide a Lagrangian description through the trajectory of

the particles. This way, the tensor data ft is organized along the trajectories so it can be processed to

generate cumulative mechanical activity profiles in finite temporal length-scales.

4.1.1 IDG tensor from tracking based motion estimation

The differentiable velocity field obtained through the regularization of the tracking data vTR(xi) is

used to obtain the IDG tensor field ft(xi), that represents the local spatial variations of the dynamic

system between two consecutive time steps (t → t + ∆t) for all the samples xi. The displacements

field defined by this method is sparse, so the tensor has to be computed using a numerical approxima-

tion of the tensor with discrete elements to calculate the partial derivatives in each spatial dimension.

Therefore, the IDG tensor ft at the sample in the position xt at time t is defined as the mapping from

the material vector dxt onto the spatial vector dxt+1 (see A.1):

dxt+1 = ftdxt (4.1)

For a discrete vector field, we define dxt and dxt+1 as follows:

dxt = [xl − xt] ∀xl ∈ ND(xt)

dxt+1 = [xl − xt+1]∀xl ∈ ND(xt+1)

ND(xref ) = {l| ‖xl − xref‖ < G,S(vl,vref ) = 1}

where G = Xave is the diameter of the differentiable domain interpolated and regularized as

described in the previous chapter and discarding the samples with the similarity function S(xl,xref )

used in the velocity field regularization (see section 3.2.4). The discrete numerical problem is solved

using a least squares approximation to get the Incremental Deformation Gradient -IDG- ft. We solve

this numerical problem writing the terms of the expression 4.1 as matrices and using a least squares
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approximation to get ft minimizing the error Mf in the gradient calculation for the non-homogeneous

deformation field. The IDG tensor fied is created by applying this expression to all samples xi.

ft = dxt+1dxt
t(dxt

tdxt)
−1 (4.2)

4.1.2 IDG tensor from B-splines registration based motion estimation

The IDG tensor can be also evaluated for the samples of the spatial points defined by Trajsj obtained

by the B-splines sequential registration (section 3.3.2), xi, by directly calculating the partial deriva-

tives from the continuous functions B-splines that define the dense deformation field gt. Alternatively,

we could use the vector field definition vreg(xi), but it would require numerical methods that would

introduce some error of approximation and would be more computationally expensive. However, the

analytical differentiation of the B-splines is a more accurate and fast way to calculate the IDG tensor.

Thus, the ft(xi) for each sample in each time step can be obtained as:

ft(xi) = ∇xgt(xi) + I (4.3)

being I the identity tensor as ∇xgt represents the Incremental Gradient of Displacements -IGD-

as we will see in the next section. The quantification of this gradient is based in the analytical deriva-

tion of the B-splines series forming gt (section 3.3.1) for each selected point of evaluation xi.

4.1.3 Spatial and temporal scales of the IDG tensor for each motion estimation method

The IDG tensor field is the basic deformation information used to build the descriptors framework.

This tensor provides the local characterization of the deformation and strain rates at each reference

position of the field. The temporal scale depends on the time resolution of the image sequence which

imposes a limit in the resolution. We assume that the imaging has been performed to observe the

dynamics instantaneously, so we will consider that each incremental time step is instantaneous for the

used data. Thus, the IDG represents the deformation and strain rates and infinitesimal deformation

descriptors will be used. The spatial scale of the deformation measure depends on the method of

analysis used:

• For the cell tracking based estimation, the descriptors integrate information of the cell and its

neighbors (number of neighbors depends on the information required during the regularization

process to obtain a differentiable vector field) to calculate the gradients, so the characterization

of the patterns is already mesoscopic, minimally at the cell domain level. The interpretation of

the descriptors will be done in terms of the relative position of the nuclei around the reference

sample between two time steps.
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• For the motion estimation based on the B-splines sequential registration, the resolution is given

by the separation between B-splines nodes (cnode parameter) and the properties and order of

the B-splines functions. Generally, the scale of the description provided by a B-splines field

is smaller than the cnode value. This means that one node per cell would offer a subcellular

resolution of the description. Using more that one node by cell would provide a very detailed

resolution of the deformation in subcellular regions.

4.2 Instantaneous deformation description

The system can be seen as snapshots of the state of several processes at a given time point. In this

case, we simply create descriptors derived from the IDG tensor to generate spatial maps with the

instantaneous deformation descriptors (assumed high temporal resolution of observation). We use

invariants of tensors derived from IDG, independent of orientation and velocity of the reference frame

to obtain meaningful and comparable descriptor fields E(xi). The family of invariants summarized in

Table 4.1 comprises local topology descriptors and different types of strain rates. The descriptor maps

generated are well suited to describe the emergent behavior of collective interactions that generate

patterns between the cell domain and the whole embryo scales (mesoscopic scales), even crossing

recognizable tissues. The existence of emergent patterns warranties the suitability of the continuous

analysis approximation at least for some stages of development where mechanical activity organizes

in scales beyond the scale of analysis as defined in the previous section.

4.2.1 Deformation topology and strain rate descriptors

From the IDG and the derived tensor Incremental Gradient of Displacements -IGD- tensor field

ht(xi) = ft(xi) − I we obtain the instantaneous deformation and strain descriptors (see Table 4.1).

We can study the topology of the deformation of the displacements field inspired in flow topology

analysis (see A.3.1). This description includes the expansion and compression rate P and the rotation

descriptors D and Q. Moreover, P and D can be combined into the Topology descriptor. The strain

rate descriptors are obtained from the symmetric tensor ε (see A.3.1). However, this tensor do not

differentiate the elongations from the shears, so we use the deviatoric tensor d to characterize the

shears in the displacements field isolated from the elongations [Blanchard et al., 2009, Bosveld et al.,

2012].

4.2.2 Biological interpretation of instantaneous descriptors

Given the considerations of the scales presented in section 4.1.3, it is possible to give a biological

interpretation to the previous descriptors:
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Table 4.1: Eulerian descriptors:
The Eulerian descriptors are the quantitative aspects of the embryo dynamics seen from a spatial reference

frame, or in other terms, as the relative spatial variations of the displacements. As the description is generated

from a cell tracking, the descriptors quantitatively describe the relative changes in the nuclei position topology

between consecutive time steps.

• P : The compression/expansion rate expresses the changes in the size (area 2D or volume 3D)

in the region surrounding the sample. This descriptor involves an incremental change in the

continuum size within the scale of the IDG tensor that can be confined to one cell (B-splines

with cnode < cell size) or several cells (tracking based method).

• D: Rotation discriminant expresses how the continuum rotates in comparison with linear strain

rates. This descriptor does not provide much information in very local scales, but it can be

used to highlight vortexes and rotation centers described by cells along their movement in the

tracking based approach.

• Q: Second invariant of h. This descriptor provides similar information to D but it does not

isolate the P component, so D is better suited to quantify the amount of rotation.

• Topology: This descriptor combines the signs of P and D, so it is possible to classify the

regions of the tissue with both rotation and expansion/compression behavior properly.
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• Qs: Second invariant of ε provides information of the amount of strain after removing the

rotation component. However, it does not isolate the P behavior, so it quantifies both shears

and compression/expansion. This descriptor, used in non-compressible fluids is disregarded

here.

• ei: Principal components of ε show elongations (positive-blue) and shrinking (negative-red)

strain rates and their directions. This is a geometrical characterization of the strain rate useful

in 2D but too complex for 3D. Therefore, principal invariants are preferred as they provide the

information as scalar fields.

• Qd: Second invariant of d provides information of the amount of strain after removing the

rotation component and P . This descriptor is therefore, very important because it isolates the

tissue distortion. In cell domain scales, this descriptor provides information about tissue rear-

rangements that can be produced by smooth cell intercalation (fast and sharp intercalation is

not a continuous motion) or cell shape changes. In small scales (small cnode) this descriptor

describes shear deformation of the cell shape. The tensor d has been previously used to mea-

sure this tissue behavior [Blanchard et al., 2009, Bosveld et al., 2012], but using the principal

components instead of this invariant that is defined here inspired in the invariant Qs used in

non-compressible flows.

• w: The angular velocity derived from the skew-symmetric tensor Ω has been used to describe

rotation, but the usage of Q and D is preferred here to quantify rotation rates.

For the shake of simplicity, we have selected P , D and Qd to generally describe instantaneous

behaviour in 3D data as they capture the main behaviors in an isolated way: compression/expansion,

rotation and distortion. Additionally e1, e2 and geometrical projections of epsilon on anatomical axis

are considered in 2D dimensions.

4.3 Finite-time deformation description

4.3.1 Finite-time Deformation Gradient (FTDG)

From the Langrangian perspective, vcont(traj j) enables for the characterization of the deformation

history along each trajectory. The deformation for a finite-time interval [tn, tm] can be quantified by

the Finite Time Deformation Gradient -FTDG- Fm
n (traj j). This tensor is built, as described in eq.

4.4 (see A.1 for details), applying the chain rule with the IDG tensors along each trajectory of Trajsmn .

This is possible because the IDG tensor is expressed in terms of the spatial position of particles xi

for which we have built a consistent trajectory, so the instantaneous description is integrated within a

Lagrangian representation of the motion.
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Fn
m{traj1} = fm−1 . . . fn+1fn (4.4)

where fn is the IDG tensor between tn and tn+1 for the trajectory traj1 and so forth. Thus, the

trajectory field allows us to calculate the FTDG tensor which can be expressed at the initial estate at

tn or from the deformed estate at tm.

4.3.2 Finite-time deformation and strain descriptors

From the tensor Fm
n it is possible to obtain the finite time deformation and strain descriptors. This

deformation can be arbitrarily large for a time interval [tn, tm], so the infinitesimal assumption used

in the calculation of instantaneous descriptors does not apply. Instead, finite deformation expressions

and the polar decomposition of mechanical contributions is used (see Appendix A.4.1). Using this

decomposition we can extract the finite elongations U and the rotation R tensors. The finite strains

are calculated by the Cauchy-Green strain tensors Cm
n and Bm

n . In order to isolate the expansion and

compression component of the deformation as we did with the deviatoric tensor for instantaneous de-

formation, the isochoric deformation tensor F̃m
n and its Cauchy-Green tensors are calculated. Again,

principal components and invariants of these tensors are used to describe the mechanical behavior (see

Table 4.2). These descriptors generalize the instantaneous deformation descriptors to quantify defor-

mation in temporal intervals and we have designed a set of descriptors analogous to the previously

presented for instantaneous deformation and strain. Technical details of the descriptors are provided

in the Appendix A.4.1.

4.3.3 Biological interpretation of finite-time descriptors

• J : The compression/expansion expresses the changes in the size (area 2D or volume 3D)

between two different configurations between an interval of time. This descriptor shows the

evolution of the size of the cells within the spatial scale of the descriptor (see section 4.1.3)

along time given an initial state.

• MIC1: First distortion descriptor. This descriptor contains information about the tissue distor-

tion that linearly increments with the amount of shears. This descriptor quantifies the distortion

of the tissue between any two time points, so it allows to map how a cell domain can deform

or intercalate during long intervals of time. The limitation of the intercalation is that the tra-

jectories cannot cross (smoothness of trajectories is part of the motion estimation framework’s

assumptions).

• MIC2: Second distortion descriptor. This descriptor provides also a description of tissue re-

configuration likeMIC1, but it adds more terms when there are more dimensions of reconfigu-
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Table 4.2: Lagrangian descriptors:
The description relies on the evolution of the trajectories based on an initial state, so the descriptors not only

considers the changes in the topology of the nuclei positions, but how they evolve describing shapes along time

and which are the relations between the trajectories describing a continuous system.

ration. In other words MIC1 and MIC2 will be similar when the tissue reconfigures oriented

in a plane and MIC2 will be larger than MIC1 when the tissue reconfigures with two plane

orientations.

• θ: The angle of rotation (also named as Rotation in this document) quantifies how much a

domain has rotated over itself through time. The direction of the rotation may vary along time

and it can be calculated as described in the Anexo (Euler’s theorem).

• ci, bi, ei: The principal components of the Cauchy-Green tensor provides information about the

strains undergone by the tissue and their directions and magnitude. The eigenvalues of the right

and the left CG tensors C and B are the same, so we will consider them as the principal strain

components ei.

• ici: The principal components of the Cauchy-Green tensors of the isochoric deformation. This

descriptors provide information about the geometry of the shape change of the tissue in long

time intervals isolated from the volume change.

• FTLE: This descriptor provides information about which is the most expanding direction of

strain. It separates repelling structures in one direction (positive values) and identifies sink-like

structures in 2D (negative values).
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For the shake of simplicity, we have selected J , θ, MIC1 and MIC2 to generally describe finite

deformation in 3D data as they capture the main behaviors in an isolated way: compression/expansion,

rotation and distortion (that requires two parameters in 3D). Additionally e1, e2 and geometrical

projections have been used in 2D data. In 2D we also used the FTLE descriptor to observe repelling

and attracting structures.

4.4 Temporal analysis of deformation

The instantaneous and finite-deformation tensors and descriptors are tools to perform an analysis to

find patterns in different temporal length-scales. Minimum spatial scales are characterized by the

source of information and the motion estimation method. Figure 4.2 shows the different types of

temporal analysis that can be performed with these tools.

• Instantaneous: This analysis explained in section 4.2 only considers each spatial position within

the trajectories2.

• Incremental temporal window analysis: This analysis exploits the trajectory based representa-

tion to generate a time series of finite-time tensors and descriptors setting a fix temporal refer-

ence and obtaining the deformation in incremental intervals of analysis. This analysis generates

a profile of cumulative deformation regarding the initial state. Therefore, the instantaneous

deformation description is the temporal derivative of this description given a initial state. The

deformation is always expressed at the end of the incremental time interval.

• Sliding temporal window analysis: This analysis moves the temporal reference to calculate the

finite-time descriptors with a fix length interval of time. This analysis generates a new series

with rescaled deformation temporal scale. For example, for a sequence of data with time step

of 10 seconds, it would generate a new series where each step shows the deformation along one

minute or one hour. This analysis allows to express the deformation at the beginning and at the

end of the interval defined by the time window.

4.4.1 Incremental window analysis

The incremental time analysis from a time reference tn returns the cumulative deformation from the

state at that time as a series of FTDG tensor fields FW(t)
n (tn+W (t)). An incremental windowW (t)

is used to measure the evolution of a local domain from the initial state at a time point of reference

tn, either forwards tn +W (t) or backwards tn−W (t) being W (t) = |t− tn|. The analysis forwards

2Reminder: high temporal resolution is assumed
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Figure 4.2: Temporal analysis of deformation:
The trajectory based representation (Lagrangian) allows a instantaneous description, but also cumulative along

the trajectory and a temporal rescaling of the deformation.

captures the cumulative deformation undergone by the the local domains around the X(i, tn) samples

of the positions map. Each time layer of the tensor field Fw(t)
n is computed as described in section

4.3.1:

TrajsW (t)(tn → t) = {traj 1W (t) . . . traj lW (t)} (4.5)

On the other hand, the analysis backwards predicts the deformation of the embryo until reaching

the configuration at tn. The backward tensor field Fw(−t)
n is computed by applying eq. 4.4 to the

tracking:

TrajsW (t)(t→ tn) = {traj 1W (t) . . . traj lW (t)} (4.6)

obtaining Fw(t)
n and then inverting the tensor field Fn

w(−t) = Fn
w(t)

−1

4.4.2 Fixed window analysis

Using a fixed integration windowW , it is possible to rescale the deformation in different time intervals

(δt → Wδt). This is possible by calculating the Finite Time Deformation Gradient -FTDG- field

represented in two configurations (FW(tn) and FW(tn + W )) along the trajectory for the intervals

[tn, tn + W ]. Using the original configuration FW(tn), the derived descriptors show a predictive

local behavior along W . The configuration FW(tn + W ) shows how this cumulative mechanical
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activity organizes after at the end of the interval analyzed. The computation of the FTDG tensors

is performed as described for the incremental window analysis but for intervals of the trajectory field

defined by the fixed window W :

TrajW (tn → tn +W ) = {traj1W . . . trajlW} (4.7)

4.5 Analysis of descriptors as Lagrangian profiles

4.5.1 Lagrangian profiles

Using the trajectory based representation, it is possible to switch between a map representation of

descriptors (visualized in terms of the map xi) and a trajectory based representation that will be

called Lagrangian profile. A subset of trajectories defines a material domain M (points that have an

associated trajectory so they are defined as material points with a complete spatio-temporal mapping

within the interval). Thus, instantaneous and finite-time descriptors can be expressed in terms of the

trajectories of M : E(M, t) or Lmn (M, t).

Material domains are generated as the subset of the trajectory field that passes by a given tissue

region or cell domain previously labeled or segmented. This is an important advantage to, for instance,

profile the behavior of a cell as it does not require a whole segmentation of the cell for the sequences

of images, but a segmentation in one step that is used to select the associated trajectories. Moreover, a

given morphogenetic domain of the zebrafish embryo such as the early eye field Meye can be profiled

through several stages with descriptors using the trajectories of the flow field passing by a labeled

cell population (selected by embryologist) in a stage where it is recognizable. Thus, the mechanics of

tissues and morphogenetic domains are profiled, providing an statistical characterization (mean and

variance) of the history of deformation undergone by all the cell population within the domain.

E(M, ti) = {etrajj (t)}mn trajj ∈M and t ∈ [tn, tm] (4.8)

where etrajj is any instantaneous descriptor along each trajectory in M (instantaneous profile).

Lmn (M, ti) = ltrajj (t)
m
n
trajj ∈M and t ∈ [tn, tm] (4.9)

where each ltrajj shows a finite-time descriptor along a trajectory relative to an initial state (cu-

mulative profile).

4.5.2 Profiles categorization

The individual profiles within a domain M can be further segregated into Mk subdomains that min-

imize the variance of a distance distribution between the Lagrangian profiles lj = ltrajj (t) of the
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trajectories in M . In order to both weight the magnitude and the temporal evolution of the descriptor,

we use a distribution of distances based on the cosine metric defined as follows:

dcos = 1− lslt́√
lslśltlt́

(4.10)

The resulting distribution is used as the input for a k-means clustering, chosen as classification tool

for its simplicity and because it generates independent and additive classes according to the distance.

Several k values can be used to evaluate statistically several partition levels for each descriptor. The

number of k in the clustering must be optimized checking experimentally the evolution of the variance

of the resulting segmentation. A canonical profile is defined as the average profile of the population

within the cluster (appropriate because the variance has been minimized). The different canonical

profiles for each descriptor form a basis that explains the different types of profiles for that descriptor

within the original domain M .

4.5.3 Mechanical signatures and organization of profiles

Trajectories within the domainM can now be expressed in terms of a mechanical signature, consisting

in the binary projection of the trajectory into the basis of canonical profiles B(M). Basis can contain

as many descriptors and the corresponding canonical profiles as considered. Thus, each trajectory

is described by a distance feature that comprises the mechanical description calculated. The clas-

sification of trajectories according to their mechanical signature returns populations within M with

the similar mechanical features across all the descriptors considered. Hierarchical clustering [Saraçli

et al., 2013] was used to classify trajectories, comparing each mechanical signature with the Euclidean

distance. This clustering approach allows us to segment the domain M into new sub-domains which

have the same mechanical behavior as determined by the basis of canonical profiles B(M).

4.6 Conclusions

In this section we introduced a computational framework built over the continuum mechanics formula-

tion, specifically based on motion kinematics. A Lagrangian description based on the trajectory fields

enabled the quantification of instantaneous and finite-time deformation descriptors. These descriptors

were suitable to understand the local and instantaneous behavior of tissues, previously exploited in

other frameworks [Blanchard et al., 2009, Bosveld et al., 2012], but also to understand the deformation

of the tissues as a result of sequences of mechanical activity in different temporal length scales.

The Lagrangian description allowed us to visualize the descriptors as spatial maps but also as

biomechanical profiles associated to the trajectories. Biomechanical profiles analysis based on unsu-

pervised clustering techniques was proposed in order to deal with the high dimensionality of the data.
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This approach could be enriched with other statistical tools and machine learning strategies, although,

the simplicity of theses procedures ensured that the results would be driven by the descriptive capabil-

ities of the framework. We expect that this analysis will be critical to understand the role of mechanics

in the embryo shaping process and how tissues differentiation happens during embryogenesis as it will

be illustrated in the next two chapters.



Chapter 5

Characterizing the mesoscopic
mechanical patterning of the zebrafish
gastrulation

The proposed methodology has been applied on in-vivo data of zebrafish development between 7 and

14 hours-post-fertilization (hpf). We will quantify mechanical patterns and their spatio-temporal or-

ganization in the length-scale of gastrulation, trying to relate them to the configuration of the cell fate

map. The tracking-based implementation of the motion model has been applied using the BioEmer-

gences cell tracking as source of information and has been connected to the platform’s visualization

tool Mov-IT [E. Faure et al, 2015], allowing interactive profiling of tissues, cell selections and also

providing visual representation of kinematics descriptors and mechanical clusters. First, details on

the data used and the specific configuration of the methodology for this analysis are presented. Then,

the results with biological interest are presented, providing a global perspective of the potential of

the methodological contribution of this PhD Thesis to the community of developmental biology re-

searchers. The conclusion discusses about the future improvements and potential biological applica-

tions that this paradigm of embryogenesis analysis may bring.

5.1 Materials and Methods

5.1.1 In-vivo images of zebrafish

Five zebrafish wild-type embryos have been cultured and image (Z1− 5, see Video). Embryos were

injected [Brend and Holley, 2009] with fluorescent [Chudakov et al., 2010, Stearns, 1995] EGFP for

cell membranes and H2B mCherry for cell nuclei. A two-photon Leica SP5 microscope1 has been

1http://bioemergences.iscpif.fr/bioemergences/imaging.php

43



44

Table 5.1: zebrafish wild-type embryos acquisition parameters.

Table 5.2: BioEmergences tracking parameters.

used to acquire two channels of 3D + t dataset for each embryo covering the development interval

from the shield stage in the Gastrulation until early segmentation (6−14 hours post fertilization -hpf-).

Datasets parameters are summarized in Table 5.1.

The orientation of the acquisition setup has been designed to observe the early eye formation but

covering the longest observation of the hypoblast in the animal pole. For that purpose, datasets have

been acquired from the shield stage (≈ 6 hpf) so the dorsal side could be identified and the orientation

could be moved from the animal pole to the posterior part of the embryo where the formation of the

midline could be properly observed and the hypoblast could be imaged deeper.

5.1.2 Cell tracking

Cell tracking has been generated using the BioEmergeces workflow processing pipeline. This tracking

is based on nuclei detection and a temporal linking algorithm that optimizes the best links and the

most complete trajectories. The tracking is output as a comma separated table where each entry of the

table represents a nuclei center {CellID CellNumber x y z t MotherCell reserved}. The link

between each nucleus position is expressed in terms of the MotherCell allowing the representation

of cell mitosis when two nuclei have the same MotherCell (see Table 5.2). This tracking does not
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ensure complete and error-free lineage reconstruction, but it does contains mitosis when two cells

refer to the same mother cell identifier.

5.1.3 Continuous flow approximation from tracking

The vcont(xi) data is obtained as described in section 3.2 to provide the continuous approximation

of the digital cell lineage. The values of the parameters necessary are enumerated here: Threshold

Tave Window for temporal Gaussian averaging (2σ) in minutes

MaxMove Threshold of speed (µm / min) to discard outliers in the processing of the spatial average

MinLinks Minimum number of links of a trajectory within the temporal window to discard outliars

Xave Window for isotropic spatial Gaussian averaging (2σ) in µm

MaxAngle Maximum angle deviation of the speed at xj against the speed at the reference x

MinSpeed Minimum speed module at xj in µm / min

MaxSpeedRatio Maximum speed module ratio of xj against the reference x

X Window to calculate spatial derivatives in µm

Table 5.3: Parameters for the filtering of the tracking displacements and the regularization to obtain a differen-

tiable vector flow field

values have been tuned by experimental observation of the data using Mov-IT. The selection of Tave
is set considering the scale of the high-frequency phenomena to be neglected such as mitosis. The

zebrafish datasets presented have been filtered using Tave = 20 mins. The spatial parameter Xave has

been optimized to obtain the regularization of the velocity field and results of this analysis are detailed

described in section 5.2.1.

5.2 Results

5.2.1 Accuracy of the continuous approximation

The regularization of the displacements implicit in the cell tracking data as described in section 3.2 has

been performed for the presented data (Fig. 5.1A) using the following valuesXave : {10 20 30 40 50}µm.

As shown in Fig. 5.1B, the regularization performed with low values of Xave would result in an av-

eraged second-order function that would not fit to the power law pl−2 in the timesteps displayed (6,

8, 10 and 12 hpf). The second-order function by time step starts converging for higher Xave values

and saturates for ≥ 40µm. In Fig. 5.1C, the S2 curve for Xave = 40µm is compared to the power

law pl−2, showing that the fitting is more accurate in early stages near the reference position, but for

6 hpf the fitting is worse far from the reference in average probably due to the sharp discontinuity be-

tween the midline dynamics and the rest of the embryo. We found out a spatial scale of displacements
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averaging Xave = 40µm that provides a differentiable vector flow field approximation that enables

for a mesoscopic tensorial analysis of the cell dynamics. Thus, we obtain the vcont(xi) = vTR(xi)

characterization of our motion model to further analyze mechanical descriptors.

Figure 5.1: Velocity field regularization.

A: Several time steps (6, 8, 10 and 12 hpf) of Z1 showing the velocity field built from the displacementes

implicit in the cell tracking and processed with the temporal smoothing filter (Tave = 20 mins), vT(xi). B:

Ensemble average of the S2[n] function for all the cells in each time step for several spatial scales (Xave from

10 to 50 µm). Curves converge for 40 − 50µm depending on the stage. The value Xave = 40µm has been

selected to process the data. C: Fitting of S2[n] for Xave = 40µm to the power law pl−2 D: The resulting

vector flow field vTR(xi) output by the regularization at 6, 8, 10 and 12 hpf.

5.2.2 The phenomenology of gastrulation with quantitative descriptors

The Eulerian description of the embryogenesis dynamics provides a detailed spatio-temporal map of

mechanical activity along the stages of the embryo (see Video). A mechanical timeline from 6 to 14

hpf for a zebrafish wild-type embryo, from an animal pole view leaning to a dorsal view, is shown
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in Fig. 5.2. In the temporal dimension, the onset and offset of large scale mechanical activity can

be clearly identified. Spatially, it is possible to determine the location and shape of the most relevant

mechanical patterns. At 6 hpf (shield) the activity at the top of the embryo is low and organized as a

planar expansion with an isotropic source point of velocity (see P , V elocity). Between 7− 8 hpf, as

epiboly goes on, the compression starts dominating the posterior side forming a mechanical bound-

ary between the posterior side and anterior side that is expanding, corresponding with the so-called

evacuation area. This layout of large and high activity patterns suggests a mechanical coordination

along the whole embryo with a clear polarization between the anterior and posterior sides. However,

a disruptive behavior appears in the symmetric bilateral plane in the posterior side, assumed to be

produced by the hypoblast moving below the epiblast, giving rise to the appearance of tissue distor-

tion in that region (see Qd) at 8 hpf. At 9 hours, symmetry from the bilateral plane can be clearly

identified. Compression is still high whereas vorticity emerges at both sides and the tissue close to the

midline moves fast and linearly (see All). These patterns suggest also that there exists coordination

and interplay between the rotation at both sides of the embryo and the dynamics of the midline favor-

ing the movement from the posterior to the anterior side, being the hypoblast the precursor domain

of this process. From 10 to 11 hpf, once epiboly is completed, the compressive behavior deceases

and forms clusters in the most anterior part of the embryo and also in the most posterior side of the

midline imaged, while the distortion at the midline grows and rotation, still in a symmetric layout,

forms clear high rotation areas (see Qd, P , D). This topological description indicates complex large

tissue reconfiguration along the midline and the global convergence of the migrating cells from the

sides to the midline. At 12 and 13 hpf, large patterns have already vanished and the rotation appears

in more local clusters that indicate that the convergence to the midline at this stage is oriented around

very specific rotation centers that help to shape the anatomical boundaries of the embryo (see D). At

14 hpf no patterns are distinguished for any descriptor indicating that the range of mechanical activity

is lower.

5.2.3 Quantitative comparison of Lagrangian biomechanical profiles in a cohort of
zebrafish embryos

The proposed framework allows us now to quantify the dynamics described in the previous section

from the perspective of the cells composing the tissues being shaped. For that, we have compared five

wild-type zebrafish datasets Z1− 5 and selected the domains representing the epiblast and hypoblast

tissues -Mepi and Mhypo− (see Video), profiling their Eulerian and Lagrangian descriptors.

In Fig. 5.3A, the profiles show the mechanical activity experienced by the tissues in each timestep

between ≈ 7− 14 hpf, characterized with statistics of samples of the Eulerian descriptor fields P , Q

and Qd enclosed by Mhypo and Mepi. The instantaneous expansion/compression activity, character-

ized by P , shows a global trend transition from expansion to compression in the epiblast around 7.5
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Figure 5.2: zebrafish Development timeline: Timeline of the mechanical activity, as described by Eulerian

descriptors, of one wild-type zebrafish embryo imaged from the animal pole along several time points of the

development. The times are shown on the left side going from 6 to 14 hours post fertilization. Rows: Time

points by hour-post-fertilization. Columns display different Eulerian: V elocity, Topology, P , Qd, D.
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Figure 5.3: Comparison of the deformation profiles of hypoblast (red) and epiblast (blue) of five different wild-

type zebrafish embryos (Z1-Z5). Profiles are characterized by the mean (central line) and the standard deviation

(symmetric shaded area). The first three embryos were imaged at 26◦C, Z4 was imaged at 28◦C and Z5 at

24◦C.

A: Profiles of instantaneous stimuli by the statistical characterization of the descriptors P , Qd and Q along the

trajectories comprised in these tissue domains. Time is divided by hours post fertilization (hpf). The vertical

black dashed line shows a selected synchronization time tref that varies between 7 and 8 hpf depending on the

temperature used to image the embryo. This temporal reference is chosen as the striking point determined by

the transition of the epiblast from expansion to compression.

B: Profiles of cumulative stimuli by the statistical characterization of the finite-time descriptors J , MIC2 and

Rotation having tref as the initial state of the tissues . For that, the timeline of the embryos have been shifted

to be aligned in the same temporal reference defining a new relative mechanical timeline. The embryo Z2 lacks

the profile of the hypoblast as this tissue was not present at this time due to a less ventral field of view and

it does not exist in a Lagrangian sense in the new relative timeline. The vertical black dashed line shows a

temporal mark of 5 hours past the beginning of the new timeline so the process at this stage can be compared

among the embryos.
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hpf for Z1 − 3. This transition is observed earlier on at 7 hpf for Z4 which was imaged at a higher

temperature (27◦C) and at around 8 hpf in Z5, imaged at 26◦C. This sharp event, which is consistent

with the timeline in Fig. 5.2, can be considered a robust temporal mark of the dynamics evolution

across wild-type zebrafish embryos. The activity in the hypoblast seems to have a different timing

although the difference in appearance time of this tissue in the field of view of the data does not allow

a very precise quantification across the specimens. However, the temporal shift between the onset of

compression in the hypoblast and the epiblast seems to be a very distinctive feature of the Gastrula-

tion process in wild-type zebrafish embryos. The distortion and rotation activity, characterized by Qd
and Q, show a less distinctive pattern across embryos, although certain peaks are observed, they do

not occur at the same stage at with the same relative temporal positions in the embryos. We assume

this as the consequence of mechanics spatio-temporal variability within one embryo phenotype. This

variability, even seen for the same tissues in different embryos, limits the spatio-temporal alignment

and comparison of instantaneous dynamics in complex embryos.

The same mechanical activity is now quantified by its cumulative temporal effect in each trajec-

tory within the tissue domains, so that the spatio-temporal effects of the sequence of stimuli happening

during the shaping process of the embryos can be compared and understood. For that, the Lagrangian

descriptors are calculated for all the domain cell trajectories using the compression onset in the epi-

blast as a time reference tref to align all embryos at the same dynamics stage. The resulting profiles

for each tissue {Ltref+6h
tref

}EpiHypo are shown in Fig. 5.3B. It can be observed now how the compres-

sion and expansion activity results in an average compression of ≈ 20% of the epiblast, while the

hypoblast maintains a more neutral behavior. Note that the hypoblast behavior is worse determined as

the amount of tissue present at tref is not the same in each embryo. The distortion captured byMIC2

indicates a growing distortion effect for both tissues with a faster accumulation for the hypoblast and a

significant growing variability in the epiblast that may indicate a divergent behavior within this tissue

for this descriptor. Rotation for both tissues follows a similar temporal evolution till late stages where

epiblast features higher rotation. In general, we interpreted that the deformation induced by mechan-

ical stimuli sequences can be variable instantaneously, but tend to be organize in a similar way along

time for specific populations.

5.2.4 Identifying canonical profiles of deformation

Considering the previous results, we have investigated the existence of characteristic sequences of

spatio-temporal deformation patterns that converge for specific cell populations. We defined an in-

toto cell populationMall for a consistent classification of profiles. We used unsupervised classification

based on k-means clustering over the distances distribution of the trajectories generated with the met-

ric dcos for each descriptor. The minimization of this metric would group trajectory profiles describing

the similar temporal evolution of a specific descriptor within the interval. After considering different
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levels or partitioning, the canonical profiles for each descriptor are presented in Fig. 5.4A-B. For the

descriptor J14hpf
8hpf , we observe 3 different behaviors, the tissues may undergo a fast volume reduc-

tion, a moderate reduction and an almost neutral behavior. The distortion parameters MIC114hpf
8hpf

and MIC214hpf
8hpf have very similar canonical profiles meaning that the geometry of the distortion is

organized planarly. One of the canonical profiles features a faster increase of distortion and a general

different timing, whereas the other two canonical profiles mainly differ in the level of distortion along

time. Finally, the Rotation14hpf
8hpf is also decomposed in a mode that has an earlier onset and another

two canonical profiles that differ on the level of rotation towards the end.

The profile of the domains Mhypo, Mepi and Meye are shown in Fig. 5.4C-E projected over

the canonical profiles. The hypoblast dynamics can be explained by a single mode for each of the

descriptors, Jm1 in terms of volume change, MIC1m1 and MIC2m1 for distortion and Rotationm3.

The epiblast and the eye domains (Meye ∈Mepi) are qualitatively very similar as both are determined

by the same canonical profiles: Jm2, Jm3, MIC1m2, MIC1m3, MIC2m2, MIC2m3, Rotationm1

and Rotationm2.

5.2.5 Spatio-temporal organization of mechanical patterns during zebrafish gastrula-
tion

The information of the canonical profiles is integrated as a mechanical signature for each trajectory

for further classification. The mechanical signature is a feature vector based on the projection of each

trajectory into a number of canonical profiles (binary projection). Thus, trajectories can be clustered

together as described in section 4.5 into domains with similar deformation history along gastrulation.

Figure 5.5A shows the ordered distribution of trajectories for the J , MIC1 and θ (also named as

Rotation) canonical profiles into four clusters, whereas Fig. 5.5B shows the statistical distribution

of the mechanical signatures of each cluster and Fig. 5.5C shows the spatial organization of each

cluster as domains in the embryo (unfolding back the trajectories into spatial points). The first domain

(green) is distinguished mainly by being the sole domain containing MIC1m2 and Rotationm3.

The distribution of this domain shows that coherently with Fig. 5.4, it corresponds with the hypoblast,

meaning that the hypoblast can be explained by a distinctive behavior in mechanical terms with respect

to other any other tissue. The other three domains separate the epiblast with two different symmetries,

along the midline and across the midline. The second domain (purple) has a fate distributed along the

midline, forming part of the early brain and the eyes. Mechanically, it is distinguished by very high

distortion for all the trajectories in the domain which is consistent with the instantaneous distortion

distribution along the midline of Fig. 5.2. The third domain (red), located most anteriorly and almost

symmetric to the second domain at the reference time, is distinguished by a high compression and

its fate forms the most anterior and lateral part of the eyes as a mechanical boundary of the epiblast

and epithelial tissue. Finally, the fourth domain (yellow) shows high rotation and it serves to define
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Figure 5.4: A: Profiles of Lagrangian descriptors for the trajectory flow field subset Mall generated from the

cell population formed the epiblast and the hypoblast at 8 hpf. B: Modes generated by unsupervised k-means

clustering over a distance distribution between all trajectory profiles with a cosine metric. Each descriptor

has been categorized in three different canonical profiles that capture the different behaviors optimally. The

trajectories profile is ordered according to the cluster output (first row) and the average value of each population

of trajectories is used as the canonical profiles for each descriptor (second row). C: The mechanical profile

of the hypoblast (red shaded area showing mean and std) is shown overlaid to the canonical profiles. D: The

mechanical profile of the epiblast (blue shaded area showing mean and std) is shown overlaid to the canonical

profiles. E: The mechanical profile of the eye field (yellow shaded area showing mean and std) is shown overlaid

to the canonical profiles.
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the eyes posteriorly clearly showing that the convergence towards the midline is closely related by a

rotation movement that also helps to define a the anatomical symmetry at both sides of the midline.

Figure 5.5: A: Top: Material domain Mall at the tref = 8 hpf covering hypoblast and epiblast (white selec-

tion). Bottom: Mechanical signature in terms of canonical profiles of each trajectory within Mall ordered by

a hierarchical clustering. B: Characterization of each cluster segmented according to the mechanical signature

revealing more characteristic features. C: Several time steps of the spatio-temporal organization of the clusters.

5.3 Conclusion

The framework proposed in Chapters 3 and 4 was applied to characterize mechanical patterns in ze-

brafish development between 6 and 14 hpf using 5 wild-type specimens imaged with two-photon

fluorescent microscopy with marked nuclei. These images were used to generate a digital cell lineage

using cell tracking methods which served as the input for the framework. The lineage was approx-

imated as a trajectory flow field that integrated mesoscopic information of displacements (twice the
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diameter of a cell) to build a differentiable vector field and the associated complete trajectory field.

Descriptors maps derived from the kinematics of the flow field showed that the mechanical activity

organized in scales larger than the cell, forming supracelullar patterns between 7 and 12 hours of

development. The appearance of these large scale patterns justified the use of continuum mechanics

analysis for this interval of the development. However, the framework presented limitations to de-

scribe mechanical activity for 12 and 14 hpf, so another strategies (experimental and methodological)

should be implemented to measure smaller scale interactions in later stages.

Regarding biological insight, the framework applied to images covering the formation of the pre-

sumptive forebrain, allowed us to quantify the main flow topology events that explain large-scale

movements during gastrulation in the animal pole. We could also compare the dynamics of the germ

layers involved in this stage (hypoblast and epiblast) in a cohort of embryos by analyzing the flow

trajectories associated to their cell populations (profiling). Thus, we could observe the same topology

events as a history of stimuli experienced by the tissues and compare the timing among the cohort.

By comparing the instantaneous and cumulative deformation profiles and maps, it was possible to

observe how instantaneous deformation organized through time forming mechanical patterns that de-

scribed the shaping process.

Moreover, characteristic profiles with a specific spatial organization were extracted with unsu-

pervised techniques revealing order and coherence of the mechanical activity during gastrulation.

We obtained a classification of cell domain in terms of mechanical activity what was related to the

anatomical configuration of the embryo. Although, more statistical validation and whole-embryo

imaging would be necessary, the results suggested that it would be possible to define the phenotype

macroscopic mechanics in terms of canonical profiles that could be also used for comparison and

assessing the impact of genetic modifications. Furthermore, we expect that with a more complete

characterization (genetics and other mechanics scales), this type of framework could help describing

the cells differentiation process along several stages of development.



Chapter 6

Drosophila amnioserosa tissue
continuous analysis

The framework of analysis proposed in Chapter 3 and 4 has been used to analyze the behaviour of

the amnioserosa (AS) tissue, an epithelial tissue of the Drosophila embryo that covers a gap at the

dorsal side of the embryo [Gorfinkiel et al., 2011]. During almost three hours, AS cells generate

the major force driving Dorsal Closure through the apical contraction of its individual cells [Kiehart

et al., 2000]. Previous analysis have shown that this contraction is pulsatile with cells exhibiting

periodic 2 − 5 minutes oscillations in their apical cell area and driven by the transient activity of the

actomyosin cytoskeleton [Solon et al., 2009, Sokolow et al., 2012, Blanchard et al., 2010]. At the

mechanical level, AS cells evolve from being a fluid to become more solid-like as the tissue increases

its stiffness [Machado et al., in press].

So far, automated studies have relied on measurements at the cell level using cell shape varia-

tions statistics and deformation fields calculated with PIV. These metrics do not provide the necessary

resolution to allow the observation and quantification of subcellular patterns. Also, cell shape based

metrics do not have the necessary sampling to allow the observation of coherent mesoscopic patterns.

We apply the B-splines sequential registration implementation of the motion model and the mechan-

ical descriptors to investigate the subcellular and supracellular patterns in the AS cells at different

temporal scales thanks to the Lagrangian descriptors. Thus, we discovered that the oscillating pat-

terns of AS are organized beyond the cell structure, showing mesoscopic patterns crossing cells with

a temporal dependency on myosin expression, but with a characteristic spatial organization that cannot

fully explained through a corelation with the myosin appearance distribution.

55
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6.1 Methods and materials

6.1.1 In-vivo images of Drosophila’s AS

For the live imaging, we used a stock carrying ubiECad−GFP and zipperCPTI002907 (available

from Kyoto Stock Center). Stage 12 − 13 Drosophila embryos were dechorionated, mounted in

coverslips with the dorsal side glued to the glass and covered with Voltalef oil 10S (Attachem). The

AS was imaged at 25 − 28◦C. using an inverted LSM710 laser scanning microscope with a 63X oil

immersion Plan-Apochromat (NA = 1.4) objective. A region of the AS was imaged with an argon

laser and using spectral detectors to collect the emitted signal between 495 and 620nm. 5 − 6 z

sections 1µm apart were collected every 10 seconds with a spatial resolution of 0.44µm. GFP and

YFP specific signals were extracted using the linear unmixing tool. Imaged embryos were left to

develop until larval stages to check that they survive normally until the end of embryogenesis.

With this imaging setup, five datasets D1− 5 of the AS during the slow stage have been acquired

and then pre-processed and analyzed. The membranes channel has been pre-processed using the We-

ickert version of non-linear anisotropic diffusion filtering available as an ICY plugin [Chaumont et al.,

2012]. The myosin channel has been pre-processed using 2D Gaussian smoothing and a histogram

equalization of each frame to homogenize the intensity values along the image sequence.

6.1.2 Digital reconstruction of the AS tissue

Image processing modules have been implemented to reconstruct a digital version of the Drosophila’s

AS datasets so the mechanical patterns could be validated and compared with cell based measure-

ments. Cell segmentation can be achieved by a range of image analysis techniques when cell markers

(such as nuclei detections) are available to initialize the segmentation method. For this analysis, the

nuclei stained data was not available, so that one fluorescent channel could be exploited to image

myosin expression. A methodology to obtain reliable cell segmentation and tracking without nuclei

marked images was implemented as described below:

AS cells segmentation

The filtered membranes channel is binarized by applying Otsu thresholding to obtain an initial rough

segmentation of the membranes boundaries. Then, an area opening is used to clean up small objects

and a closing is used to close gaps in the initial segmentation. In the image sequence, the AS tissue

contour is partially or totally missing due to the depth of the acquisition but it is needed to obtain a

robust segmentation of the border cells. This tissue contour is estimated by calculating the convex

envelope of the binarized and filtered cells contours. Having the binary contour of the tissue and

comprised cells, a 2D+ t watershed transformation [Luengo-Oroz et al., 2012, Pastor-Escuredo et al.,
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2012] is applied to obtain a segmentation of the cells using the redundancy of the spatio-temporal

domain and the temporal consistency to improve the spatial segmentation. The centroid of each region

in the resulting segmentation is calculated and assigned as the candidate nuclei center for each cell.

Then, a tagging tool (Processing) has been implemented to correct the automatically extracted

candidate centers by adding and deleting new ones per time step. The validated markers are eventually

used on the original filtered images to perform a full resolution 2D watershed to obtain the most

accurate segmentation possible avoiding oversegmentation and spatial leakage. This interactive semi-

automated method for cell segmentation provides a ground-truth segmentation of the cells boundaries

xmem(t) to then validate the continuous motion estimation and create cell-aggregated descriptors.

Cell tracking

Several tracking techniques could be applied including techniques that would exploit the spatio-

temporal segmentation calculated before [Maška et al., 2014]. However, as the AS cells do not de-

scribe a large migration movement but a local oscillation, a simple method was implemented. The

centroids previously validated have been used to generate the tracking with an Euclidean distance

criterion between markers in two consecutive frames. Thus, we obtained the ground-truth of the cell

size evolution by a discrete perspective to be compared with the continuous approach. It is important

to note that kinematics measurements do not rely on this tracking and they rely solely in the trajectory

field generated by the B-splines registration module.

6.1.3 Dense mechanical tissue description by sequential B-splines registration

The B-splines framework presented in Chapter 3 is the basis of the workflow of analysis (Fig. 6.1)

of the AS in this Chapter. It provides a dense characterization based on the B-splines gt of the

deformation that allows us to customize the resolution of the description vreg(xi) and select multi-

scale domains (sub-cellular, cellular or supracellular) to be described. The motion estimation that

provides the trajectory field Trajs (material lines of the tissue through time) has been validated using

the tissue reconstruction obtained as described in the previous section. This validation step is used

to define the registration parameters for the given datasets, so the method is tuned for the specific

temporal and spatial resolutions and the scales of the information of the in-vivo data.

After the calibration of the registration, the elements of the motion model (differentiable vector

field and material trajectories) are used to generate a temporal multi-scale series of descriptors that

comprises instantaneous deformation maps (descriptors P , e1, e2) and cumulative fine deformation

descriptors for any interval of time (descriptors J , c1, c2, FTLE). These descriptors are visualized

using an ad-hoc platform written in Matlab and also used to generate mechanical profiles of regions

of interests as described in the next section of results.
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Figure 6.1: Workflow of processing based on B-splines to estimate continuous motion characterization and

using image processing tools to validate and initialized the quantification of deformation descriptors.

6.2 Results

6.2.1 Validation of the dense tissue motion estimation of tissue with sequential B-
splines registration

The described workflow in Fig. 6.1 has been applied to the five Drosophila’s AS dataset D1 − 5

to obtain deformation fields and deformation descriptors derived from tensorial analysis in different

time-scales and for several spatial domains. First, we have tested the accuracy of the reconstructed

deformation obtained from the B-splines sequential registration. Several parameters values for the

B-splines registration module have been used and tested to obtain an optimal configuration. The

parameters testing has been performed by using the membranes segmentation (see section 6.1.2) as

a reference of the motion in the image sequence as a set of ground-truth points xmem(t). The points

defined by the segmentation in the first time step xmem(t0) have been used as the starting points of

automatically generated trajectories by integrating the displacements field generated by the B-splines

registration (see section 3.3.2). Therefore, these trajectories are an estimation of the cell membranes

boundaries positions Trajmemt0 . This estimation is compared in several time points with membranes

contour segmentation xmem(t) of the dataset D4 to measure the overlapping and quantify the error

derived from the B-splines registration. The overlapping of points along time has been fitted to a

power-law to observe the evolution of the error for the interval of time considered (120 time steps or

20 min). This curve has been calculated for several registration parameters so the best configuration

is chosen as the one that describes the smoothest decay of the overlapped area along time as shown in
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Fig. 6.2, corresponding to a distance between B-splines nodes cnode = 20 pixels and a regularization

weight alpha = 0.5.

The error grows for the first 20 time steps and then it stabilizes before the step 40 to keep and

overlapping around the 80% of the points between the independent methods: cell segmentation and

the motion estimation. However, the results show that the error does not keep growing, and therefore,

the B-splines based trajectories that define the continuous motion model are a suitable tool to describe

the dynamics along the intervals of time under study.

Figure 6.2: A: From left to right: several timesteps (0, 30, 59, 88, 117 seconds) of raw data, membranes

segmentation, the original membranes map xmem(t) and the estimated membranes map with the B-splines

Trajmemt0
starting in xmem(t0). B: The power law fitting of the error as the overlapping between the estimated

map and the original membranes map along time for several registration parameters for the dataset D4. C:

Power law fitting of the error of the best parameters of the dataset D4 applied to the other datasets in the study.

6.2.2 A dense mechanical description of AS tissue’s instantaneous dynamics

The frame-to-frame images transformations expressed by the B-splines allowed us to define the vector

field vcont = vreg(xi) as described in section 3.3. The B-splines can be used to define dense vector

fields or grid vector fields depending on the sampling required to measure the target dynamics. For
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Figure 6.3: Generated descriptors fields in several time points. First column: Raw membranes data. Second

column: Cell segmentation. Third column: Velocity field obtained through the B-splines in a grid representa-

tion. Fourth column: Descriptor P . Fifth column: Basic topology (red: sink, blue: source, green: saddle). Sixth

column: e1 first component (greatest magnitude) of strain. Seventh column: e2 second component (smallest

component) of strain.

this analysis, a grid (xgrid) of 10 = cnode/2 pixels spacing has been used to calculate the vector field

and the kinematics descriptors inside the AS tissue (cell diameter is about 20pixels compared to the

grid spacing 10pixels).

The evaluation by the B-splines motion estimation of the grid points independently as spatial posi-

tions (Eulerian perspective) enables for the quantification of the kinematics as instantaneous snapshots

of the dynamics of the AS. Fig. 6.3 shows the patterns of the deformation field, the local area changes

(descriptor P ) and the principal strain components in the apical plane (e1 and e2). This description

has a granularity smaller than the cell so it provides subcelullar resolution. However, the emerging

patterns of this finer resolution show clusters of mechanical activity above the cellular level and across

cells, so the spatial patterning of the instantaneous deformation forms supracellular structures. These

results support the usefulness of the continuous based analysis, as within the cell, heterogeneous me-
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chanical behavior is observed that can not be captured with cell-level measurements of the tissue

dynamics revealing supracellular patterns yet to be understood. Furthermore, this result suggests that

the oscillatory behavior of AS and its periodicity (spatial and temporal) may be identified at a more

local level than the cell but under the constrains of a certain mesoscopic level of organization of the

AS tissue even at instantaneous temporal scales (10 seconds)

6.2.3 Characterization of contractile oscillation at the cellular level

Previous quantitative studies of AS apical cell area fluctuations have shown that they oscillate with

a dominant frequency ranging 4 − 10mHz [Wells et al., 2014, Blanchard et al., 2010]. As DC pro-

gresses, there is an increase in the dominant frequency contribution and a gradual decrease in the

amplitude of oscillations. These fluctuations are driven by the oscillatory activity of the actomyosin

cytoskeleton which oscillates in antiphase with the cell area signal, with peaks in myosin signal pre-

ceding troughs in cell area by around 1.3π.

However, the results presented in the previous section show that the deformation of the tissue fol-

lows patterns not delimited strictly by cell boundaries. In order to characterize the contractile behavior

with the continuous analysis and validate it, we computed the dense representation of the Lagrangian

volume change from the initial time step Jt0(t) within the cell segmentation along time so we can

compare this dynamic profile with the discrete characterization of cell size change Area(t)/Areat0.

It is important to note that an Eulerian analysis of the deformation with techniques such as the PIV

could not provide a consistent timeline of the cell-aggregated deformation from an initial state and

could only be used to provide a statistical approximation of the size change rate by the descriptor P .

In Fig. 6.4, we show the error between Area(t)/Areat0 and the mean(Jt0(t)) computed as the

squared differences between both time series for each cell. We present two representations of the er-

ror: aggregated by time step and aggregated by cell. The error along time for each dataset is presented

by the median of the error of all cells in one time step. The results show that the metric behaves well

for the datasets indicating that the error due to the sequential registration does not grow uncontrolled

along time which is consistent with the results observed in the validation of the membranes bound-

aries estimation. The error by cell is calculated as the mean of the values along time for each cell.

The results show that the error is mainly focused on specific cells which have been inspected visually

confirming that most part of the non-matching values between two time series are due to a bad seg-

mentation or problems in the boundaries of the tissue and therefore the source of error is mainly due

to the values of Area(t)/Areat0 rather than a bad approximation generated by mean(Jt0(t)).

It can be therefore assumed that the continuous approximation describes properly the changes in

the apical surface of the cells to further study the oscillatory behavior of the tissue. Furthermore,

the Lagrangian profile of the cell domains does not need a segmentation along all time steps but

the initialization of the cell surface at an initial time point getting rid of the task of validating and
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correcting cell segmentation for discrete analysis. Also, this analysis provides more resolution of the

cell behavior providing a dense spatio-temporal characterization within the cell rather than a single

valued characterization based on the segmentation or any other discrete cell-based analysis.

Figure 6.4: Left: Error along time (median and mean of error in all cells) for D1 − 5. Right: Accumulated

error by cell averaged in time. Each bar is located at the cell id within the embryo

Fig. 6.5 shows the mean and std of the Lagrangian dynamic profiles Jt0(t), Area(t)/Areat0

and the level of myosin for some selected cells along time. Here, the std(Jt0(t)) informs about how

similar is the cumulative behavior for the material points inside the cell. Therefore, the increase of the

std implies an organization of the instantaneous heterogeneity (Fig. 6.3) into cumulative heterogeneity
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between material points even within the same cell. The time series of myosin level for each cell is

calculated as the percentile 75% of the myosin values enclosed in the cell region for each time step.

Figure 6.5: Right: Embryo and the id of the cells analyzed. Right: profile of several cells comparing the

statistics of J within the cell along time (blue), the area change rate extracted from the segmentation (green)

and the myosin estimated inside the cell (magenta)

The results shown a correct correlation with the time series of the cell size as validated above

and also an accurate anti-correlation with the myosin level which is also consistent with the literature.

Even more, the dense characterization of the cell behaves more robustly without the high-frequency

peaks observed for the cell segmentation based characterization which is more sensitive to automated

processing errors. Only for some cells, the std grows along time meaning that the heterogeneity of

those cells may grow because they occupy a singular location within the tissue where the dynamics

are different or they lead to quantification errors.

In general, it can be assumed that the dense characterization of the contractile behavior of the

cell in the AS provides at least as accurate results as the discrete analysis of the cells shape, but it

provides a richer characterization that may be useful to understand how singular behaviors may play

a role in the global organization of the AS dynamics. Moreover, the cellular level analysis based in

the sequential B-splines estimation is more robust for an automated analysis because it relies on the

trajectory field Trajsj derived from gt an initial segmentation of the cells. Thus, it would not require

a supervised correction of cell segmentation for all time steps, but only an initial step validation for

the initial labeling of the trajectories generated from the dense grid.

6.2.4 Mechanical oscillation and myosin expression periodicity

The methodology also allows to go to the subcellular level to understand the response of the tissue

against the exerted forces but as a continuum instead of observing the aggregated cell behavior. A
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tagging tool was used to identify several myosin foci generating the corresponding local spatial region

for each of them. This local region is used to select the material trajectories passing through the foci

and generating a spatio-temporal material domain of the tissue influenced by each focus. By centering

the analysis in the maximum of the myosin focus as reference event, the timeline of deformation of

the tissue influenced by the focus can be deconvolved for a time interval around the event.

Figure 6.6: Several foci of D2 showing the myosin profile and the compression of the tissue J around the

maximum of the focus event in space and time

In Fig. 6.6, several foci out of the 20 foci studied for D2 have been selected and the profile

of a circular region around the foci (maximum radius 4µm) is shown during a symmetric temporal

interval. It can be seen that the response of the local domains to the underlying force indicated by

the myosin shows important variability. Considering the description of J , the local domain behaves

homogeneously in some cases and it would have a heterogeneous behavior in other ones. It is also
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interesting that the amplitudes and the time of the response can also vary. This result suggests that

the local domains of the tissue respond differently to exerted forces in a very local domain and this

variability would possibly have not only a local impact but it contributes to, and is influenced, by

higher scales of patterning.

Figure 6.7: First column: myosin labeled image. Second column: Strain rate projected in the AP direction.

Third column: Strain rate projected in the ML direction. Each column represents several time points within the

20 mins period analyzed.

6.2.5 Meso-level patterning in the tissue and active force generation

The dense mechanical description of the strain rates shown in Fig. 6.3 suggested the existence of

supracellular patterns that potentially emerge from the additive effect of simultaneous exerted stresses,
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also regulated by the cells behavior. However, the spatial organization of this oscillatory mechanisms

is not yet understood clearly. In order to further understand the spatial organization, we calculated the

components of the strain rate oriented in each of the axis of the embryo (anterior-posterior and lateral),

resulting in two descriptor fields eAP and eML. In Fig. 6.7, we observed the myosin channel in

several time steps and the patterning described by eAP and eML (see Videos). The AP strain organizes

orthogonally to that axis and the same occurs with the ML strain regarding the ML axis. The patterning

is not localized in small blobs but forming stripes along the tissue with a clear continuity that wraps

and crosses cells. Interestingly, although the cells have a consistent oscillatory behavior of myosin

presence and compression, the patterning of the tissue is not identified with cells but with structures

that depend on the geometry of the tissue. This result supports the idea of tissue-level constrains in

the deformation leading to local variability and that potentially may regulate the oscillatory behavior

of the AS cells.

Figure 6.8: Instantaneous (top) and cumulative (bottom) eAP and eML and myosin averaged for 20 foci in D2

centered around the myosin max.

In Fig. 6.8, we compare both the strain rate and the cumulative strain oriented in the two embryo

axis and the myosin, averaging of several foci aligned in the maximum of myosin. The rate of strain

shows a sharp maximum compression earlier than the maximum of myosing (30 seconds appro.), so
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this shift is precise among the selected foci and could be a robust indicator of the tissue behavior.

However, the cumulative strain does not show a characteristic event (Fig. 6.8). Another important

feature is that both strain rates are negative during the myosin cycle from 40 − 50 seconds before

maximum until 10 seconds after the maximum of myosin.

Figure 6.9: First row: Myosin at t0 and t0 + 90 secs. Second row: FTLE in t0 instantaneous (left) and using

window integration from t0 to t0 + 90 secs (right). Third/Fourth row: eAP and eML for the same integration

window. Red lines highlight connected strain paths in the AP strain and dashed red lines for the ML strain.

In order to further understand the timing between the myosin appearance and the compression in

the two embryo directions, we computed the FTLE field (see section 4.4.2) for two different tem-

poral scales: 10 seconds and 90 seconds (see Video). By doing this, we could observe the current

instantaneous strain and also the strain seen one minute and half after when the compression is over
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and the strain would be near the maximum of expansion of the next cycle (see Fig. 6.8). Interestingly,

Fig. 6.9 shows compressive regions (blue blobs) in the two directions determined by negative values

of the FTLE field organized very locally and symmetrically. In some cases an eAP or eML stripes

emerge as a connected path between FTLE negative blobs. These paths should be analyzed in order

to understand the transmission of force along the tissue in specific directions. It is also important to

observe a spatial periodicity in the eAP and eML patterns, consistent with the bidimensional oscilla-

tory behavior of the tissue. As shown in Fig. 6.7, these patterns are likely to depend on the tissue

geometry and have a spatial frequency comparable to the cells diameter, however this result also sug-

gests that the patterns could emerge from the propagation of force. Furthermore, the orientation of

the patterns is strongly correlated with the orientation of the FTLE blobs. These blobs have also

a complementary spatial distribution between the two time windows. Therefore, the tissue seems to

adjust to situations of mechanical equilibrium in space and time (possibly regulated by some cellular

mechanism) that transmit forces along the embryo under geometrical constraints to finally give rise to

strain patterns consistent with the oscillatory behavior of the AS.

6.3 Conclusions

The framework was applied to study the contractile oscillatory behavior of the amnioserosa during

the dorsal closure in Drosophila melanogaster embryos imaged with confocal fluorescent microscopy.

The continuum analysis of the motion estimated with the B-splines sequential registration offered a

resolution of the deformation at the subcellular level. The visualization of the descriptors discov-

ered supra-cellular patterns underlying a tissue organization not fully correlated with the cells of the

tissue. Furthermore, the results suggested that the supracellular patterning cannot be explained only

by a spatial organization of the myosin foci as we observed strain patterns emerging between foci

at long spatial distances. We assumed that this strain propagation depended on the tissue state and

the relaxation level of the tissue (not influenced by other myosin foci), being influenced also by the

tissue geometry (clear AP and ML oriented patterns). Therefore, it could be hypothesized that this

deformation patterning would require an organization coupling several scales yet to be quantified.

Further analysis should be done to more accurately describe the different types of deformation

response to the myosin concentration. This characterization would serve to generate models of the

contractile oscillation as a continuum. An initial hypothesis of the patterning mechanism observed

is that the tissue responds to a characteristic frequency determined by the acto-myosin network that

generate forces but selects a spatial phase depending on the state of the tissue (history of spatio-

temporal mechanical stimuli and geometry constraints). Eventually, the model should include a multi-

level interaction in different time-scales between force generation points (indicated by myosin foci),

the tissue organization mechanism and the cellular regulatory behavior.



Chapter 7

Conclusions

7.1 Contributions

Given the objectives described in section 1.2 and the state-of-the-art described in chapter 2, the main

contributions of this PhD Thesis are the following:

• A framework to quantify the multi-scale deformation patterns undergone by tissues and cell

domains during the shaping process of embryogenesis in different time length-scales.

• The framework relies on a Lagrangian description of the system based on implicit trajectories

in a continuous motion to build multi-scale deformation and strain descriptors.

• Furthermore, a new representation scheme that enables the comparison of cohorts of specimens

in terms of biomechanical profiles, independent of spatial coordinates. This comparison is

therefore based on the history of deformation instead of the matching spatial patterns. The

approach seems better suited to quantify the synchronism of local bio-mechanical processes

along any stage of development.

In order to implement such a framework, several modules have been designed and implemented:

• A continuous motion description that is either estimated using particle tracking or B-splines

sequential registration, so the framework can be applied to a wide range of data and biological

studies, adapted to the level of organization of the mechanical activity. The continuous motion

description is composed by a differentiable displacements field and a complete and unique

trajectory field consistent with the displacements field, so it can be assimilated to a continuous

flow (particles describing long trajectories) or soft tissue motion (local movement of material

points within the tissues).

69
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• A validation framework for both implementations so the spatio-temporal continuity of the de-

scription can be granted for sequences of data where the temporal resolution enables instanta-

neous observation of the dynamics.

• A comprehensive framework of mechanical descriptors comprising a complete characteriza-

tion of the instantaneous and finite-time deformation and strain patterns derived from tensorial

analysis over the motion description

• A visualization framework for 3D data based on the platform Mov-IT and a 2D framework

implemented ad-hoc (Matlab) to visualize all the descriptors overlying this information with

the different imaging channels and the digital reconstruction obtained from the data.

• A statistical analysis module that exploits the descriptors to profile tissues and find structures

and patterns that describe the instantaneous and cumulative mechanical activity in the tissues.

Additionally, unsupervised classification has been used to generate unbiased categorization of

structures and patterns with a specific mechanical characterization for specific intervals of time.

The framework was applied in the following studies:

• The application of this framework to the study of the zebrafish gastrulation allowed us to define

detailed mechanical maps and Lagrangian biomechanical profiles for several stages of its de-

velopment, providing a quantitative developmental table in mesoscopic mechanical terms. We

could provide quantitative assessment of the mechanical differences between the germ layers

epiblast and hypoblast and how these tissues describe a specific deformation progression in a

cohort of specimens. This was possible by a 3D Lagrangian description of the patterns through

time. Additionally, we could identify characteristic spatio-temporal patterns of deformation

with a spatio-temporal organization that partially explains the wild-type fate map (map of cells

differentiation in the wild-type phenotype). These patterns can be therefore considered part of

the mechanical organization that shapes the embryo and its phenotype.

• The framework was also applied to characterize the behavior of the Drosophila’s amnioserosa

(AS), a tissue that shows an oscillatory behavior during the dorsal closure and finally contracts

driving the closure of the epithelium at both sides. It was possible to reproduce the results

that have been reported using a discrete analysis of the AS cells, but also it was possible to

discover supra-cellular patterns of strain components in the orientation of the anterior-posterior

and lateral axis that could be the product of the coordination of local biomolecular factors and

mechanical constraints imposed by tissue structure and geometry. Furthermore, the framework

allowed a sub-cellular characterization of the strain response to the stresses indicated by myosin

concentration showing promising results that could lead to a categorization of the local tissue

response depending on cellular and supra-cellular conditions.
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7.2 Impact and Limitations

7.2.1 Theoretical considerations on systems biology

The in-vivo embryogenesis observation and analysis have evolved thanks to the green revolution ini-

tiated with the GFP fluorescent protein used as marker of biological processes and structures. Fur-

thermore, significant advances in microscopy technologies are now providing researchers with the

experimental tools to study different scales of biological phenomena with high spatio-temporal reso-

lution. Biological compatible markers located inside the embryo enable to image structural and func-

tional information using microscope machinery. However, this observation is so far mediated because

the images acquired capture instantaneous snapshots of the underlying processes instead of directly

reconstructing them. The in-vivo data used to understand embryogenesis is therefore a sequence of

snapshots of the development in which each snapshot (2D slices or 3D stacks) show a global con-

figuration of the mechanical, genetic and biochemical processes happening in that precise time point.

Thus, the processes appeared unwired from their own timeline. Several image processing methodolo-

gies have been proposed to connect this spatio-temporal information at the cellular level to obtain the

cell lineage. However, even with the best microscope technologies available nowadays, the trade-off

between spatial and temporal resolution presents unavoidable limitations to reconstruct cell lineages

and quantify precisely fate maps by scalable automated means. Apart from the spatio-temporal resolu-

tion limitation, there is indeed a theoretical and experimental bias in how embryogenesis is quantified

through the lens of the microscope.

The framework proposed fills the gap to study how mechanical patterning, restricted to a kine-

matics description of deformation and strain, influences and organizes the embryogenesis shaping

processes [Keller, 2012]. This quantification cannot be carried out only with an instantaneous quan-

tification of mechanical patterns in the image, but through a novel representation of the mechanics

like the one proposed that enables to quantify patterns along trajectories undergoing the mechanical

processes. Thus, this framework generalizes current approaches in 2D providing a similar description

at the cell and tissue levels, but extending the analysis to discover organization of 3D+ time patterns

in several temporal length-scales. This work approaches embryogenesis mechanics in a systematic

way to define elements of the embryonic mechanome and explain physics of the embryo phenomics.

7.2.2 Selection of motion estimation method

The continuous motion estimation methods proposed enable to generate the mechanics description

in a wide range of biological images. The B-splines sequential registration has been fully developed

for 2D + time data (a 3D + time version is available and partially tested for other applications))

and provides accurate estimation of the motion with high-quality image intensity data. The optimal
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spatial and temporal resolutions depend on the scale of the motion and the length-scales of the struc-

tures reconstructed. We assessed that the B-splines registration would work on sequences of images

where the spatial scale of deformation to be analyzed is small compared with the spacing between B-

splines control nodes (cnode parameter) that can be afforded. The framework requires that the scale

of the deformation can be assumed as infinitesimal for the temporal resolution of the image data.

In this PhD Thesis, we successfully used this implementation to study cell oscillations characterized

by cell membranes, so several B-splines nodes could be place within a cell so the resolution of the

displacements was highly subcellular. The quality of these images was high and the temporal resolu-

tion (10 seconds) favored the registration because the membranes movements were smooth along the

image sequence. The application of this framework to 3D images would require very high-quality

images in z-dimensions so it does not hampers the accuracy of the estimation. The B-splines regis-

tration presents the main advantage, over other image based techniques such as PIV, that expresses

the deformation in terms of continuous functions allowing a more natural, detailed and also analytical

representation of deformation driven by continuous motion.

On the other hand, the tracking based implementation is very suitable to scales present in 3D +

time data showing large movements. The tracking methods estimates movement in terms of particle

detection, therefore the approach is less sensitive to image quality degradation along the z-dimension

than image based methods such as PIV and B-splines. However, the scale of the deformation observed

is based on relative motion cell trajectories forming a sparse and heterogeneous displacements field.

Therefore, this source of motion data requires integrating the information at a mesoscopic scale in

order to provide a description. This approach highlights patterns underlying collective behavior and

a magnitude of motion comparable to the cell size, so the nuclei displacements provide significant

information given the temporal resolution of acquisitions.

In the study cases of this Thesis, cell tracking approach was not able to obtain a dense charac-

terization of amnioserosa tissue as cells do not change their position significantly through time, but

only their membranes deform in a scale that is much smaller than the cell size between steps. Con-

versely, B-splines sequential registration in 3D did not produce satisfactory results in the datasets of

zebrafish gastrulation, because of the difficulties derived from the complexity and resolution of the

data, to optimize the registration. High density of splines control nodes led to badly optimized and

expensive computation registration, whereas low density of control nodes led to a bad estimation due

to the quality of the 3D stacks. However, the B-splines sequential registration has been successfully

applied to 3D data in parallel studies to this Thesis after defining very specific quality and resolution

requirements. In large embryos, this type of motion estimation would be useful to estimate motion

along the segmentation stage and late development of concrete structures could be analyzed in 3D.

It is important to point out that the scale of movement observed instantaneously depends on the

temporal resolution, so any process could be imaged with very high temporal resolution allowing
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the use of intensity based techniques such as registration. However, the temporal resolution must

be optimized globally along the sequence and the scale of motion in the interval of interest. In this

context, the registration technique could be also used to zoom in during large scale motion processes to

describe sub-processes involving smaller scale deformation (such as oscillations and cell contractions

during the onset of gastrulation), provided a pyramid of multi-scale resolution images is properly

built.

Anticipating future work, it was concluded that hybrid techniques either expressing tracking dis-

placements as B-splines functions or registration methods corrected in smaller scales with detection

and linking would potentially help to improve the flexibility and performance of the proposed frame-

work. After all, the theoretical limitation of both approaches comes from the nature of the mechanical

processes and the nature of the motion. Non collective behavior leading to network-like interactions

and intercalation between small cells would be difficult to be modeled as a continuous vector field and

other approaches should be used.

7.2.3 Mechanics considerations

This PhD Thesis covers a kinematics description of embryogenesis as clarified in chapter 1. Kinemat-

ics descriptors, which are inspired in continuum (solid and fluid) computational mechanics, are de-

rived from the estimated motion under the assumption of local spatial differentiability and smoothness

of trajectories, with a temporal resolution of the imaging that provides ”instantaneous” description of

the dynamics along the sequence of images.

The description provided does not assume any type of mechanical properties of tissues, cell au-

tonomous behavior or localization of exerted forces. Due to the findings of the research along this

Thesis, it is not clear which is the best strategy to characterize mechanical properties or to infer stresses

in-vivo from the strains quantified. Several techniques, inspired in Traction Force Microscopy [Hall

et al., 2013, Ishihara et al., 2013], try to solve local inverse problems. This approach seems suitable

for very specific mechanical situations, where cell behavior and interactions through cell junctions

(forming local deformation patterns) and tissue properties have already configured. However, the

complexity of interactions, produced by concurrent active and passive multi-scale behaviors [Blan-

chard and Adams, 2011] during embryogenesis, makes very difficult to generalize approaches where

stresses have to be inferred from the same source of data from which strains are calculated. Fur-

thermore, the inherited difficulties to determine a ”zero-force” state in developing tissues increases

the complexity of experimental and analysis methods to quantify embryogenesis forces in-vivo. This

problem is currently addressed with laser-cuts methods to determine a ”zero-force” state at the time of

the tissue ablation by the laser, which avoids a non-invasive in-vivo observation of the embryogenesis

after. We believe that it would be necessary to introduce passive elements with known mechanical

properties in the tissues that report about stresses, in the direction of the work proposed by Campas
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et al. [2014], for further advances in the field.

From a larger scale perspective, a hydro-dynamics behavior of embryos during embryogenesis

has also been proposed [Fleury et al., 2015], which is consistent with the patterns obtained with the

quantitative analysis of the zebrafish gastrulation (topology of jet-vortexes motion in a fluid governed

by a Poisson equation 1). In this scenario, no local forces are needed to describe the topology, but the

embryo could behave at this large scale as a fluid moving through the action of a large force exerted

at a long distance. Thus, the effect of the force could hold due to a mass conservation principle in the

fluid and the flow topology on one spatial point (such as the vortexes) could affect the whole embryo.

On the other hand, the low magnitude of the motion compared to the cell size results in a low Reynolds

number, so the flow described by the cell movements has no inertia. That property implies that the

embryonic flow has no memory, so local forces could appear to control the shaping process locally

as part of a whole regulatory mechanism. These hypothesis have to be properly quantified but are

consistent with the instantaneous and cumulative deformation descriptions provided in chapter 5.

Overall, although the methodology proposed is just restricted to kinematics, the results obtained

provide the first quantitatve multi-scale assessment of biomechanical patterning of the embryo beyond

local tissue behavior, providing a systematic way to measure temporal multi-scale patterns in different

levels of description.

7.2.4 Biological insight

The application of the framework to real data of embryogenesis led to biological insights. The study

of the zebrafish gastrulation provided a new quantification of mechanical activity through stages of

development revealing macroscopic traits due to large scale deformation undergone during gastrula-

tion. These patterns were observed in a cohort of embryos but, given their high spatial and temporal

complexity, they hampers to be compared as maps. The observation of these patterns through the

trajectories revealed an incremental localization of mechanical activity in specific domains that we

could identify with unsupervised classification techniques. The organization suggests a scale of orga-

nization comparable to the organization of the cell differentiation map (fate map), encouraging further

investigation. A question that arises is which would be the role of mesoscopic mechanical activity in

cell differentiation and its coordination or coupling with genetic patterns. More research has to be

done in this direction to understand the interactions of genetics and mechanics in cell differentiation

and in which length-scales and time intervals this combined interaction could really influence the

differentiation process.

The study of the Drosophila’s amnioserosa has confirmed previous research in the tissue, but the

provided framework seems to allow a detail of description suitable to gain more insight. Best contri-

1Check this video for an example of a fluid jet: https://www.youtube.com/watch?v=zdI6OUJGZzU
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bution has been to quantify a multi-scale coupling of mechanical behaviors (subcellular, cellular and

supracellular scales) revealing that not only collective cell behavior give rise to the oscillatory contrac-

tion of the tissue, but mesoscopic constraints influence the mechanism. Further research is required

to understand the timing hidden in this multi-scale mechanism as well as to formulate hypothesis and

models that could be confronted with the kinematics analysis results.

7.3 Future work

This descriptive framework has the potential of being applied to numerous biological problems and the

versatility will grow when better spatio-temporal data can be acquired. One of the most interesting

lines of future research will be to apply this methodology to whole-embryo data so the meso-level

mechanical characterizations can be compared among embryos,ensuring the selection of complete

domains, and a canonical representation of embryo phenotypes can be statistically demonstrated. In

that sense, it will be also possible to generate Lagrangian atlas of embryos, so information can be

compared in terms of processes and not in terms of anatomical landmarks or instantaneous functional

data difficult to cross-identify between embryos because of spatio-temporal variability.

Furthermore, the investigation of the most relevant length-scales will be necessary to observe

the correlation between the dynamical structures and gene expression patterns. It can be assumed

that mechanics will play an important role in the organization of the genetic patterns and this role

should be analyzed in different spatio-temporal scales. Thus, this work encourages specific studies

on phenotype comparison of mechanical, biomolecular and genetic patterns, so the main factors in

phenotype differentiation can be quantified.

A deeper understanding of the levels and interactions of the mechanical factors in embryogenesis

will be another important area of research. The meso-level organization of spatio-temporal dynamics

in different stages and intervals of development emerges from force generation and force transduction

mechanisms, so this description could be exploited to refine models and simulations of embryoge-

nesis processes. In that sense, theoretical, methodological and experimental challenges will appear

while trying to quantify the mechanical factors (see section 7.2.3) and to model how they organize

to establish the patterning of embryogenesis, because it will be necessary to combine different scales

of analysis along the development. Specially, the accurate and non-invasive measurement of stresses

from in-vivo images will be necessary to convert multi-scale strain maps into a multi-scale force gen-

eration and communication mechanisms description.

In summary, an integrative research will require to determine the causality and the interplay be-

tween the mentioned mechanical factors, the biomolecular activity and the genetics in their different

characteristic scales yet to be fully determined. From the results obtained in this Thesis, we could hy-

pothesize that these mechanisms organize not only in short temporal scales, but also in long temporal
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scales, so it will be necessary to build multi-level and multi-scale maps of interactions that eventu-

ally could explain the mechanisms that orchestrate the variable and robust morphogenesis of living

systems.
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Appendix A

Mechanics formulation and theory

A.1 Tensors and tensors operations

A.1.1 Second order tensors

The tensors introduced in the presentation are generally defined as second order tensors. Specifically,

the tensors describing the deformation of material points IDG and FTDG are characterized in terms

of the partial derivatives between the spatial vector xa and the material vector XA, so the IDG tensor

for each sample (material) point xi can be more precisely defined as:

f t(xi) =

(
∂xa
∂XA

)
xi

=

(
∂xt+∆t

a

∂xt
A

)
xi

expressing the instantaneous incremental deformation of the particle between t and t+ ∆t (where

we assumed that ∆t is instantaneous). The FTDG tensor would be then defined as:

F(xi) = FaA =

(
∂xa

∂XA

)
xi

where xa and XA are the two positions of the particle in the finite-time interval limits.

A.1.2 Chain rule of interior product of tensors

The computation of the FTDG tensor involves the interior product of the IDG tensors along time

(here [m− 2,m]) with the chain rule.

Fm
m−2 = fm−1fm−2

The chain rule involves a calculus relationship between the partial derivatives of the tensors:

Fm
m−2 ==

∂xm
∂xm−1

∂xm−1

∂xm−2
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As tensors, each operation is computed as an interior product of tensors (matrices):

AB = AipBpj

A.1.3 Principal components and invariants of tensors

The tensors are normally characterized with their principal components, calculated as the eigenvalues

and eigenvectors of the matrix representing the tensor. These components provide information about

the magnitude and the direction of the tensor components such as principal strain components. In 3D

complex geometries, these components imply very difficult to interpret visualization tools (such as

glyphs). Therefore, we will use scalar descriptors as principal invariants of the tensor that provide the

quantitative description. Given the tensor A, the principal invariants are defined as:

• First invariant: I1 = tr(A):

• Second invariant: I2 = 1
2(tr2(A)− tr(A2)

• Third invariant: I3 = det(A)

A.2 Eulerian and Lagrangian clarification

A.2.1 Definition

We define the different approaches of analysis as:

• Eulerian: Analysis of the dynamics from a spatial reference frame. Each sample is a spatial

position. The dynamic system is defined by the streamlines (tangent lines of the vector field).

• Lagrangian: Analysis of the dynamics from a material reference frame. Each sample is a ma-

terial point or particle moving. The dynamic system is defined by the pathlines (integrating the

vector field).

In steady flows (do not change through time), streamlines and pathlines are the equivalent as all

particles passing through a spatial point move in the same way.

Additionally, gradients are computed differently by an Eulerian definition which is normally used

in fluid mechanics:

du(x, t)

dt
=
∂u

∂t
+
∂u

∂x

∂x

∂t
;

and a Lagrangian one, normally used in solid mechanics:

du(X, t)

dt
=
∂u

∂t
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A.2.2 Lagrangian framework

We proposed a generalized Lagrangian description of the embryo dynamics in comparison to an Eu-

lerian characterization, meaning that we consider samples as material points that move forming the

embryo. In that sense, our mechanics description is similar to continuum solids [Capaldi, 2012, Chad-

wick, 2012], but also to fluid analysis based on pathlines, such as the Lagrangian Coherent Structures

formulation [Shadden et al., 2005, Peacock and Dabiri, 2010].

The displacements field calculated with image analysis techniques are normally computed as par-

ticle movement, through tracking or optical flow-like techniques. In that sense, all the deformation

analysis is based on a Lagrangian (material) formulation. However, each time step is considered in-

dependently, so the material points are not treated as such, but as spatial points, so the instantaneous

descriptor provided is classified as Eulerian.

Through the motion estimation description based on a differentiable vector field and a trajectory

field, we fully define the embryo and tissue dynamics as a continuum under a Lagrangian framework,

having a complete spatio-temporal map of material points along the interval of analysis that allows us

to compute the deformation along several time intervals.

A.3 Infinitesimal Deformation

A.3.1 Infinitesimal deformation tensors

Under the assumption of high-temporal resolution for the phenomena observed, the instantaneous de-

scriptors can be obtained from a linear decomposition of the IDG tensor ft (or simply f ), as it is

proposed in the bibliography [Helman and Hesselink, 1991]. We maintain these descriptors analo-

gously to the descriptors used to characterize flows topology and strain rates.

The Incremental Gradient of Displacements -IGD- tensor h = f − I provides information of

the topology of the deformation (equivalent to the velocity gradient if we consider instantaneous

observation). This tensor contains complex eigenvalues indicating rotation rate and real components

indicating linear deformation. The first principal invariant P provides information of the expansion

and compression rate. In non-compressible flows P = 0, which is common for fluids, but in biological

tissues P can take positive and negative values. The second invariant Q describes the behavior of the

elongation and the rotation. In case Q > 0, the field rotates, but if Q < 0 the field deforms linearly.

When P = 0 this invariant is a good indicator of the rotation rate. To better characterize this behavior

we use the rotation discriminant D:

D = 27R2 + (4P 3 − 18PQ)R+ (4Q3 − P 2Q2) (A.1)

This scalar provides very topological information of the invariants as D = 0 separates the clas-
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sification of the field having complex eigenvalues or only real eigenvalues, so for high values of D it

is possible to ensure that the field rotates because the magnitude of the complex eigenvalues is much

larger than the magnitude of the real eigenvalues. Although D is a more sensitive descriptor (because

of the high-order terms of eq. A.1) than Q, D is a better indicator of rotation than Q for compressible

materials.

The shears are calculated from the symmetric part of h, as the infinitesimal incremental strain

tensor ε comprising the principal components of incremental strain of the field {e1, e2, e3} (strain

rates in our assumption ∆t→ 0.

ε =
1

2
(h + ht) (A.2)

This tensor in non compressible continuum provides information about shears using the second

invariant Qs, however in compressible continuum this descriptor also contains information about vol-

ume variations. In order to better study reconfigurations of the tissues seen as distortion, the deviatoric

tensor d subtracts the volume changes (traceless symmetric tensor) forcing the first invariant to be 0.

d = ε− 1

3
tr(ε)I (A.3)

The eigenvalues {d1, d2, d3} and the invariant Qd of this tensor provide information of the tissue

or cell domains rearrangements induced by cell intercalation and shape changes.

The infinitesimal incremental rotation is extracted as the angular velocity and the axial vector as-

sociated to the skew-symmetric tensor Ω of h. The direction of the rotation in Cartesian components

can be extracted as follows:

Ω =

∣∣∣∣∣∣∣∣
0 −w3 w2

w3 0 −w1

−w2 w1 0

∣∣∣∣∣∣∣∣ .
where φ = (w1, w2, w3) defines the infinitesimal rotation vector w that provides a directionality

of the rotation quantified with Q and D.

A.3.2 Infinitesimal deformation descriptors

Given a IDG tensor characterizing the deformation between time steps assuming ∆t → 0, we sum-

marized the infinitesimal deformation descriptors calculations here:

• P = tr(h)

• Q = 1
2(tr2(h)− tr(h2)

• D = 27R2 + (4P 3 − 18PQ)R+ (4Q3 − P 2Q2) where R = det(h)
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• Qs = 1
2(tr2(ε)− tr(ε2)

• {e1, e2, e3} = eig(ε)

• Qd = 1
2(tr2(d)− tr(d2)

• {d1, d2, d3} = eig(d)

• w = ‖w‖

A.4 Finite deformation

A.4.1 Finite deformation tensors

The FTDG tensors can be arbitrarily large for a time interval [tn, tm], so finite deformation tensors

and desriptors formulation must be used to avoid characterization errors:

F = RU (A.4)

where R is the finite rotation tensor (proper orthogonal tensor) and U the finite elongations tensor

(positive definite symmetric tensor). To obtain these two matrices is necessary to perform the right

polar decomposition of F (unique decomposition). First, we obtain the Cauchy-Green (CG) tensors

which are rotation-free tensors:

RightCGtensor : C = FTF (A.5)

LeftCGtensor : B = FFT (A.6)

Eigenvalues between 0 and 1 stand for shrinking principal components whereas eigenvalues > 1

are the extension principal components. The tensor C has principal components in the same prin-

cipal directions than the tensor U and their determinants keep a quadratic relationship det(C) =

det(U2) = det(F2)) = J2. The third invariant (determinant) J is the descriptor of volumetric

changes for finite-time deformation. Then, the tensor U can be computed as described in [Simo and

Hughes, 2006, Chadwick, 2012]:

• First, the eigenvalues of C{e1, e2, e3} are extracted to obtain the invariants {i1, i2, i3}:

I1 = e1 + e2 + e3 I2 = e1e2 + e1e3 + e2e3 I3 = e1e2e3
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• Then, U is calculated as:

U =
1

A
[−C2 + (I2

1 − I2)C + I1I3I]

where A = I1I2 − I3 and I is the identity matrix.

• Then, we can simply isolate the tensor R from:

R = FU−1 (A.7)

This rotation tensor allows us to express the rotation, according to Euler’s theorem, by an angle

rotation θ and the axis of rotation n that will be evolving through time:

cos θ =
trR− 1

2
(A.8)

where w1 and w2 are the eigenvectors of the complex eigenvalues of R.

The finite strain tensors can be obtained from the Cauchy-Green tensors allowing us to express

the strains in the material coordinates getting the Lagrange finite strain tensor γ:

γ =
1

2
(C− I) (A.9)

or in the spatial coordinates obtaining the Almansi-Euler finite strain tensor η:

η =
1

2
(I−B−1) (A.10)

These tensors are therefore a normalized version of the Cauchy-Green tensors.

Deformation can produce a volumetric change (J) and also to the distortion of the material. In

order to isolate those behaviors, the gradient of isochoric deformation tensor may be also computed,

whose eigenvalues {ic1 ic2 ic3} represent the deformation free of volume changes undergone by the

continuum, related specially to the shears.

F̃ = J−1/3F where det(F̃) = 1 (A.11)

The first and second invariants of the Cauchy-Green tensor C̃ derived from here F̃ (MIC1 and

MIC2) give the information about the tissue distortion along a finite time interval.

TheFTLE field has been used in fluids to obtain Lagrangian Coherent StructuresLCSs [Peacock

and Haller, 2013, Shadden et al., 2005, Haller, 2001]. In non-compressible flows, this field shows the

transport boundaries of the flow as lines of high-intensity values of the field (ridges). The LCSs

are defined as regions where there is no flux crossing them, therefore, the topology of the flow in the
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LCSs is a saddle point, line or plane stable through time. This field is derived from the Green-Cauchy

right tensor C and its eigenvalues {ci} within an interval of time [tn tm] (T = tm − tn) as follows:

FTLE : σmn =
1

T
ln(
√

max(ci)) (A.12)

For compressible flows (J 6= 1) the interpretation of the FTLE also conveys density changes

along time. This phenomenon thickens the FTLE ridges and introduces uncertainty about the pres-

ence of flux through the LCS. To isolate both behaviors and enforce the absence of flux through the

LCS, we calculated the isoFTLE for the isochoric deformation tensor F̃ and its Cauchy-Green asso-

ciated tensor C̃. By applying the expression eq. A.12 over the eigenvalues derived from C̃, we obtain

the isochoric FTLE field σ̃mn . The ridges of this field are LCS that are not crossed by any flux. The

FTLE field as calculated in A.12 contains repelling structures that separate the flow at both sides of

the FTLE ridges. The attracting structures are calculated in a similar way with the backward track-

ing. As the trajectories have to be complete and consistent, the same trajectory field is used, but the

chain rule operates with the inverse of the gradient of incremental deformation. Thus, the backward

bFTLE and backward isochoric ibFTLE can be derived from the same trajectory field. Combin-

ing forward and backwards description, it is possible to categorize zones of relaxation (FTLE) and

repelling behavior (iFTLE) or attracting behavior (ibFTLE) and contraction (bFTLE).

A.4.2 Finite deformation descriptors

Given a FTDG tensor for a finite time interval of time F, we summarized the finite deformation

descriptors calculations here:

• J = det(F)

• MIC1 = tr(C̃)

• MIC2 = 1
2(tr2(C̃)− tr(C̃

2
)

• θ = arccos( tr(R)−1
2 ) and n = w1 ×w2

• FTLE : σmn = 1
T ln(

√
max(ci))

• iFTLE : σ̃mn = 1
T ln(

√
max(ici))
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C. Castro-González, M. Luengo-Oroz, L. Douloquin, T. Savy, C. Melani, S. Desnoulez, M. Ledesma-
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P. Thévenaz, U. E. Ruttimann, and M. Unser. A pyramid approach to subpixel registration based on

intensity. IEEE Trans. Image Proc., 7(1):1–15, 1998.

S. Tlili, C. Gay, F. Graner, P. Marcq, F. Molino, and P. Saramito. Colloquium: Mechanical formalisms

for tissue dynamics. The European Physical Journal E, 38(5):1–31, 2015.

R. Tomer, K. Khairy, F. Amat, and P. J. Keller. Quantitative high-speed imaging of entire develop-

ing embryos with simultaneous multiview light-sheet microscopy. Nature methods, 9(7):755–763,

2012.

X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg.

Physical forces during collective cell migration. Nature physics, 5(6):426–430, 2009.

R. S. Udan, V. G. Piazza, C.-w. Hsu, A.-K. Hadjantonakis, and M. E. Dickinson. Quantitative imaging

of cell dynamics in mouse embryos using light-sheet microscopy. Development, 141(22):4406–

4414, 2014.

C. G. Vasquez, M. Tworoger, and A. C. Martin. Dynamic myosin phosphorylation regulates contrac-

tile pulses and tissue integrity during epithelial morphogenesis. The Journal of cell biology, 206

(3):435–450, 2014.

M. von Dassow and L. A. Davidson. Variation and robustness of the mechanics of gastrulation: The

role of tissue mechanical properties during morphogenesis. Birth Defects Research Part C: Embryo

Today: Reviews, 81(4):253–269, 2007.



J. H. Wang and J.-S. Lin. Cell traction force and measurement methods. Biomechanics and modeling

in mechanobiology, 6(6):361–371, 2007.

Q. Wang, J. J. Feng, and L. M. Pismen. A cell-level biomechanical model of drosophila dorsal closure.

Biophysical journal, 103(11):2265–2274, 2012.

R. M. Warga and D. A. Kane. One-eyed pinhead regulates cell motility independent of squint/cyclops

signaling. Developmental biology, 261(2):391–411, 2003.

A. R. Wells, R. S. Zou, U. S. Tulu, A. C. Sokolow, J. M. Crawford, G. S. Edwards, and D. P. Kiehart.

Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive

dorsal closure in drosophila. Molecular biology of the cell, 25(22):3552–3568, 2014.

S. Wolf, W. Supatto, G. Debregeas, P. Mahou, S. G. Kruglik, J.-M. Sintes, E. Beaurepaire, and R. Can-

delier. Whole-brain functional imaging with two-photon light-sheet microscopy. Nature methods,

12(5):379–380, 2015.

G. Wollny, M. Ledesma-Carbayo, P. Kellman, and A. Santos. Exploiting quasiperiodicity in motion

correction of free-breathing myocardial perfusion MRI. Medical Imaging, IEEE Transactions on,

29(8):1516–1527, 2010.

K. Woo and S. E. Fraser. Order and coherence in the fate map of the zebrafish nervous system.

Development, 121(8):2595–2609, 1995.

S. Xie and A. Martin. Intracellular signalling and intercellular coupling coordinate heterogeneous

contractile events to facilitate tissue folding. Nature communications, 6:7161, 2015.

L. Yang, N. Y. Ho, R. Alshut, J. Legradi, C. Weiss, M. Reischl, R. Mikut, U. Liebel, F. Muller, and

U. Strahle. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals.

Reproductive Toxicology, 28(2):245–253, 2009.

E. A. Zamir, B. J. Rongish, and C. D. Little. The ECM moves during primitive streak formation-

computation of ECM versus cellular motion. PLoS biology, 6(10):e247, 2008.


	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.2.1 A framework to quantify multi-scale mechanics in microscopy images
	1.2.2 Characterizing the meso-level mechanical patterning during zebrafish embryogenesis
	1.2.3 Quantification of the contractile behaviour of Drosophila's amnioserosa

	1.3 Document Structure

	2 State of the Art
	2.1 Biological context
	2.1.1 Zebrafish
	2.1.2 Drosophila melanogaster

	2.2 Embryogenesis image data acquisition, processing and visualization
	2.2.1 Image acquisition
	2.2.2 Digitizing and visualizing live embryos

	2.3 Methods to study embryogenesis mechanics
	2.4 Mechanics of actomyosin-driven pulsatile contraction

	3 Estimating Continuous Motion from Microscopy Images
	3.1 Unifying continuous and discrete image analysis
	3.2 Motion estimation based on cell tracking
	3.2.2 Displacements field implicit in the cell lineage
	3.2.3 Temporal averaging of displacements
	3.2.4 Obtaining a differentiable displacements field
	3.2.5 Trajectory field generation

	3.3 Motion estimation based on B-splines sequential registration
	3.3.1 B-splines registration
	Registration definition
	Image model
	Transformation model
	Criterion

	3.3.2 Spatial and material definition of the continuous motion from B-splines registration

	3.4 Conclusions

	4 Descriptive framework of embryogenesis mechanics
	4.1 Motion to deformation: Incremental Deformation Gradient (IDG) tensor
	4.1.1 IDG tensor from tracking based motion estimation
	4.1.2 IDG tensor from B-splines registration based motion estimation
	4.1.3 Spatial and temporal scales of the IDG tensor for each motion estimation method

	4.2 Instantaneous deformation description
	4.2.1 Deformation topology and strain rate descriptors
	4.2.2 Biological interpretation of instantaneous descriptors

	4.3 Finite-time deformation description
	4.3.1 Finite-time Deformation Gradient (FTDG)
	4.3.2 Finite-time deformation and strain descriptors
	4.3.3 Biological interpretation of finite-time descriptors

	4.4 Temporal analysis of deformation
	4.4.1 Incremental window analysis
	4.4.2 Fixed window analysis

	4.5 Analysis of descriptors as Lagrangian profiles
	4.5.1 Lagrangian profiles
	4.5.2 Profiles categorization
	4.5.3 Mechanical signatures and organization of profiles

	4.6 Conclusions

	5 Characterizing the mesoscopic mechanical patterning of the zebrafish gastrulation
	5.1 Materials and Methods
	5.1.1 In-vivo images of zebrafish
	5.1.2 Cell tracking
	5.1.3 Continuous flow approximation from tracking

	5.2 Results
	5.2.1 Accuracy of the continuous approximation
	5.2.2 The phenomenology of gastrulation with quantitative descriptors
	5.2.3 Quantitative comparison of Lagrangian biomechanical profiles in a cohort of zebrafish embryos
	5.2.4 Identifying canonical profiles of deformation
	5.2.5 Spatio-temporal organization of mechanical patterns during zebrafish gastrulation

	5.3 Conclusion

	6 Drosophila amnioserosa tissue continuous analysis
	6.1 Methods and materials
	6.1.1 In-vivo images of Drosophila's AS
	6.1.2 Digital reconstruction of the AS tissue
	AS cells segmentation
	Cell tracking

	6.1.3 Dense mechanical tissue description by sequential B-splines registration

	6.2 Results
	6.2.1 Validation of the dense tissue motion estimation of tissue with sequential B-splines registration
	6.2.3 Characterization of contractile oscillation at the cellular level
	6.2.4 Mechanical oscillation and myosin expression periodicity
	6.2.5 Meso-level patterning in the tissue and active force generation

	6.3 Conclusions

	7 Conclusions
	7.1 Contributions
	7.2 Impact and Limitations
	7.2.1 Theoretical considerations on systems biology
	7.2.2 Selection of motion estimation method
	7.2.3 Mechanics considerations
	7.2.4 Biological insight

	7.3 Future work

	Appendices
	A Mechanics formulation and theory
	A.1 Tensors and tensors operations
	A.1.1 Second order tensors
	A.1.2 Chain rule of interior product of tensors
	A.1.3 Principal components and invariants of tensors

	A.2 Eulerian and Lagrangian clarification
	A.2.1 Definition
	A.2.2 Lagrangian framework

	A.3 Infinitesimal Deformation
	A.3.1 Infinitesimal deformation tensors
	A.3.2 Infinitesimal deformation descriptors

	A.4 Finite deformation
	A.4.1 Finite deformation tensors
	A.4.2 Finite deformation descriptors


	Bibliography
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.2.1 A framework to quantify multi-scale mechanics in microscopy images
	1.2.2 Characterizing the meso-level mechanical patterning during zebrafish embryogenesis
	1.2.3 Quantification of the contractile behaviour of Drosophila's amnioserosa

	1.3 Document Structure

	2 State of the Art
	2.1 Biological context
	2.1.1 Zebrafish
	2.1.2 Drosophila melanogaster

	2.2 Embryogenesis image data acquisition, processing and visualization
	2.2.1 Image acquisition
	2.2.2 Digitizing and visualizing live embryos

	2.3 Methods to study embryogenesis mechanics
	2.4 Mechanics of actomyosin-driven pulsatile contraction

	3 Estimating Continuous Motion from Microscopy Images
	3.1 Unifying continuous and discrete image analysis
	3.2 Motion estimation based on cell tracking
	3.2.2 Displacements field implicit in the cell lineage
	3.2.3 Temporal averaging of displacements
	3.2.4 Obtaining a differentiable displacements field
	3.2.5 Trajectory field generation

	3.3 Motion estimation based on B-splines sequential registration
	3.3.1 B-splines registration
	Registration definition
	Image model
	Transformation model
	Criterion

	3.3.2 Spatial and material definition of the continuous motion from B-splines registration

	3.4 Conclusions

	4 Descriptive framework of embryogenesis mechanics
	4.1 Motion to deformation: Incremental Deformation Gradient (IDG) tensor
	4.1.1 IDG tensor from tracking based motion estimation
	4.1.2 IDG tensor from B-splines registration based motion estimation
	4.1.3 Spatial and temporal scales of the IDG tensor for each motion estimation method

	4.2 Instantaneous deformation description
	4.2.1 Deformation topology and strain rate descriptors
	4.2.2 Biological interpretation of instantaneous descriptors

	4.3 Finite-time deformation description
	4.3.1 Finite-time Deformation Gradient (FTDG)
	4.3.2 Finite-time deformation and strain descriptors
	4.3.3 Biological interpretation of finite-time descriptors

	4.4 Temporal analysis of deformation
	4.4.1 Incremental window analysis
	4.4.2 Fixed window analysis

	4.5 Analysis of descriptors as Lagrangian profiles
	4.5.1 Lagrangian profiles
	4.5.2 Profiles categorization
	4.5.3 Mechanical signatures and organization of profiles

	4.6 Conclusions

	5 Characterizing the mesoscopic mechanical patterning of the zebrafish gastrulation
	5.1 Materials and Methods
	5.1.1 In-vivo images of zebrafish
	5.1.2 Cell tracking
	5.1.3 Continuous flow approximation from tracking

	5.2 Results
	5.2.1 Accuracy of the continuous approximation
	5.2.2 The phenomenology of gastrulation with quantitative descriptors
	5.2.3 Quantitative comparison of Lagrangian biomechanical profiles in a cohort of zebrafish embryos
	5.2.4 Identifying canonical profiles of deformation
	5.2.5 Spatio-temporal organization of mechanical patterns during zebrafish gastrulation

	5.3 Conclusion

	6 Drosophila amnioserosa tissue continuous analysis
	6.1 Methods and materials
	6.1.1 In-vivo images of Drosophila's AS
	6.1.2 Digital reconstruction of the AS tissue
	AS cells segmentation
	Cell tracking

	6.1.3 Dense mechanical tissue description by sequential B-splines registration

	6.2 Results
	6.2.1 Validation of the dense tissue motion estimation of tissue with sequential B-splines registration
	6.2.3 Characterization of contractile oscillation at the cellular level
	6.2.4 Mechanical oscillation and myosin expression periodicity
	6.2.5 Meso-level patterning in the tissue and active force generation

	6.3 Conclusions

	7 Conclusions
	7.1 Contributions
	7.2 Impact and Limitations
	7.2.1 Theoretical considerations on systems biology
	7.2.2 Selection of motion estimation method
	7.2.3 Mechanics considerations
	7.2.4 Biological insight

	7.3 Future work

	Appendices
	A Mechanics formulation and theory
	A.1 Tensors and tensors operations
	A.1.1 Second order tensors
	A.1.2 Chain rule of interior product of tensors
	A.1.3 Principal components and invariants of tensors

	A.2 Eulerian and Lagrangian clarification
	A.2.1 Definition
	A.2.2 Lagrangian framework

	A.3 Infinitesimal Deformation
	A.3.1 Infinitesimal deformation tensors
	A.3.2 Infinitesimal deformation descriptors

	A.4 Finite deformation
	A.4.1 Finite deformation tensors
	A.4.2 Finite deformation descriptors


	Bibliography



