

ASIGNATURA

93001029 - Inteligencia En Sistemas Electrónicos

PLAN DE ESTUDIOS

09AZ - Master Universitario En Ingenieria De Sistemas Electronicos

CURSO ACADÉMICO Y SEMESTRE

2023/24 - Primer semestre

Índice

Guía de Aprendizaje

1. Datos descriptivos	1
2. Profesorado	
3. Competencias y resultados de aprendizaje	
4. Descripción de la asignatura y temario	
5. Cronograma5	ε
6. Actividades y criterios de evaluación	8
7. Recursos didácticos	10
8. Otra información	11

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	93001029 - Inteligencia en Sistemas Electrónicos
No de créditos	4 ECTS
Carácter	Optativa
Curso	Primer curso
Semestre	Primer semestre
Período de impartición	Septiembre-Enero
Idioma de impartición	Castellano
Titulación	09AZ - Master Universitario en Ingenieria de Sistemas Electronicos
Centro responsable de la titulación	09 - Escuela Tecnica Superior De Ingenieros De Telecomunicacion
Curso académico	2023-24

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Fernando Fernandez Martinez	B-109	fernando.fernandezm@upm. es	Sin horario. Para cualquier otro horario concertar por correo

Jose Manuel Pardo Muñoz	C 224	josemanuel.pardom@upm.e	Sin horario.
(Coordinador/a)	C-224	S	Pedir hora

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias

- CB06 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- CE02 Capacidad para aplicar herramientas, técnicas y metodologías avanzadas de diseño de sistemas o subsistemas electrónicos
- CG02 Liderazgo de equipos: realizar trabajos en equipo (como los de algunas de las actividades de evaluación de las asignaturas), integrarse en un grupo participando activamente en sus reuniones, colaborando con iniciativa propia en trabajos o proyectos de I+D +i; interaccionar con efectividad con los miembros del equipo de trabajo multidisciplinar
- CG08 Aplicar metodologías, procedimientos, herramientas y normas del estado del arte para la creación de nuevos componentes tecnológicos; construir nuevas hipótesis y modelos, evaluarlos y aplicarlos a la resolución de problemas.

3.2. Resultados del aprendizaje

- RA43 Conocimiento de métodos de recogida de información mediante sensores inteligentes
- RA44 Capacidad de desarrollar algoritmos para el procesado de la información
- RA93 Preparar presentaciones eficaces para difundir los resultados de los trabajos de ingeniería y para comunicar sus conclusiones, de forma clara y sin ambigüedades ante audiencias especializadas y no especializadas con el tema.
- RA45 Adquisición de nociones sobre técnicas de análisis de datos, toma de decisiones y aprendizaje automático
- RA14 Conocimientos cualitativos y cuantitativos del diseño de sistemas electrónicos
- RA18 Capacidad de analizar y diseñar sistemas electrónicos empotrados

RA13 - Capacidad de aplicar avances a la investigación e innovación en sistemas electrónicos

RA96 - Un conocimiento y comprensión de las matemáticas y otras ciencias básicas inherentes a su especialidad de ingeniería, que le permitan conseguir el resto de las competencias del título.

RA98 - Posesión, con sentido crítico, de los conocimientos de vanguardia de su especialidad.

RA99 - Conocimiento con sentido crítico del amplio contexto multidisciplinar de la ingeniería y de la interrelación que existe entre los conocimientos de los distintos campos.

RA97 - Capacidad para utilizar distintos métodos para comunicar sus conclusiones, de forma clara y sin ambigüedades, y el conocimiento y los fundamentos lógicos que las sustentan, a audiencias especializadas y no especializadas con el tema, en contextos nacionales e internacionales.

RA100 - Capacidad para identificar, formular y resolver problemas de ingeniería en áreas emergentes de su especialidad.

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

Los sistemas electrónicos están pasando a tener componentes llamados inteligentes. La función inteligente avanzada aparece en sistemas que son capaces de tomar datos de sensores y aprender de los mismos para realizar tareas que reconozcan, clasifiquen, organicen, agrupen y determinen acciones en función de nuevos datos existentes similares a los previamente captados.

Los sensores inteligentes integran el trasductor con un procesador de datos que reconoce el patrón de los mismos y entrega al subsistema superior una descripción de los datos más estructurada y útil (por ejemplo podómetros o lectores de huella digital).

En esta asignatura se expondrán metodologías de análisis de datos, aprendizaje a partir de ellos y diseño de sistemas inteligentes basados en el reconocimiento y procesamiento de esos datos.

Todo ello se complementará con prácticas dirigidas a experimentar la metodología y el funcionamiento de los algoritmos propuestos en sistemas prácticos integrados en un sistema empotrado: Salud inteligente, Detección inteligente de averías en automóviles, Reciclado inteligente, Sistemas hápticos, Reconocimiento de gestos manuales etc.

El objetivo final es que los alumnos sean capaces de investigar sobre la aplicación de las tecnologías más avanzadas en Sistemas Electrónicos. Además se busca la capacidad para analizar nuevos y complejos sistemas de ingeniería dentro de un contexto multidisciplinar más amplio; seleccionar y aplicar los métodos más adecuados de análisis, de cálculo y experimentales ya establecidos, así como métodos innovadores e interpretar de forma crítica los resultados de dichos análisis.

4.2. Temario de la asignatura

- 1. Introducción a la inteligencia en sistemas electrónicos: Datos incompletos. Sensores de datos. Sensores inteligentes. Gestión inteligente de los datos y toma de decisiones. Machine learning.
- 2. Introducción a sistemas de clasificacion: Clasificadores sencillos: Regla 0-R, 1-R, Naive Bayes, Árboles de decisión y Random Forest.
- 3. Práctica: Manejo de la herramienta WEKA. Introducción al interface explorer de Weka. Carga de datos, editor de datos, filtrado de datos. Prueba de algunos algoritmos sencillos.
- 4. Entrenamiento/evaluación: Validación cruzada . Significancia estadística. Sobreentrenamiento.
- 5. Práctica: Smart Health. Reconocimiento de actividades físicas basado en acelerómetro 3D. Evaluación Online vs Offline. Benchmark de diferentes estrategias de clasificación: tasa de acierto, coste computacional.
- 6. Selección de características. Estudio y selección de rasgos para mejorar el sistema.
- 7. Práctica: Intelligent Motors. Detección inteligente de anomalías en motores y sistemas de transmisiónde automóviles. Estudio y selección de rasgos para mejorar el sistema. Selección manual de atributos. Selección automática de atributos.
- 8. Sistemas de clasificación avanzados: Logistic, Random Forest, Máquinas de soporte vectorial, Regla del vecino más próximo.
- 9. Redes Neuronales I. Perceptrón multicapa. Deep learning. Redes convolucionales.
- 10. Redes Neuronales II. Deep learning. Transfer learning. Data augmentation.
- 11. Práctica: Smart Recycling: Reconocimiento de objetos con deep learning. Uso de modelos compactos específicamente desarrollados para plataformas HW de recursos limitados.
- 12. Aprendizaje no supervisado, Clustering, K-Means, Deep learning para clustering.
- Aprendizaje conjunto. Reglas generales de diseño de sistemas.

14. Presentaciones de trabajos de alumnos

5. Cronograma

5.1. Cronograma de la asignatura *

Sem	Actividad en aula	Actividad en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Introducción a la inteligencia en sistemas electrónicos Duración: 03:00 LM: Actividad del tipo Lección Magistral			
2	Introducción a sistemas de clasificacion Duración: 01:30 LM: Actividad del tipo Lección Magistral	Práctica: Introducción a Weka. Familiarización con herramientas y plataforma de software para aprendizaje automático. Duración: 01:30 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 01:30
3	Introducción a sistemas de clasificacion Duración: 01:30 LM: Actividad del tipo Lección Magistral	Práctica: Introducción a Weka. Familiarización con herramientas y plataforma de software para aprendizaje automático. Duración: 01:30 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 01:30
4	Entrenamiento/evaluación Duración: 03:00 LM: Actividad del tipo Lección Magistral			
5		Práctica: Smart Health. Reconocimiento de actividades físicas basado en acelerómetro 3D. Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 03:00
6	Selección de atributos y características Duración: 01:30 LM: Actividad del tipo Lección Magistral	Práctica: Intelligent Motors. Detección inteligente de anomalías en motores y sistemas de transmisión en automóviles. Duración: 01:30 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 01:30
7	Selección de atributos y características Duración: 01:30 LM: Actividad del tipo Lección Magistral	Práctica: Intelligent Motors. Detección inteligente de anomalías en motores y sistemas de transmisión en automóviles. Duración: 01:30 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 01:30
8	Sistemas de clasificación avanzados: Logistic, Random Forest, Máquinas de soporte vectorial, Regla del vecino más próximo. Duración: 01:30 LM: Actividad del tipo Lección Magistral	Practica avanzada Duración: 01:30 PL: Actividad del tipo Prácticas de Laboratorio		Cuestionario de Prácticas EP: Técnica del tipo Examen de Prácticas Evaluación continua y sólo prueba final Presencial Duración: 01:30

	Redes neuronales y Deep Learning.		
	Redes convolucionales		
	Duración: 03:00		
	LM: Actividad del tipo Lección Magistral		
	Redes Neuronales II. Deep learning.		
l h	Transfer learning. Data augmentation.		
10	Duración: 03:00		
	LM: Actividad del tipo Lección Magistral		
		Práctica: Smart Recycling.	Cuestionario de prácticas
		Reconocimiento de objetos con deep	EP: Técnica del tipo Examen de Prácticas
		learning.	Evaluación continua y sólo prueba final
11		Duración: 03:00	Presencial
		PL: Actividad del tipo Prácticas de	Duración: 03:00
		Laboratorio	
	Aprendizaje no supervisado		
12	Duración: 03:00		
	LM: Actividad del tipo Lección Magistral		
	Reglas generales de diseño, Aprendizaje		
	Conjunto, Resultado de prácticas		
13	Duración: 03:00		
	LM: Actividad del tipo Lección Magistral		
		Presentacion de trabajos de alumnos	Presentacion del Trabajo
		Duración: 03:00	PG: Técnica del tipo Presentación en Grupo
14		PL: Actividad del tipo Prácticas de	Evaluación continua y sólo prueba final
		Laboratorio	Presencial
			Duración: 03:00
15			
			Examen teórico
			EX: Técnica del tipo Examen Escrito
16			Evaluación continua y sólo prueba final
"			Presencial
			Duración: 01:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
3	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
5	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	03:00	7%	3/10	CB06 CG08 CE02
6	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
7	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
8	Cuestionario de Prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
11	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	03:00	7%	3/10	CB06 CG08 CE02
14	Presentacion del Trabajo	PG: Técnica del tipo Presentación en Grupo	Presencial	03:00	33.5%	5/10	CG02 CG08 CE02

16	Examen teórico	EX: Técnica del tipo Examen Escrito	Presencial	01:00	35%	5/10	CB06 CG08 CE02
----	----------------	--	------------	-------	-----	------	----------------------

6.1.2. Prueba evaluación global

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
3	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
5	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	03:00	7%	3/10	CB06 CG08 CE02
6	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
7	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
8	Cuestionario de Prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	01:30	3.5%	3/10	CB06 CG08 CE02
11	Cuestionario de prácticas	EP: Técnica del tipo Examen de Prácticas	Presencial	03:00	7%	3/10	CB06 CG08 CE02
14	Presentacion del Trabajo	PG: Técnica del tipo Presentación en Grupo	Presencial	03:00	33.5%	5/10	CG02 CG08 CE02
16	Examen teórico	EX: Técnica del tipo Examen Escrito	Presencial	01:00	35%	5/10	CB06 CG08 CE02

6.1.3. Evaluación convocatoria extraordinaria

Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
La evaluación de la prueba extraordinaria se hará exactamente igual a la evaluacion global	OT: Otras técnicas evaluativas	Presencial	19:00	100%	5 / 10	CB06 CG02 CG08 CE02

6.2. Criterios de evaluación

Los estudiantes serán evaluados, mediante evaluación progresiva con los porcentajes expuestos anteriormente. La evaluación global incluirá todas las entregas de los cuestionarios por parejas y la presentación en Grupo.

La evaluación global comprobará si los estudiantes han adquirido las competencias de la asignatura. Por tanto, la evaluación global usará los mismos tipos de técnicas evaluativas que se usan en la evaluación progresiva (EX, ET, TG, etc.), y se realizarán en las fechas y horas de evaluación global aprobadas por la Junta de Escuela para el presente curso y semestre, salvo aquellas actividades de evaluación de resultados del aprendizaje de difícil calificación en una prueba final. En este caso, dichas actividades deberan realizarse a lo largo del curso.

La evaluación en la convocatoria extraordinaria se realizará exclusivamente a través del sistema de evaluación global.

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones	
Ordenadores de Laboratorio y	Equipamiento		
Raspberry Pi	Equipamiento		
Data mining: Practical Machine			
Learning Tools and Techniques, 4th	Dibliografía	Libro de referencia básico	
Edition, I.H. Witten, E. Frank, M.A.	Bibliografía 	Libro de referencia basico	
Hall, Morgan Kaufman, 2017			

Trasparencias de las presentaciones de clase	Recursos web	
Programa Weka: https://www.cs.waikato.ac.nz/ml/wek a/	Otros	Programa software
Caffe	Otros	Software para deep learning
Machine learning repository: https://a rchive.ics.uci.edu/ml/datasets.html	Recursos web	Repositorio de bases de datos de machine learning
Tensor Flow, Jupiter notebooks	Recursos web	Software para deep learning

8. Otra información

8.1. Otra información sobre la asignatura

La asignatura trata en general muchos de los Objetivos de desarrollo sostenible.

Por ejemplo el objetivo 3, Salud se potenciará mucho con el análisis de grandes cantidades de datos para determinar mejor el origen y el diagnóstico de enfermedades.

En el Objetivo 7 de Energía asequible y no contaminante, el análisis de los datos permitirá optimizar los sistemas de gasto y ahorrar energía.

El objetivo 9 de Industria, innovación e infraestructuras será beneficiado y perseguido, dado que estos temas son la bases para la innovación en la producción y los servicios.

También en el Objetivo 11: Ciudades y comunidades sostenibles, el análisis de los datos permitirá ahorro en las comunicaciones y en el tráfico, permitiendo por ello una mejor sostenibilidad.